Regulatory Role of Zinc in Acute Promyelocytic Leukemia: Cellular and Molecular Aspects with Therapeutic Implications
Abstract
1. Introduction
2. Management of Pediatric APL
3. Challenges in Differentiation Therapy
4. Disrupted Zinc Homeostasis in APL
5. Role of Zinc in Oncoprotein Stability in APL
6. Dual Effects of Zinc: Therapeutic Implications
7. Regulation of Transcription Factors by Zinc in APL Development and Therapy
7.1. Zinc-Dependent Transcription Factors
7.1.1. Runt-Related Transcription Factor 2 (RUNX2)
7.1.2. Krupple-like Factor 4 (KLF4)
7.1.3. Promyelocytic Leukemia Zinc Finger (PLZF/ZBTB16/ZFP145)
7.1.4. Zinc Finger Protein 521 (ZNF521/ZFP521)
7.1.5. Specificity Protein 1 (Sp1)
7.1.6. Growth Factor Independence 1 (GFI1)
7.2. Zinc-Modulated Non–Zinc Finger Factors
7.2.1. cAMP Response Element Binding Protein (CREB)
7.2.2. Hypoxia-Inducible Factor 1-Alpha (HIF-1α)
7.2.3. p53
8. Discussion and Future Directions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Glasser, C. New and Emerging Targeted Therapies for Pediatric Acute Myeloid Leukemia (AML). Children 2020, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Shi, O.; Zeng, Q.; Lu, X.; Wang, W.; Li, Y.; Wang, Q. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp. Hematol. Oncol. 2020, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Samad, A.; Pombo-de-Oliveira, M.S.; Scelo, G.; Smith, M.T.; Feusner, J.; Wiemels, J.L.; Metayer, C. Global characteristics of childhood acute promyelocytic leukemia. Blood Rev. 2015, 29, 101–125. [Google Scholar] [CrossRef]
- Gaál, Z.; Jakab, Z.; Kárai, B.; Ujfalusi, A.; Petrás, M.; Kállay, K.; Kelemen, Á.; Simon, R.; Kriván, G.; Kovács, G.T.; et al. Recent Advances in the Management of Pediatric Acute Myeloid Leukemia—Report of the Hungarian Pediatric Oncology-Hematology Group. Cancers 2021, 13, 5078. [Google Scholar] [CrossRef]
- Reinhardt, D.; Antoniou, E.; Waack, K. Pediatric Acute Myeloid Leukemia—Past, Present, and Future. JCM 2022, 11, 504. [Google Scholar] [CrossRef]
- Conneely, S.; Stevens, A. Advances in Pediatric Acute Promyelocytic Leukemia. Children 2020, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Coffman, B.B.; Chabot-Richards, D. Diagnosis of variant translocations in acute promyelocytic leukemia. Adv. Molec Pathol. 2021, 4, 37–48. [Google Scholar] [CrossRef]
- Zelent, A.; Guidez, F.; Melnick, A.; Waxman, S.; Licht, J.D. Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene 2001, 20, 7186–7203. [Google Scholar] [CrossRef]
- Si, J.; Collins, S.J. IL-3-induced enhancement of retinoic acid receptor activity is mediated through Stat5, which physically associates with retinoic acid receptors in an IL-3-dependent manner. Blood 2002, 100, 4401–4409. [Google Scholar] [CrossRef]
- Arnould, C.; Philippe, C.; Bourdon, V.; Grégoire, M.J.; Berger, R.; Jonveaux, P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum. Mol. Genet. 1999, 8, 1741–1749. [Google Scholar] [CrossRef]
- Kondo, T.; Mori, A.; Darmanin, S.; Hashino, S.; Tanaka, J.; Asaka, M. The seventh pathogenic fusion gene FIP1L1-RARA was isolated from a t(4;17)-positive acute promyelocytic leukemia. Haematologica 2008, 93, 1414–1416. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.G.; Elias, L.; Stanchina, M.; Watts, J. The treatment of acute promyelocytic leukemia in 2023: Paradigm, advances, and future directions. Front. Oncol. 2023, 12, 1062524. [Google Scholar] [CrossRef] [PubMed]
