Structural and Functional Hallmarks of Sindbis Virus Proteins: From Virion Architecture to Pathogenesis
Abstract
1. Sindbis Virus: From Discovery to Molecular Pathogenesis
2. Sindbis Virus Architecture and Structural Protein Organization
Protein | Size (Approx. aa/kDa) | Key Functions | Key PTMs | Location in Virion | Antibodies/Inhibitors | Mechanism of Action |
---|---|---|---|---|---|---|
Capsid (C) | 264 aa/ 30 kDa | Genome packaging, nucleocapsid formation, serine protease activity (autocleavage), interaction with E2 cytoplasmic tail, IRAK1 inhibition | Autoproteolytic cleavage | Nucleocapsid core | Small molecules [43,44,45,46]: Berberine Chloride (BBC), Picolinic Acid (PCA) Mandelic Acid (MDA), Ethyl 3-aminobenzoate Dioxane derivatives, Piperazine derivatives Protease inhibitors [47,48]: Various serine protease inhibitors | BBC: Perturbs NC assembly/disassembly PCA: Binds CTD hydrophobic pocket, inhibits budding MDA/EAB: High binding affinity to hydrophobic pocket (in silico) Protease inhibitors: Target catalytic triad (H141, D147, S215) |
E1 | 439 aa/ 47–50 kDa | Class II membrane fusion, forms icosahedral scaffold with E2, heterodimerization with E2 | N-glycosylation (N139, N245), palmitoylation | Envelope spike (base/scaffold) | Monoclonal antibodies [49,50,51]: Sin-33 (neutralizing) Anti-E1 MAbs Protein inhibitors: Exogenous E1 DIII domain [52,53] Small molecules [54,55,56,57]: Zinc (Zn2+), NH4Cl/Bafilomycin A1 | Sin-33: Induces non-infectious conformation, blocks low-pH changes E1 DIII: Binds fusion intermediate, blocks endogenous DIII fold-back Zn2+: Blocks DIII/stem fold-back (H333 interaction) pH modulators: Prevent low-pH conditions that trigger E1 activation |
E2 | 423 aa/ 50–52 kDa | Receptor binding, cell attachment, heterodimerization with E1, interaction with capsid via cytoplasmic tail, major antigen | N-glycosylation (N196, N318), palmitoylation, cleavage from pE2 | Envelope spike (surface exposed) | Monoclonal antibodies [58,59,60,61,62]: Anti-E2 broadly neutralizing antibodies (bNAbs) R6, R13 (conformational epitope) DC2.M16 and DC2.M357 (Domain B-specific) Small molecules [63,64]: Doxycycline, Obatoclax (OLX) | bNAbs: Target conserved epitopes across alphaviruses Domain-specific MAbs: Block receptor binding Doxycycline: Computational binding to E2, impairs conformational changes OLX: Neutralizes endosomal pH |
E3 | 64-65 aa/ 7–8 kDa | Signal sequence for pE2-6K-E1 translocation, chaperone for pE2 folding, pH protection of E1 during transport, processing from pE2 | Cleavage from pE2 | Mostly released; not a major component of mature SINV | Limited targets: Anti-E3 antibodies [65] (rare) Furin inhibitors [66] (indirect) | Furin inhibitors: Block pE2 → E2 + E3 processing, prevent spike maturation |
6K | 55 aa/6 kDa | Viroporin, membrane permeabilization, glycoprotein processing and transport, budding | None identified | Primarily cellular, very low in virions | Viroporin inhibitors [67,68]: Rimantadine analogs, Amiloride derivatives Ion channel blockers | Block viroporin activity, membrane permeabilization Inhibit viral protein transport Reduce budding efficiency |
TF | frameshift of 6K/ 8–10 kDa | Virus assembly and release, virulence factor | Palmitoylation | Virion (low amounts) | Limited information [69]: Palmitoylation inhibitors Assembly disruptors | Block palmitoylation essential for membrane association Disrupt assembly functions |
3. Future Perspectives: Integrating Structural Knowledge for Therapeutic Advancement
Author Contributions
Funding
Conflicts of Interest
References
- European Centre for Disease Prevention and Control (ECDC). Facts About Sindbis Fever. 2025. Available online: https://www.ecdc.europa.eu/en/sindbis-fever/facts (accessed on 13 May 2025).
