Genetic and Environmental Determinants of Spontaneous Preterm Birth: Focus on Progesterone Receptor Gene Variants
Abstract
1. Introduction
2. Results
2.1. Characteristics of Participants
2.2. Distribution of Genotypes and Alleles in the Group of Preterm Births in Relation to Characteristics
3. Discussion
4. Materials and Methods
4.1. Study Subjects
4.2. Blood Sampling and Analysis
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANOVA | Analysis of Variance |
| BMI | Body Mass Index |
| CI | Confidence Interval |
| DNA | Deoxyribonucleic Acid |
| FPW | Functional Progesterone Withdrawal |
| GJA1 | Gap Junction Protein Alpha 1 gene |
| HWE | Hardy–Hardy–Weinberg Equilibrium |
| IL-1 | Interleukin-1 |
| NF-κB2 | Nuclear Factor κB Subunit 2 |
| OR | Odds Ratio |
| OXTR | Oxytocin Receptor gene |
| P4 | Progesterone |
| PCR | Polymerase Chain Reaction |
| PGR | Progesterone Receptor (gene) |
| PGR-AS1 | Progesterone Receptor Antisense RNA 1(gene) |
| PPROM | Preterm Premature Rupture of Membranes |
| PR | Progesterone Receptor (protein) |
| PR-A | Progesterone Receptor Isoform A |
| PR-B | Progesterone Receptor Isoform B |
| PTB | Preterm Birth |
| PTGS2 | Prostaglandin-Endoperoxide Synthase 2 (COX-2) gene |
| RNA | Ribonucleic Acid |
| SD | Standard Deviation |
| SNP | Single Nucleotide Polymorphism |
| TLR-4 | Toll-Like Receptor 4 |
| TNFα | Tumor Necrosis Factor alpha |
| WHO | World Health Organization |
References
- WHO. Born Too Soon: The Global Action Report on Preterm Birth; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Quinn, J.A.; Munoz, F.M.; Gonik, B.; Frau, L.; Cutland, C.; Mallett-Moore, T.; Kissou, A.; Wittke, F.; Das, M.; Nunes, T.; et al. Preterm Birth: Case Definition & Guidelines for Data Collection, Analysis, and Presentation of Immunisation Safety Data. Vaccine 2016, 34, 6047–6056. [Google Scholar] [CrossRef]
- Ohuma, E.O.; Moller, A.-B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, Regional, and Global Estimates of Preterm Birth in 2020, with Trends from 2010: A Systematic Analysis. Lancet 2023, 402, 1261–1271, Erratum in Lancet 2024, 403, 618. [Google Scholar] [CrossRef]
- Ðelmiš, J.; Juras, J.; Rodin, U. Perinatalni Mortalitet u Republici Hrvatskoj u 2015. Godini. Gynaecol. Perinatol. 2017, 25, S37–S52. [Google Scholar]
- Wen, S.W.; Smith, G.; Yang, Q.; Walker, M. Epidemiology of Preterm Birth and Neonatal Outcome. Semin. Fetal Neonatal Med. 2004, 9, 429–435. [Google Scholar] [CrossRef]
- Vogel, J.P.; Lee, A.C.; Souza, J.P. Maternal Morbidity and Preterm Birth in 22 Low-and Middle-Income Countries: A Secondary Analysis of the WHO Global Survey Dataset. BMC Pregnancy Childbirth 2014, 14, 56. [Google Scholar] [CrossRef]
- Carolan, M. Maternal Age ≥45 Years and Maternal and Perinatal Outcomes: A Review of the Evidence. Midwifery 2013, 29, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and Causes of Preterm Birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zuckerman, B.; Pearson, C.; Kaufman, G.; Chen, C.; Wang, G.; Niu, T.; Wise, P.H.; Bauchner, H.; Xu, X. Maternal Cigarette Smoking, Metabolic Gene Polymorphism, and Infant Weight. JAMA 2002, 287, 195–202. [Google Scholar] [CrossRef]
- Macones, G.A.; Parry, S.; Elkousy, M.; Clothier, B.; Ural, S.H.; Strauss, J.F. A Polymorphism in the Promoter Region of TNF and Bacterial Vaginosis: Preliminary Evidence of Gene-Environment Interaction in the Etiology of Spontaneous Preterm Birth. Am. J. Obstet. Gynecol. 2004, 190, 1504–1508. [Google Scholar] [CrossRef] [PubMed]
- Kadivnik, M. Polimorfizmi Gena Za Progesteronski Receptor U Modulaciji Rizika Idiopatskog Spontanog Prijevremenog Poroda. Available online: https://repozitorij.mefos.hr/islandora/object/mefos:1373 (accessed on 26 October 2025).