- Gurnari, C.; De Bellis, E.; Divona, M.; Ottone, T.; Lavorgna, S.; Voso, M.T. When Poisons Cure: The Case of Arsenic in Acute Promyelocytic Leukemia. Chemotherapy 2019, 64, 238–247. [Google Scholar] [CrossRef]
- Guarnera, L.; Fabiani, E.; Falconi, G.; Silvestrini, G.; Catanoso, M.L.; Divona, M.; Voso, M.T. Acute Promyelocytic Leukemia-like AML: Genetic Perspective and Clinical Implications. Cancers 2024, 16, 4192. [Google Scholar] [CrossRef] [PubMed]
- Grignani, F.; Valtieri, M.; Gabbianelli, M.; Gelmetti, V.; Botta, R.; Luchetti, L.; Masella, B.; Morsilli, O.; Pelosi, E.; Samoggia, P.; et al. PML/RARα fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood 2000, 96, 1531–1537. [Google Scholar] [CrossRef]
- Laity, J.H.; Lee, B.M.; Wright, P.E. Zinc finger proteins: New insights into structural and functional diversity. Curr. Opin. Struct. Biol. 2001, 11, 39–46. [Google Scholar] [CrossRef]
- Schoofs, H.; Schmit, J.; Rink, L. Zinc Toxicity: Understanding the Limits. Molecules 2024, 29, 3130. [Google Scholar] [CrossRef]
- Görg, R.; Büttgenbach, A.; Jakobs, J.; Babayev, F.H.; Rolles, B.; Rink, L.; Wessels, I. Leukemia cells accumulate zinc for oncofusion protein stabilization. J. Nutr. Biochem. 2024, 123, 109482. [Google Scholar] [CrossRef]
- Dashner-Titus, E.J.; Schilz, J.R.; Alvarez, S.A.; Wong, C.P.; Simmons, K.; Ho, E.; Hudson, L.G. Zinc supplementation alters tissue distribution of arsenic in Mus musculus. Toxicol. Appl. Pharmacol. 2023, 478, 116709. [Google Scholar] [CrossRef]
- Salvaris, R.; Fedele, P.L. Targeted Therapy in Acute Lymphoblastic Leukaemia. JPM 2021, 11, 715. [Google Scholar] [CrossRef]
- Huang, M.E.; Ye, Y.C.; Chen, S.R.; Chai, J.R.; Lu, J.X.; Zhoa, L.; Gu, L.J.; Wang, Z.Y. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988, 72, 567–572. [Google Scholar] [CrossRef]
- Zhang, X.W.; Yan, X.J.; Zhou, Z.R.; Yang, F.F.; Wu, Z.Y.; Sun, H.B.; Liang, W.X.; Song, A.X.; Lallemand-Breitenbach, V.; Jeanne, M.; et al. Arsenic Trioxide Controls the Fate of the PML-RARα Oncoprotein by Directly Binding PML. Science 2010, 328, 240–243. [Google Scholar] [CrossRef]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Bowen, D.; Kell, J.; Knapper, S.; Morgan, Y.G.; Lok, J.; Grech, A.; Jones, G.; et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): Results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2015, 16, 1295–1305. [Google Scholar] [CrossRef]
- Zheng, H.; Jiang, H.; Hu, S.; Liao, N.; Shen, D.; Tian, X.; Hao, G.; Jin, R.; Li, J.; Fang, Y.; et al. Arsenic Combined With All-Trans Retinoic Acid for Pediatric Acute Promyelocytic Leukemia: Report From the CCLG-APL2016 Protocol Study. J. Clin. Oncol. 2021, 39, 3161–3170. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Lu, Y.; Liu, H.C.; Gang, E.J.; Le, J.; Qian, S.Y.; Tang, S.H.; Si, T.; Pei, R.Z. Arsenic trioxide and all-trans retinoic acid in the treatment of children with newly diagnosed acute promyelocytic leukemia. Leuk. Lymphoma 2021, 62, 1267–1270. [Google Scholar] [CrossRef] [PubMed]
- Kutny, M.A.; Alonzo, T.A.; Gerbing, R.B.; Wang, Y.C.; Raimondi, S.C.; Hirsch, B.A.; Fu, H.C.; Meshinchi, S.; Gamis, A.S.; Feusner, J.H.; et al. Arsenic Trioxide Consolidation Allows Anthracycline Dose Reduction for Pediatric Patients With Acute Promyelocytic Leukemia: Report From the Children’s Oncology Group Phase III Historically Controlled Trial AAML0631. J. Clin. Oncol. 2017, 35, 3021–3029. [Google Scholar] [CrossRef]
- Kutny, M.A.; Alonzo, T.A.; Abla, O.; Rajpurkar, M.; Gerbing, R.B.; Wang, Y.C.; Hirsch, B.A.; Raimondi, S.; Kahwash, S.; Hardy, K.K.; et al. Assessment of Arsenic Trioxide and All-trans Retinoic Acid for the Treatment of Pediatric Acute Promyelocytic Leukemia: A Report From the Children’s Oncology Group AAML1331 Trial. JAMA Oncol. 2022, 8, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, U.; Dworzak, M.N.; Bochennek, K.; Faber, J.; Flotho, C.; Graf, N.; Kontny, U.; Rossig, C.; Schmid, I.; von Stackelberg, A.; et al. First experience of the AML-Berlin-Frankfurt-Münster group in pediatric patients with standard-risk acute promyelocytic leukemia treated with arsenic trioxide and all-trans retinoid acid. Pediatr. Blood Cancer 2017, 64, e26461. [Google Scholar] [CrossRef]
- Gurnari, C.; Voso, M.T.; Girardi, K.; Mastronuzzi, A.; Strocchio, L. Acute Promyelocytic Leukemia in Children: A Model of Precision Medicine and Chemotherapy-Free Therapy. Int. J. Mol. Sci. 2021, 22, 642. [Google Scholar] [CrossRef]
- Luo, J.S.; Zhang, X.L.; Huang, D.P.; Chen, Y.Q.; Wan, W.Q.; Mai, H.R.; Chen, H.Q.; Wen, H.; Liu, R.Y.; Chen, G.H.; et al. Differentiation syndrome and coagulation disorder—Comparison between treatment with oral and intravenous arsenics in pediatric acute promyelocytic leukemia. Ann. Hematol. 2023, 102, 1713–1721. [Google Scholar] [CrossRef]
- Li, T.; Shi, L.; Wei, W.; Xu, J.; Liu, Q. The trace that is valuable: Serum copper and copper to zinc ratio for survival prediction in younger patients with newly diagnosed acute myeloid leukaemia. BMC Cancer 2023, 23, 14. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, C.; Sun, L.; Li, Z.; Li, J.; Hua, Z.C. Expression pattern and prognostic implication of zinc homeostasis-related genes in acute myeloid leukemia. Metallomics 2023, 15, mfad022. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Yang, C.; Hua, S.; Li, K.; Shang, P.; Li, Z.; Qian, W.; Xue, S.; Zhi, Q.; Hua, Z. Decoding the Implications of Zinc in the Development and Therapy of Leukemia. Adv. Sci. 2025, 12, 2412225. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, J.; Zhou, J.; Zhou, F.; Cheng, W.; Liu, Y.; Wang, J.; Chen, X.; Chen, D.H.; Luo, L.; et al. PML-RARα stabilized by zinc in human acute promyelocytic leukemia NB4 cells. J. Inorg. Biochem. 2017, 175, 92–100. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, J.; Zhou, F.; Liu, Y.; Lai, Y.; Wang, J.; Chen, X.; Chen, D.; Luo, L.; Hua, Z.C. Zinc Depletion by TPEN Induces Apoptosis in Human Acute Promyelocytic NB4 Cells. Cell. Physiol. Biochem. 2017, 42, 1822–1836. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Yang, C.; Liu, D.; Zhi, Q.; Hua, Z.C. Zinc depletion induces JNK/p38 phosphorylation and suppresses Akt/mTOR expression in acute promyelocytic NB4 cells. J. Trace Elem. Med. Biol. 2023, 79, 127264. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.I.; Lapa, B.S.; Jorge, J.; Alves, R.; Carreira, I.M.; Sarmento-Ribeiro, A.B.; Goncalves, A.C. Zinc Prevents DNA Damage in Normal Cells but Shows Genotoxic and Cytotoxic Effects in Acute Myeloid Leukemia Cells. Int. J. Mol. Sci. 2022, 23, 2567. [Google Scholar] [CrossRef]