- Smith, G.C.S.; Pell, J.P. Teenage Pregnancy and Risk of Adverse Perinatal Outcomes Associated with First and Second Births: Population Based Retrospective Cohort Study. BMJ 2001, 323, 476–479. [Google Scholar] [CrossRef]
- Faber, T.; Kumar, A.; Mackenbach, J.P.; Millett, C.; Basu, S.; Sheikh, A.; Been, J.V. Effect of Tobacco Control Policies on Perinatal and Child Health: A Systematic Review and Meta-Analysis. Lancet Public Health 2017, 2, e420–e437. [Google Scholar] [CrossRef]
- Krupa, F.G.; Faltin, D.; Cecatti, J.G.; Surita, F.G.C.; Souza, J.P. Predictors of Preterm Birth. Int. J. Gynecol. Obstet. 2006, 94, 5–11. [Google Scholar] [CrossRef]
- Varner, M.W.; Esplin, M.S. Current Understanding of Genetic Factors in Preterm Birth. BJOG Int. J. Obstet. Gynaecol. 2005, 112, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Bezold, K.Y.; Karjalainen, M.K.; Hallman, M.; Teramo, K.; Muglia, L.J. The Genomics of Preterm Birth: From Animal Models to Human Studies. Genome Med. 2013, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Mercer, B.M.; Goldenberg, R.L.; Moawad, A.H.; Meis, P.J.; Ianis, J.D.; Das, A.F.; Caritis, S.N.; Miodovnik, M.; Menard, M.K.; Thurnau, G.R.; et al. The Preterm Prediction Study: Effect of Gestational Age and Cause of Preterm Birth on Subsequent Obstetric Outcome. Am. J. Obstet. Gynecol. 1999, 181, 1216–1221. [Google Scholar] [CrossRef]
- Svensson, A.C.; Sandin, S.; Cnattingius, S.; Reilly, M.; Pawitan, Y.; Hultman, C.M.; Lichtenstein, P. Maternal Effects for Preterm Birth: A Genetic Epidemiologic Study of 630,000 Families. Am. J. Epidemiol. 2009, 170, 1365–1372. [Google Scholar] [CrossRef]
- Boyd, H.A.; Poulsen, G.; Wohlfahrt, J.; Murray, J.C.; Feenstra, B.; Melbye, M. Maternal Contributions to Preterm Delivery. Am. J. Epidemiol. 2009, 170, 1358. [Google Scholar] [CrossRef] [PubMed]
- Swaggart, K.A.; Pavlicev, M.; Muglia, L.J. Genomics of Preterm Birth. Cold Spring Harb. Perspect. Med. 2015, 5, a023127. [Google Scholar] [CrossRef][Green Version]
- York, T.P.; Eaves, L.J.; Neale, M.C.; Strauss, J.F. The Contribution of Genetic and Environmental Factors to the Duration of Pregnancy. Am. J. Obstet. Gynecol. 2014, 210, 398–405. [Google Scholar] [CrossRef]
- York, T.P.; Eaves, L.J.; Lichtenstein, P.; Neale, M.C.; Svensson, A.; Latendresse, S.; Långström, N.; Strauss, J.F. Fetal and Maternal Genes’ Influence on Gestational Age in a Quantitative Genetic Analysis of 244,000 Swedish Births. Am. J. Epidemiol. 2013, 178, 543–550. [Google Scholar] [CrossRef]
- GeneCards, Gene Cards—Human Gene Database. Available online: https://www.genecards.org/ (accessed on 20 September 2025).