- Cho, Y.E.; Kwun, I.S. Zinc upregulates bone-specific transcription factor Runx2 expression via BMP-2 signaling and Smad-1 phosphorylation in osteoblasts. J. Nutr. Health 2018, 51, 23–30. [Google Scholar] [CrossRef]
- Fu, X.; Li, Y.; Huang, T.; Yu, Z.; Ma, K.; Yang, M.; Liu, Q.; Pan, H.; Wang, H.; Wang, J.; et al. Runx2/Osterix and Zinc Uptake Synergize to Orchestrate Osteogenic Differentiation and Citrate Containing Bone Apatite Formation. Adv. Sci. 2018, 5, 1700755. [Google Scholar] [CrossRef]
- Park, K.H.; Choi, Y.; Yoon, D.S.; Lee, K.M.; Kim, D.; Lee, J.W. Zinc Promotes Osteoblast Differentiation in Human Mesenchymal Stem Cells Via Activation of the cAMP-PKA-CREB Signaling Pathway. Stem Cells Dev. 2018, 27, 1125–1135. [Google Scholar] [CrossRef]
- Xu, Y.; Barnes, A.P.; Alkayed, N.J. Role of GPR39 in Neurovascular Homeostasis and Disease. Int. J. Mol. Sci. 2021, 22, 8200. [Google Scholar] [CrossRef]
- Grossmann, V.; Bacher, U.; Kohlmann, A.; Butschalowski, K.; Roller, A.; Jeromin, S.; Dicker, F.; Kern, W.; Schnittger, S.; Haferlach, T.; et al. Expression of CEBPA is reduced in RUNX1-mutated acute myeloid leukemia. Blood Cancer J. 2012, 2, e86. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.H.; Zaidi, S.K.; Gornostaeva, S.; Komori, T.; Stein, G.S.; Castilla, L.H. Runx2 induces acute myeloid leukemia in cooperation with Cbfβ-SMMHC in mice. Blood 2009, 113, 3323–3332. [Google Scholar] [CrossRef] [PubMed]
- Schnerch, D.; Lausch, E.; Becker, H.; Felthaus, J.; Pfeifer, D.; Mundlos, S.; Engelhardt, M.; Schwabe, M.; Wäsch, R. Up-regulation of RUNX2 in acute myeloid leukemia in a patient with an inherent RUNX2 haploinsufficiency and cleidocranial dysplasia. Leuk. Lymphoma 2014, 55, 1930–1932. [Google Scholar] [CrossRef]
- Tang, Y.; Tian, X.; Xu, Z.; Cai, J.; Liu, H.; Liu, N.; Chen, Z.; Chen, S.; Liu, F. Induced lineage promiscuity undermines the efficiency of all-trans-retinoid-acid-induced differentiation of acute myeloid leukemia. iScience 2021, 24, 102410. [Google Scholar] [CrossRef]
- Mas, G.; Santoro, F.; Blanco, E.; Gamarra Figueroa, G.P.; Le Dily, F.; Frigè, G.; Vidal, E.; Mugianesi, F.; Ballaré, C.; Gutierrez, A.; et al. In vivo temporal resolution of acute promyelocytic leukemia progression reveals a role of Klf4 in suppressing early leukemic transformation. Genes Dev. 2022, 36, 451–467. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, X.; Song, H.; Zhang, Y.; Zhang, R.; Li, S.; Jin, W.; Chen, S.; Fang, H.; Chen, Z.; et al. A PML/RARα direct target atlas redefines transcriptional deregulation in acute promyelocytic leukemia. Blood 2021, 137, 1503–1516. [Google Scholar] [CrossRef]
- Ikeda, R.; Yoshida, K.; Tsukahara, S.; Sakamoto, Y.; Tanaka, H.; Furukawa, K.I.; Inoue, I. The Promyelotic Leukemia Zinc Finger Promotes Osteoblastic Differentiation of Human Mesenchymal Stem Cells as an Upstream Regulator of CBFA1. J. Biol. Chem. 2005, 280, 8523–8530. [Google Scholar] [CrossRef]
- Lewis, A.H.; Bridges, C.S.; Punia, V.S.; Cooper, A.F.J.; Puppi, M.; Lacorazza, H.D. Krüppel-like factor 4 promotes survival and expansion in acute myeloid leukemia cells. Oncotarget 2021, 12, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Xie, L.; Leithauser, F.; Flossbach, L.; Moller, P.; Wirth, T.; Ushmorov, A. KLF4 is a tumor suppressor in B-cell non-Hodgkin lymphoma and in classic Hodgkin lymphoma. Blood 2010, 116, 1469–1478. [Google Scholar] [CrossRef]
- Faber, K.; Bullinger, L.; Ragu, C.; Garding, A.; Mertens, D.; Miller, C.; Martin, D.; Walcher, D.; Dohner, K.; Dohner, H.; et al. CDX2-driven leukemogenesis involves KLF4 repression and deregulated PPARgamma signaling. J. Clin. Investig. 2013, 123, 299–314. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Z.; Li, T.; Wei, X.; Zheng, Y.; Wu, D.; Yang, L.; Chen, S.; Xu, B.; Zhong, M.; et al. Genome-wide analyses identify KLF4 as an important negative regulator in T-cell acute lymphoblastic leukemia through directly inhibiting T-cell associated genes. Mol. Cancer 2015, 14, 26. [Google Scholar] [CrossRef]
- Shen, Y.; Park, C.S.; Suppipat, K.; Mistretta, T.A.; Puppi, M.; Horton, T.M.; Rabin, K.; Gray, N.S.; Meijerink, J.P.P.; Lacorazza, H.D. Inactivation of KLF4 promotes T-cell acute lymphoblastic leukemia and activates the MAP2K7 pathway. Leukemia 2017, 31, 1314–1324. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, M.; Zhang, J.; Xue, L.; Zhang, G.; Hu, C.; Wang, Z.; He, S.; Chen, L.; Ma, K.; et al. Overexpression of KLF4 promotes cell senescence through microRNA-203-survivin-p21 pathway. Oncotarget 2016, 7, 60290–60302. [Google Scholar] [CrossRef]
- Estrada, C.C.; Paladugu, P.; Guo, Y.; Pace, J.; Revelo, M.P.; Salant, D.J.; Shankland, S.J.; D’Agati, V.D.; Mehrotra, A.; Cardona, S.; et al. Krüppel-like factor 4 is a negative regulator of STAT3-induced glomerular epithelial cell proliferation. JCI Insight 2018, 3, e98214. [Google Scholar] [CrossRef]
- Luo, D.D.; Zhao, F. KLF4 suppresses the proliferation and metastasis of NSCLC cells via inhibition of MSI2 and regulation of the JAK/STAT3 signaling pathway. Transl. Oncol. 2022, 22, 101396. [Google Scholar] [CrossRef]
- Shi, J.; Zheng, B.; Chen, S.; Ma, G.; Wen, J. Retinoic Acid Receptor α Mediates All-trans-retinoic Acid-induced Klf4 Gene Expression by Regulating Klf4 Promoter Activity in Vascular Smooth Muscle Cells. J. Biol. Chem. 2012, 287, 10799–10811. [Google Scholar] [CrossRef] [PubMed]
- Huesca, M.; Lock, L.S.; Khine, A.A.; Viau, S.; Peralta, R.; Cukier, I.H.; Jin, H.; Al-Qawasmeh, R.A.; Lee, Y.; Wright, J.; et al. A novel small molecule with potent anticancer activity inhibits cell growth by modulating intracellular labile zinc homeostasis. Mol. Cancer Ther. 2009, 8, 2586–2596. [Google Scholar] [CrossRef]
- Suliman, B.A.; Xu, D.; Williams, B.R.G. The Promyelocytic Leukemia Zinc Finger Protein: Two Decades of Molecular Oncology. Front. Oncol. 2012, 2, 74. [Google Scholar] [CrossRef] [PubMed]
- Agrawal Singh, S.; Lerdrup, M.; Gomes, A.L.R.; Van De Werken, H.J.; Vilstrup Johansen, J.; Andersson, R.; Sandelin, A.; Helin, K.; Hansen, K. PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells. eLife 2019, 8, e40364. [Google Scholar] [CrossRef] [PubMed]