- Kadivnik, M.; Kralik, K.; Muller-Vranješ, A.; Vučemilović-Jurić, V.; Šijanović, S.; Wagner, J. Progesterone Receptor Genetic Variants in Pregnant Women and Fetuses as Possible Predictors of Spontaneous Premature Birth: A Preliminary Case-Control Study. J. Obstet. Gynaecol. Res. 2022, 47, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Kadivnik, M.; Dundović, M.; Bartulić, A.; Rupčić Rubin, V.; Abičić Žuljević, K.; Milić Vranješ, I.; Kralik, K.; Arvaj, N.; Wagner, J. Variants of the Progesterone Receptor Gene as Modulators of Risk for Idiopathic Spontaneous Premature Birth. Int. J. Mol. Sci. 2025, 26, 1606. [Google Scholar] [CrossRef]
- Zeitlin, J.; Saurel-Cubizolles, M.J.; De Mouzon, J.; Rivera, L.; Ancel, P.Y.; Blondel, B.; Kaminski, M. Fetal Sex and Preterm Birth: Are Males at Greater Risk? Hum. Reprod. 2002, 17, 2762–2768. [Google Scholar] [CrossRef]
- Vatten, L.J.; Skjærven, R. Offspring Sex and Pregnancy Outcome by Length of Gestation. Early Hum. Dev. 2004, 76, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Challis, J.; Newnham, J.; Petraglia, F.; Yeganegi, M.; Bocking, A. Fetal Sex and Preterm Birth. Placenta 2013, 34, 95–99. [Google Scholar] [CrossRef]
- Lewis, C.M. Genetic Association Studies: Design, Analysis and Interpretation. Brief. Bioinform. 2002, 3, 146–153. [Google Scholar] [CrossRef]
- Clarke, G.M.; Anderson, C.A.; Pettersson, F.H.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Basic Statistical Analysis in Genetic Case-Control Studies. Nat. Protoc. 2011, 6, 121. [Google Scholar] [CrossRef]
- Beck, S.; Wojdyla, D.; Say, L.; Betran, A.P.; Merialdi, M.; Requejo, J.H.; Rubens, C.; Menon, R.; Van Look, P.F.A. The Worldwide Incidence of Preterm Birth: A Systematic Review of Maternal Mortality and Morbidity. Bull. World Health Organ. 2010, 88, 31–38. [Google Scholar] [CrossRef]
- Ananth, C.V.; Joseph, K.S.; Oyelese, Y.; Vintzileos, A.M. Trends in Preterm Birth and Perinatal Mortality among Singletons: United States, 1989 through 2000. Obstet. Gynecol. 2005, 105, 1084–1091. [Google Scholar] [CrossRef]
- Romero, R.; Espinoza, J.; Kusanovic, J.P.; Gotsch, F.; Hassan, S.; Erez, O.; Chaiworapongsa, T.; Mazor, M. The Preterm Parturition Syndrome. BJOG 2006, 113, 17–42. [Google Scholar] [CrossRef]
- Condon, J.C.; Hardy, D.B.; Kovaric, K.; Mendelson, C.R. Up-Regulation of the Progesterone Receptor (PR)-C Isoform in Laboring Myometrium by Activation of Nuclear Factor-ΚB May Contribute to the Onset of Labor through Inhibition of PR Function. Mol. Endocrinol. 2006, 20, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Waldenström, U.; Aasheim, V.; Nilsen, A.B.V.; Rasmussen, S.; Pettersson, H.J.; Shytt, E. Adverse Pregnancy Outcomes Related to Advanced Maternal Age Compared with Smoking and Being Overweight. Obstet. Gynecol. 2014, 123, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, F.; Monet, B.; Ducruet, T.; Chaillet, N.; Audibert, F. Effect of Maternal Age on the Risk of Preterm Birth: A Large Cohort Study. Obstet. Gynecol. Surv. 2018, 73, 340–342. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Mortensen, L.; Andersen, A.M.N. Mechanisms Underlying the Associations of Maternal Age with Adverse Perinatal Outcomes: A Sibling Study of 264 695 Danish Women and Their Firstborn Offspring. Int. J. Epidemiol. 2011, 40, 1205–1214. [Google Scholar] [CrossRef]
- Bry, K.; Teramo, K.; Lappalainen, U.; Waffarn, F.; Hallman, M. Interleukin-1 Receptor Antagonist in the Fetomaternal Compartment. Acta Paediatr. 1995, 84, 233–236. [Google Scholar] [CrossRef]
- Ehn, N.L.; Cooper, M.E.; Orr, K.; Shi, M.; Johnson, M.K.; Caprau, D.; Dagle, J.; Steffen, K.; Johnson, K.; Marazita, M.L.; et al. Evaluation of Fetal and Maternal Genetic Variation in the Progesterone Receptor Gene for Contributions to Preterm Birth. Pediatr. Res. 2007, 62, 630–635. [Google Scholar] [CrossRef][Green Version]
- Manuck, T.A.; Lai, Y.; Meis, P.J.; Dombrowski, M.P.; Sibai, B.; Spong, C.Y.; Rouse, D.J.; Durnwald, C.P.; Caritis, S.N.; Wapner, R.J.; et al. Progesterone Receptor Polymorphisms and Clinical Response to 17-Alpha-Hydroxyprogesterone Caproate. Am. J. Obstet. Gynecol. 2011, 205, 135.e1–135.e9. [Google Scholar] [CrossRef]
- Koleck, T.A.; Bender, C.M.; Clark, B.Z.; Ryan, C.M.; Ghotkar, P.; Brufsky, A.; Mcauliffe, P.F.; Rastogi, P.; Sereika, S.M.; Conley, Y.P. Breast Cancer-Targets and Therapy Dovepress an Exploratory Study of Host Polymorphisms in Genes That Clinically Characterize Breast Cancer Tumors and Pretreatment Cognitive Performance in Breast Cancer Survivors. Breast Cancer 2017, 9, 95–110. [Google Scholar] [CrossRef][Green Version]
- Szymusik, I.; Bartnik, P.; Wypych, K.; Kolaczkowska, H.; Kosinska-Kaczynska, K.; Wielgos, M. The Association of First Trimester Bleeding with Preterm Delivery. J. Perinat. Med. 2015, 43, 525–529. [Google Scholar] [CrossRef]
- Lockwood, C.J.; Kayisli, U.A.; Stocco, C.; Murk, W.; Vatandaslar, E.; Buchwalder, L.F.; Schatz, F. Abruption-Induced Preterm Delivery Is Associated with Thrombin-Mediated Functional Progesterone Withdrawal in Decidual Cells. Am. J. Pathol. 2012, 181, 2138–2148. [Google Scholar] [CrossRef]
- Luo, G.; Morgan, T.; Bahtiyar, M.O.; Snegovskikh, V.V.; Schatz, F.; Kuczynski, E.; Funai, E.F.; Dulay, A.T.; Huang, S.T.J.; Buhimschi, C.S.; et al. Single Nucleotide Polymorphisms in the Human Progesterone Receptor Gene and Spontaneous Preterm Birth. Reprod. Sci. 2008, 15, 147–155. [Google Scholar] [CrossRef]
- Blondel, B.; Morin, I.; Platt, R.W.; Kramer, M.S.; Usher, R.; Bréart, G. Algorithms for Combining Menstrual and Ultrasound Estimates of Gestational Age: Consequences for Rates of Preterm and Postterm Birth. BJOG 2002, 109, 718–720. [Google Scholar] [CrossRef] [PubMed]
- Bahia, W.; Finan, R.R.; Al-Mutawa, M.; Haddad, A.; Soua, A.; Janhani, F.; Mahjoub, T.; Almawi, W.Y. Genetic Variation in the Progesterone Receptor Gene and Susceptibility to Recurrent Pregnancy Loss: A Case–Control Study. BJOG 2018, 125, 729–735. [Google Scholar] [CrossRef]
- Mann, P.C.; Cooper, M.E.; Ryckman, K.K.; Comas, B.; Gili, J.; Crumley, S.; Bream, E.N.; Byers, H.M.; Piester, T.; Schaefer, A.; et al. Genetic Influences on Preterm Birth in Argentina. J. Perinatol. 2013, 33, 336–340. [Google Scholar] [CrossRef]
- Hackbarth, B.B.; Ferreira, J.A.; Carstens, H.P.; Amaral, A.R.; Silva, M.R.; Silva, J.C.; De França, P.H.C. Suscetibilidade à Prematuridade: Investigação de Fatores Comportamentais, Genéticos, Médicos e Sociodemográficos. Rev. Bras. Gynecol. Obstet. 2015, 37, 353–358. [Google Scholar] [CrossRef]