- Jiao, B.; Ren, Z.H.; Liu, P.; Chen, L.J.; Shi, J.Y.; Dong, Y.; Ablain, J.; Shi, L.; Gao, L.; Hu, J.P.; et al. 8-CPT-cAMP/all-trans retinoic acid targets t(11;17) acute promyelocytic leukemia through enhanced cell differentiation and PLZF/RARα degradation. Proc. Natl. Acad. Sci. 2013, 110, 3495–3500. [Google Scholar] [CrossRef] [PubMed]
- Chiarella, E. Exploring the contribution of Zfp521/ZNF521 on primary hematopoietic stem/progenitor cells and leukemia progression. Cell Tissue Res. 2024, 398, 161–173. [Google Scholar] [CrossRef]
- Germano, G.; Morello, G.; Aveic, S.; Pinazza, M.; Minuzzo, S.; Frasson, C.; Persano, L.; Bonvini, P.; Viola, G.; Bresolin, S.; et al. ZNF521 sustains the differentiation block in MLL-rearranged acute myeloid leukemia. Oncotarget 2017, 8, 26129–26141. [Google Scholar] [CrossRef]
- Yu, M.; Al-Dallal, S.; Al-Haj, L.; Panjwani, S.; McCartney, A.S.; Edwards, S.M.; Manjunath, P.; Walker, C.; Awgulewitsch, A.; Hentges, K.E. Transcriptional regulation of the proto--oncogene Zfp521 by SPI1 (PU.1) and HOXC13. Genesis 2016, 54, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.C.; Chen, H.Y.; Yu, S.L.; Cheng, L.; Yang, P.C.; Dang, C.V. Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood 2005, 106, 304–310. [Google Scholar] [CrossRef]
- Beishline, K.; Azizkhan-Clifford, J. Sp1 and the ‘hallmarks of cancer’. FEBS J. 2015, 282, 224–258. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.X.; Zhou, S.Y.; Wang, S.X.; Zheng, K.; Xu, D.D.; Liu, Y.T.; Wang, X.Y.; Wang, X.; Yan, H.Z.; et al. Sp1 and c-Myc modulate drug resistance of leukemia stem cells by regulating survivin expression through the ERK-MSK MAPK signaling pathway. Mol. Cancer 2015, 14, 56. [Google Scholar] [CrossRef]
- Zweidler-Mckay, P.A.; Grimes, H.L.; Flubacher, M.M.; Tsichlis, P.N. Gfi-1 Encodes a Nuclear Zinc Finger Protein That Binds DNA and Functions as a Transcriptional Repressor. Mol. Cell. Biol. 1996, 16, 4024–4034. [Google Scholar] [CrossRef]
- Wilson, N.K.; Timms, R.T.; Kinston, S.J.; Cheng, Y.-H.; Oram, S.H.; Landry, J.-R.; Mullender, J.; Ottersbach, K.; Gottgens, B. Gfi1 Expression Is Controlled by Five Distinct Regulatory Regions Spread over 100 Kilobases, with Scl/Tal1, Gata2, PU.1, Erg, Meis1, and Runx1 Acting as Upstream Regulators in Early Hematopoietic Cells. Mol. Cell Biol. 2010, 30, 3853–3863. [Google Scholar] [CrossRef]
- Khandanpour, C.; Thiede, C.; Valk, P.J.M.; Sharif-Askari, E.; Nückel, H.; Lohmann, D.; Horsthemke, B.; Siffert, W.; Neubauer, A.; Grzeschik, K.H.; et al. A variant allele of Growth Factor Independence 1 (GFI1) is associated with acute myeloid leukemia. Blood 2010, 115, 2462–2472. [Google Scholar] [CrossRef] [PubMed]
- Frank, D.; Patnana, P.K.; Vorwerk, J.; Mao, L.; Gopal, L.M.; Jung, N.; Hennig, T.; Ruhnke, L.; Frenz, J.M.; Kuppusamy, M.; et al. Germ line variant GFI1-36N affects DNA repair and sensitizes AML cells to DNA damage and repair therapy. Blood 2023, 142, 2175–2191. [Google Scholar] [CrossRef]
- Cho, E.C.; Mitton, B.; Sakamoto, K. CREB and Leukemogenesis. Crit. Rev. Oncog. 2011, 16, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Gausdal, G.; Wergeland, A.; Skavland, J.; Nguyen, E.; Pendino, F.; Rouhee, N.; McCormack, E.; Herfindal, L.; Kleppe, R.; Havemann, U.; et al. Cyclic AMP can promote APL progression and protect myeloid leukemia cells against anthracycline-induced apoptosis. Cell Death Dis. 2013, 4, e516. [Google Scholar] [CrossRef]
- Sapio, L.; Salzillo, A.; Ragone, A.; Illiano, M.; Spina, A.; Naviglio, S. Targeting CREB in Cancer Therapy: A Key Candidate or One of Many? An Update. Cancers 2020, 12, 3166. [Google Scholar] [CrossRef]
- Deynoux, M.; Sunter, N.; Hérault, O.; Mazurier, F. Hypoxia and Hypoxia-Inducible Factors in Leukemias. Front. Oncol. 2016, 6, 41. [Google Scholar] [CrossRef]
- Nardinocchi, L.; Pantisano, V.; Puca, R.; Porru, M.; Aiello, A.; Grasselli, A.; Leonetti, C.; Safran, M.; Rechavi, G.; Givol, D.; et al. Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo. PLoS ONE 2010, 5, e15048. [Google Scholar] [CrossRef]
- Blanden, A.R.; Yu, X.; Blayney, A.J.; Demas, C.; Ha, J.H.; Liu, Y.; Withers, T.; Carpizo, D.R.; Loh, S.N. Zinc shapes the folding landscape of p53 and establishes a pathway for reactivating structurally diverse cancer mutants. eLife 2020, 9, e61487. [Google Scholar] [CrossRef]
- Ha, J.H.; Prela, O.; Carpizo, D.R.; Loh, S.N. p53 and Zinc: A Malleable Relationship. Front. Mol. Biosci. 2022, 9, 895887. [Google Scholar] [CrossRef] [PubMed]
- Hirako, N.; Nakano, H.; Takahashi, S. A PU.1 Suppressive Target Gene, Metallothionein 1G, Inhibits Retinoic Acid-Induced NB4 Cell Differentiation. PLoS ONE 2014, 9, e103282. [Google Scholar] [CrossRef] [PubMed]
Molecular Targets | Function and Role | Effect on APL Proliferation/Differentiation | Effect of Zinc on TF and APL Proliferation | Therapeutic Strategy | Reference | |
---|---|---|---|---|---|---|
ZnF Transcription Factors | RUNX2 | ZnF transcription factor regulating osteogenesis and cell fate via cAMP–PKA–CREB and BMP–Smad pathways | Contributes to leukemogenesis; upregulated in AML; silenced in APL via chromatin repression; modestly induced by ATRA in NB4 cells. | Zinc activates RUNX2 via BMP-2 and CREB pathways; may support differentiation in APL under ATRA/ATO treatment | Zinc chelation to destabilize RUNX2 | [38,39,40,41,42,43,44,45,46,47] |
KLF4 | C2H2-type ZnF transcription factor involved in cell cycle regulation and differentiation | Dual role: supports leukemic survival (steady state) but acts as tumor suppressor when overexpressed; represses ATRA-induced apoptosis unless silenced | Zinc stabilizes KLF4 and enhances its DNA binding; may enhance ATRA effect via co-activation with Sp1. | Zinc titration to find the dose synergizing with ATRA | [46,49,57] | |
PLZF (ZBTB16) | ZnF transcription factor; component of PLZF–RARA fusion in APL variant | PLZF–RARA fusion leads to ATRA resistance; blocks differentiation; wild-type PLZF supports osteogenic differentiation. | Zinc modulates PLZF activity; loss impairs differentiation; zinc may enhance MSC differentiation via PLZF→RUNX2 axis. | Zinc chelation to modulate PLZF and destabilize RUNX2 | [48,59,60] | |
ZNF521 | ZnF transcription factor maintaining stemness of HSCs; blocks differentiation. | Highly expressed in early progenitors and MLL-rearranged AML; inhibits differentiation; downregulated by ATRA. | Zinc stabilizes ZNF521 structure; role not directly defined, but zinc may modulate differentiation response through ZNF521 repression. | Zinc supply combined with ATRA to induce downregulation of ZNF521 | [62,63] | |