- Ghali, R.M.; Al-Mutawa, M.A.; Ebrahim, B.H.; Jrah, H.H.; Zaied, S.; Bhiri, H.; Hmila, F.; Mahjoub, T.; Almawi, W.Y. Progesterone Receptor (PGR) Gene Variants Associated with Breast Cancer and Associated Features: A Case-Control Study. Pathol. Oncol. Res. 2020, 26, 141–147. [Google Scholar] [CrossRef]
- Pearce, C.L.; Wu, A.H.; Gayther, S.A.; Bale, A.E.; Beck, P.A.; Beesley, J.; Chanock, S.; Cramer, D.W.; DiCioccio, R.; Edwards, R.; et al. Progesterone Receptor Variation and Risk of Ovarian Cancer Is Limited to the Invasive Endometrioid Subtype: Results from the Ovarian Cancer Association Consortium Pooled Analysis. Br. J. Cancer 2008, 98, 282–288. [Google Scholar] [CrossRef][Green Version]
- Khan, N.; Zargar, M.H.; Ahmed, R.; Godha, M.; Ahmad, A.; Afroze, D.; Masoodi, S.R. Effect of Steroid Hormone Receptor Gene Variants PROGINS (Alu Insertion) and PGR C/T (Rs1042839) as a Risk Factor for Recurrent Pregnancy Loss in Kashmiri Population (North India). J. Obstet. Gynaecol. Res. 2021, 47, 4329–4339. [Google Scholar] [CrossRef] [PubMed]
- Mulac-Jericevic, B.; Mullinax, R.A.; DeMayo, F.J.; Lydon, J.P.; Conneely, O.M. Subgroup of Reproductive Functions of Progesterone Mediated by Progesterone Receptor-B Isoform. Science 2000, 289, 1751–1754. [Google Scholar] [CrossRef]
- Bustos, M.L.; Caritis, S.N.; Jablonski, K.A.; Reddy, U.M.; Sorokin, Y.; Manuck, T.; Varner, M.W.; Wapner, R.J.; Iams, J.D.; Carpenter, M.W.; et al. The Association among Cytochrome P450 3A, Progesterone Receptor Polymorphisms, Plasma 17-Alpha Hydroxyprogesterone Caproate Concentrations, and Spontaneous Preterm Birth. Am. J. Obstet. Gynecol. 2017, 217, 369.e1–369.e9. [Google Scholar] [CrossRef] [PubMed]
- Applied Biosystems. Applied Biosystems 7500/7500 Fast Real-Time PCR System: Genotyping Experiments; Applied Biosystems: Foster City, CA, USA, 2010. [Google Scholar]
- Malkki, M.; Petersdorf, E.W. Genotyping of Single Nucleotide Polymorphisms by 5′ Nuclease Allelic Discrimination. Methods Mol. Biol. 2012, 882, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A Web Tool for the Analysis of Association Studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
| Median (Interquartile Range) | Difference (95% CI) | p * | ||
|---|---|---|---|---|
| PTB (n = 151) | Term Birth (n = 141) | |||
| Mothers’ age [years] | 31 (26–36) | 31 (26–34) | −1 (−2 to 1) | 0.39 |
| Weeks of gestation | 34 + 6 (32 + 3–36 + 1) | 39 + 3 (38 + 6–40 + 1) | 4 + 5 (4 + 3 to 5 + 1) | <0.001 |
| Height [cm] | 165 (162–170) | 166 (163–171.5) | 1 (0 to 3) | 0.08 |
| Weight [kg] | 73 (65–82.4) | 75 (68.8–84.1) | 3 (0 to 6) | 0.03 |
| BMI [kg/m2] | 26.4 (24–29.6) | 27.3 (24.4–30.4) | 0.72 (−0.25 to 1.67) | 0.14 |
| Number of births | 1 (1–2) | 2 (1–2) | 0 (0 to 0) | 0.03 |
| Number of PTB | 1 (1–1) | - | - | - |
| Newborns weigh [g] | 2440 (1830–2780) | 3450 (3100–3735) | 1057 (920 to 1200) | <0.001 |
| Number (%) | p * | |||
|---|---|---|---|---|
| PTB (n = 151) | Term Birth (n = 141) | Total (n = 292) | ||
| Mothers’ age [n (%)] | ||||
| under 35 years of age | 101 (67) | 111 (79) | 101 (67) | 0.02 |