Sp1 | Ubiquitous C2H2 ZnF transcription factor regulating survival, cell cycle, and differentiation genes. | Promotes survival of AML cells; oxidation by ATO suppresses oncogenic gene expression; interacts with KLF4 and survivin pathways. | Zinc essential for Sp1’s structural stability; zinc may synergize with ATRA/ATO or Sp1 inhibition for anti-leukemic effects. | Zinc chelation with ATO to enhance oxidative inactivation of Sp1 | [57,65,66,67] | |
GFI1 | ZnF transcription factor acting as transcriptional repressor. | Upregulated by PML–RARA in APL; maintains leukemic state; knockdown promotes differentiation and apoptosis. | GFI1 function depends on ZnF integrity; zinc levels may affect its DNA binding and repression capacity, though not yet experimentally confirmed. | Zinc supply combined with ATRA/ATO to decrease expression of GFI1 | [47,68] | |
Non-ZnF Transcription Factors | CREB | Non-ZnF transcription factor activated via cAMP–PKA pathway. | Overexpressed in AML; promotes survival and blocks differentiation; supports APL therapy resistance. | Zinc activates cAMP–PKA–CREB signaling; may enhance APL survival or promote differentiation depending on dose and context. | Zinc titration to find the dose promoting differentiation | [40,72,73,74] |
HIF-1α | Non-ZnF transcription factor activated under hypoxia. | Promotes stemness, therapy resistance, and anti-apoptotic pathways in APL; paradoxically also supports myeloid differentiation in some contexts. | Zinc influences ROS and redox balance, which regulate HIF-1α stability; indirect modulation of APL proliferation possible. | Zinc supply to balance cellular redox states and downregulate HIF-1α | [75,76] | |
p53 | Non-ZnF tumor suppressor TF regulating apoptosis, DNA repair. | Suppresses APL proliferation; required for ATRA-induced differentiation; loss impairs response to therapy. | Zinc critical for structural stability of p53; deficiency causes misfolding and dysfunction; zinc sequestration by MT1G impairs p53 in APL. | Zinc chelation to restore p53 function | [77,78,79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikegami, N.; Szegedi, I.; Kiss, C.; Petrás, M. Regulatory Role of Zinc in Acute Promyelocytic Leukemia: Cellular and Molecular Aspects with Therapeutic Implications. Int. J. Mol. Sci. 2025, 26, 9685. https://doi.org/10.3390/ijms26199685
Ikegami N, Szegedi I, Kiss C, Petrás M. Regulatory Role of Zinc in Acute Promyelocytic Leukemia: Cellular and Molecular Aspects with Therapeutic Implications. International Journal of Molecular Sciences. 2025; 26(19):9685. https://doi.org/10.3390/ijms26199685
Chicago/Turabian StyleIkegami, Norihiro, István Szegedi, Csongor Kiss, and Miklós Petrás. 2025. "Regulatory Role of Zinc in Acute Promyelocytic Leukemia: Cellular and Molecular Aspects with Therapeutic Implications" International Journal of Molecular Sciences 26, no. 19: 9685. https://doi.org/10.3390/ijms26199685
APA StyleIkegami, N., Szegedi, I., Kiss, C., & Petrás, M. (2025). Regulatory Role of Zinc in Acute Promyelocytic Leukemia: Cellular and Molecular Aspects with Therapeutic Implications. International Journal of Molecular Sciences, 26(19), 9685. https://doi.org/10.3390/ijms26199685