| 35 years of age and more | 50 (33) | 30 (21) | 50 (33) | |
| Newborn’s gender [n (%)] | ||||
| Male | 87 (58) | 69 (49) | 156 (53) | 0.13 |
| Female | 64 (42) | 72 (51) | 136 (47) | |
| PTB in personal anamnesis [n (%)] | ||||
| No | 127 (84) | - | 127 (84) | - |
| Yes | 24 (16) | - | 24 (16) | |
| PTB in family anamnesis [n (%)] | ||||
| No | 120 (79) | - | 120 (79) | - |
| Yes | 31 (21) | - | 31 (21) | |
| Smoking habit [n (%)] | 48 (32) | 31 (22) | 79 (27) | 0.07 |
| Positive cervical swab [n (%)] | 31 (21) | 32 (23) | 63 (22) | 0.65 |
| Vaginal bleeding during pregnancy [n (%)] | 41 (27) | 13 (9) | 54 (18) | <0.001 |
| SNP/Inheritance Model | Genotype [n (%)] NEWBORNS | OR (95% CI) | p * | ||
|---|---|---|---|---|---|
| Gender Male (n = 156) | Gender Female (n = 136) | ||||
| rs10895068 DOMINANT | G/G | 138 (89) | 121 (89) | 1 | 0.99 |
| G/A-A/A | 17 (11) | 15 (11) | 1.01 (0.48–2.10) | ||
| RECESSIVE | G/G-G/A | 154 (99.3) | 135 (99.3) | 1 | 0.93 |
| A/A | 1 (0.6) | 1 (0.7) | 1.14 (0.07–18.41) | ||
| OVERDOMINANT | G/G-A/A | 139 (89.7) | 122 (89.7) | 1 | 0.99 |
| G/A | 16 (10.3) | 14 (10.3) | 1.00 (0.47–2.13) | ||
| rs1042838 | G/G | 115 (73.7) | 97 (71.8) | 1 1.10 (0.65–1.84) | 0.72 |
| DOMINANT | T/G-T/T | 41 (26.3) | 38 (28.1) | ||
| RECESSIVE | G/G-T/G | 153 (98.1) | 132 (97.8) | 1 | 0.86 |
| T/T | 3 (1.9) | 3 (2.2) | 1.16 (0.23–5.84) | ||
| OVERDOMINANT | G/G-T/T | 118 (75.6) | 100 (74.1) | 1 | 0.76 |
| T/G | 38 (24.4) | 35 (25.9) | 1.09 (0.64–1.85) | ||
| rs1042839 | C/C | 115 (73.7) | 99 (73.3) | 1 1.02 (0.61–1.72) | 0.94 |
| DOMINANT | T/C-T/T | 41 (26.3) | 36 (26.7) | ||
| RECESSIVE | C/C-T/C | 153 (98.1) | 132 (97.8) | 1 | 0.86 |
| T/T | 3 (1.9) | 3 (2.2) | 1.16 (0.23–5.84) | ||
| OVERDOMINANT | C/C-T/T | 118 (75.6) | 102 (75.6) | 1 | 0.99 |
| T/C | 38 (24.4) | 33 (24.4) | 1.00 (0.59–1.72) | ||
| rs1942836 | T/T | 116 (74.4) | 103 (76.3) | 1 0.90 (0.53–1.54) | 0.70 |
| DOMINANT | C/T-C/C | 40 (25.6) | 32 (23.7) | ||
| RECESSIVE | T/T-C/T | 152 (97.4) | 134 (99.3) | 1 | 0.21 |
| C/C | 4 (2.6) | 1 (0.7) | 0.28 (0.03–2.57) | ||
| OVERDOMINANT | T/T-C/C | 120 (76.9) | 104 (77) | 1 | 0.98 |
| C/T | 36 (23.1) | 31 (23) | 0.99 (0.57–1.72) | ||
| rs4754732 | T/T | 73 (47.1) | 70 (51.5) | 1 0.84 (0.53–1.33) | 0.46 |
| DOMINANT | C/T-C/C | 82 (52.9) | 66 (48.5) | ||
| RECESSIVE | T/T-C/T | 135 (87.1) | 128 (94.1) | 1 | 0.04 |
| C/C | 20 (12.9) | 8 (5.9) | 2.4 (1.01–5.57) | ||
| OVERDOMINANT | T/T-C/C | 93 (60) | 78 (57.4) | 1 | 0.65 |
| C/T | 62 (40) | 58 (42.6) | 1.12 (0.70–1.78) | ||
| rs653752 | G/G | 65 (41.7) | 44 (32.6) | 1 1.48 (0.91–2.39) | 0.11 |
| DOMINANT | C/G-C/C | 91 (58.3) | 91 (67.4) | ||
| RECESSIVE | G/G-C/G | 132 (84.6) | 112 (83) | 1 | 0.70 |
| C/C | 24 (15.4) | 23 (17) | 1.13 (0.60–2.11) | ||
| OVERDOMINANT | G/G-C/C | 89 (57) | 67 (49.6) | 1 | 0.21 |
| C/G | 67 (43) | 68 (50.4) | 1.35 (0.85–2.14) | ||
| SNP/Inheritance Model | Genotype [n (%)] NEWBORNS | OR (95% CI) | p * | ||
|---|---|---|---|---|---|
| Mothers Aged Under 35 (n = 212) | Mothers Aged 35 and Older (n = 79) | ||||
| rs10895068 | G/G | 188 (88.7) | 71 (89.9) | 1 0.88 (0.38–2.06) | 0.77 |
| DOMINANT | G/A-A/A | 24 (11.3) | 8 (10.1) | ||
| G/G-G/A | 210 (99.1) | 79 (100) | 1 | 0.26 | |
| RECESSIVE | A/A | 2 (0.9) | 0 | 0.00 (0.00–NA) | |
| G/G-A/A | 190 (89.6) | 71 (89.9) | 1 | 0.95 | |
| OVERDOMINANT | G/A | 22 (10.4) | 8 (10.1) | 0.97 (0.41–2.29) | |
| G/G | 155 (73.5) | 57 (71.2) | 1 | 0.71 | |
| rs1042838 | T/G-T/T | 56 (26.5) | 23 (28.8) | 1.12 (0.63–1.98) | |
| DOMINANT | G/G-T/G | 208 (98.6) | 77 (96.2) | 1 | 0.24 |
| RECESSIVE | T/T | 3 (1.4) | 3 (3.8) | 2.70 (0.53–13.67) | |
| G/G-T/T | 158 (74.9) | 60 (75) | 1 | 0.98 | |
| OVERDOMINANT | T/G | 53 (25.1) | 20 (25) | 0.99 (0.55–1.80) | |
| C/C | 156 (73.9) | 58 (72.5) | 1 1.08 (0.60–1.92) | 0.80 | |
| rs1042839 | T/C-T/T | 55 (26.1) | 22 (27.5) | ||
| DOMINANT | C/C-T/C | 208 (98.6) | 77 (96.2) | 1 | 0.24 |
| RECESSIVE | T/T | 3 (1.4) | 3 (3.8) | 2.70 (0.53–13.67) | |
| C/C-T/T | 159 (75.4) | 61 (76.2) | 1 | 0.87 | |
| OVERDOMINANT | T/C | 52 (24.6) | 19 (23.8) | 0.95 (0.52–1.74) | |
| T/T | 163 (77.2) | 56 (70) | 1 | 0.21 | |
| rs1942836 | C/T-C/C | 48 (22.8) | 24 (30) | 1.46 (0.82–2.59) | |
| DOMINANT | T/T-C/T | 209 (99) | 77 (96.2) | 1 | 0.13 |
| RECESSIVE | C/C | 2 (1) | 3 (3.8) | 4.07 (0.67–24.83) | |
| T/T-C/C | 165 (78.2) | 59 (73.8) | 1 | 0.43 | |
| OVERDOMINANT | C/T | 46 (21.8) | 21 (26.2) | 1.28 (0.70–2.32) | |
| T/T | 101 (47.6) | 42 (53.2) | 1 | 0.40 | |
| rs4754732 | C/T-C/C | 111 (52.4) | 37 (46.8) | 0.80 (0.48–1.35) | |
| DOMINANT | T/T-C/T | 193 (91) | 70 (88.6) | 1 | 0.54 |
| RECESSIVE | C/C | 19 (9) | 9 (11.4) | 1.31 (0.56–3.02) | |
| T/T-C/C | 120 (56.6) | 51 (64.6) | 1 | 0.22 | |
| OVERDOMINANT | C/T | 92 (43.4) | 28 (35.4) | 0.72 (0.42–1.22) | |
| G/G | 78 (37) | 31 (38.8) | 1 | 0.78 | |
| rs653752 | C/G-C/C | 133 (63) | 49 (61.2) | 0.93 (0.55–1.57) | |
| DOMINANT | G/G-C/G | 184 (87.2) | 60 (75) | 1 | 0.02 |
| RECESSIVE | C/C | 27 (12.8) | 20 (25) | 2.27 (1.19–4.34) | |
| G/G-C/C | 105 (49.8) | 51 (63.8) | 1 | 0.03 | |
| C/G | 106 (50.2) | 29 (36.2) | 1.78 (1.05–3.02) | ||
| SNP/Inheritance Model | Genotype (n (%)] NEWBORNS Vaginal Bleeding During Pregnancy | OR (95% CI) | p * | ||
|---|---|---|---|---|---|
| No (n = 109) | Yes (n = 41) | ||||
| rs10895068 | G/G | ||||
| DOMINANT | G/A-A/A | ||||
| G/G-G/A | |||||
| RECESSIVE | A/A | ||||
| G/G-A/A | |||||
| OVERDOMINANT | G/A | ||||
| G/G | 78 (71.6) | 28 (68.3) | 1 | 0.70 | |
| rs1042838 | T/G-T/T | 31 (28.4) | 13 (31.7) | 1.17 (0.54–2.54) | |
| DOMINANT | G/G-T/G | 107 (98.2) | 40 (97.6) | 1 | 0.82 |
| RECESSIVE | T/T | 2 (1.8) | 1 (2.4) | 1.34 (0.12–15.16) | |
| G/G-T/T | 80 (73.4) | 29 (70.7) | 1 | 0.75 | |
| OVERDOMINANT | T/G | 29 (26.6) | 12 (29.3) | 1.14 (0.52–2.53) | |
| C/C | 80 (73.4) | 28 (68.3) | 1 | 0.54 | |
| rs1042839 | T/C-T/T | 29 (26.6) | 13 (31.7) | 1.28 (0.59–2.80) | |
| DOMINANT | C/C-T/C | 107 (98.2) | 40 (97.6) | 1 | 0.82 |
| RECESSIVE | T/T | 2 (1.8) | 1 (2.4) | 1.34 (0.12–15.16) | |
| C/C-T/T | 82 (75.2) | 29 (70.7) | 1 | 0.58 | |
| OVERDOMINANT | T/C | 27 (24.8) | 12 (29.3) | 1.26 (0.56–2.80) | |
| T/T | 74 (67.9) | 33 (80.5) | 1 | 0.12 | |
| rs1942836 | C/T-C/C | 35 (32.1) | 8 (19.5) | 0.51 (0.21–1.22) | |
| DOMINANT | T/T-C/T | 108 (99.1) | 39 (95.1) | 1 | 0.15 |
| RECESSIVE | C/C | 1 (0.9) | 2 (4.9) | 5.54 (0.49–62.80) | |
| T/T-C/C | 75 (68.8) | 35 (85.4) | 1 | 0.03 | |
| OVERDOMINANT | C/T | 34 (31.2) | 6 (14.6) | 0.38 (0.15–0.98) | |
| T/T | 56 (51.4) | 22 (53.7) | 1 | 0.80 | |
| rs4754732 | C/T-C/C | 53 (48.6) | 19 (46.3) | 0.91 (0.44–1.87) | |
| DOMINANT | T/T-C/T | 98 (89.9) | 35 (85.4) | 1 | 0.44 |
| RECESSIVE | C/C | 11 (10.1) | 6 (14.6) | 1.53 (0.53–4.44) | |
| T/T-C/C | 67 (61.5) | 28 (68.3) | 1 | 0.44 | |
| OVERDOMINANT | C/T | 42 (38.5) | 13 (31.7) | 0.74 (0.35–1.59) | |
| G/G | 38 (34.9) | 18 (43.9) | 1 | 0.31 | |
| rs653752 | C/G-C/C | 71 (65.1) | 23 (56.1) | 0.68 (0.33–1.42) | |
| DOMINANT | G/G-C/G | 92 (84.4) | 35 (85.4) | 1 | 0.88 |
| RECESSIVE | C/C | 17 (15.6) | 6 (14.6) | 0.93 (0.34–2.54) | |
| G/G-C/C | 55 (50.5) | 24 (58.5) | 1 | 0.38 | |
| OVERDOMINANT | C/G | 54 (49.5) | 17 (41.5) | 0.72 (0.35–1.49) | |
| SNP | Location | Gene Region | Base Change | Citation | Related Phenotype |
|---|---|---|---|---|---|
| rs1942836 | chr11:101178616 (GRCh38.p14) | Potential promoter region | T/C>T/G | Bahia et al. [46] Mann et al. [47] Hackbart et al. [48] Ehn et al. [39] | Habitual abortions Preterm birth |
| rs1042828 | chr11:101062681 (GRCh38.p14) | Missense mutation Exon 4 | C/A>C/G | Ghali et al. [49] Pearce et al. [50] Khan et al. [51] Ehn et al. [39] Luo et al. [44] | Ovary cancer Breast cancer Habitual abortions Preterm birth |
| rs1042839 | hr11:101051471 (GRCh38.p14) | Missense mutation Exon 5 | G>A | Ghali et al. [49] Pearce et al. [50] Khan et al. [51] Ehn et al. [39] Luo et al. [44] | Ovary cancer Breast cancer Habitual abortions Preterm birth |
| rs10895068 | chr11:101,129,483 (GRCh38.p14) | 5′ UTR region | GC>T | Bahia et al. [46] Ghali et al. [49] Mulac-Jericević et al. [52] Ehn et al. [39] | Endometrial cancer Ovary cancer Preterm birth |
| rs4754732 | chr11:101.137.771 (GRCh38.p14) | PGR-AS1: intron region | T/A>T/C | Ehn et al. [39] Manuck et al. [40] | Preterm birth |
| rs653752 | chr11:101.077.379 (GRCh38.p14) | Intron region | C>G | Ehn et al. [39] Bustos et al. [53] Mann et al. [47] Manuck et al. [40] | Preterm birth |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadivnik, M.; Kralik, K.; Šijanović, S.; Wagner, J. Genetic and Environmental Determinants of Spontaneous Preterm Birth: Focus on Progesterone Receptor Gene Variants. Int. J. Mol. Sci. 2025, 26, 10659. https://doi.org/10.3390/ijms262110659
Kadivnik M, Kralik K, Šijanović S, Wagner J. Genetic and Environmental Determinants of Spontaneous Preterm Birth: Focus on Progesterone Receptor Gene Variants. International Journal of Molecular Sciences. 2025; 26(21):10659. https://doi.org/10.3390/ijms262110659
Chicago/Turabian StyleKadivnik, Mirta, Kristina Kralik, Siniša Šijanović, and Jasenka Wagner. 2025. "Genetic and Environmental Determinants of Spontaneous Preterm Birth: Focus on Progesterone Receptor Gene Variants" International Journal of Molecular Sciences 26, no. 21: 10659. https://doi.org/10.3390/ijms262110659
APA StyleKadivnik, M., Kralik, K., Šijanović, S., & Wagner, J. (2025). Genetic and Environmental Determinants of Spontaneous Preterm Birth: Focus on Progesterone Receptor Gene Variants. International Journal of Molecular Sciences, 26(21), 10659. https://doi.org/10.3390/ijms262110659