- Strauss, J.H.; Strauss, E.G. The alphaviruses: Gene expression, replication, and evolution. Microbiol. Rev. 1994, 58, 491–562. [Google Scholar] [CrossRef] [PubMed]
- Jose, J.; Snyder, J.E.; Kuhn, R.J. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol. 2009, 4, 837–856. [Google Scholar] [CrossRef]
- Harding, S.; Sewgobind, S.; Johnson, N. JMM Profile: Sindbis virus, a cause of febrile illness and arthralgia. J. Med. Microbiol. 2023, 72, 001674. [Google Scholar] [CrossRef]
- Lavergne, A.; de Thoisy, B.; Lacoste, V.; Pascalis, H.; Pouliquen, J.F.; Mercier, V.; Tolou, H.; Dussart, P.; Morvan, J.; Talarmin, A.; et al. Mayaro virus: Complete nucleotide sequence and phylogenetic relationships with other alphaviruses. Virus Res. 2006, 117, 283–290. [Google Scholar] [CrossRef]
- Weaver, S.C.; Kang, W.; Shirako, Y.; Rumenapf, T.; Strauss, E.G.; Strauss, J.H. Recombinational history and molecular evolution of western equine encephalomyelitis complex alphaviruses. J. Virol. 1997, 71, 613–623. [Google Scholar] [CrossRef]
- Lundström, J.O.; Pfeffer, M. Phylogeographic structure and evolutionary history of Sindbis virus. Vector Borne Zoonotic Dis. 2010, 10, 889–907. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Smura, T.; Lundström, J.O.; Pettersson, J.H.O.; Sironen, T.; Vapalahti, O.; Lundkvist, A.; Hesson, J.C. Introduction and Dispersal of Sindbis Virus from Central Africa to Europe. J. Virol. 2019, 93, e00620-19. [Google Scholar] [CrossRef]
- Michie, A.; Ernst, T.; Pyke, A.T.; Nicholson, J.; Mackenzie, J.S.; Smith, D.W.; Imrie, A. Genomic Analysis of Sindbis Virus Reveals Uncharacterized Diversity within the Australasian Region, and Support for Revised SINV Taxonomy. Viruses 2023, 16, 7. [Google Scholar] [CrossRef]
- Zhang, W.; Mukhopadhyay, S.; Pletnev, S.V.; Baker, T.S.; Kuhn, R.J.; Rossmann, M.G. Placement of the Structural Proteins in Sindbis Virus. J. Virol. 2002, 76, 11645–11658. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Zhang, W.; Gabler, S.; Chipman, P.R.; Strauss, E.G.; Strauss, J.H.; Baker, T.S.; Kuhn, R.J.; Rossmann, M.G. Mapping the Structure and Function of the E1 and E2 Glycoproteins in Alphaviruses. Structure 2006, 14, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Jose, J.; Chipman, P.; Zhang, W.; Kuhn, R.J.; Baker, T.S. Molecular Links between the E2 Envelope Glycoprotein and Nucleocapsid Core in Sindbis Virus. J. Mol. Biol. 2011, 414, 442–459. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jose, J.; Xiang, Y.; Kuhn, R.J.; Rossmann, M.G. Structural changes in alphavirus E1 and E2 glycoproteins during membrane fusion. Nature 2010, 468, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, M.; Zhu, D.; Sun, Z.; Ma, J.; Wang, J.; Kong, L.; Wang, S.; Liu, Z.; Wei, L.; et al. Implication for alphavirus host-cell entry and assembly indicated by a 3.5Å resolution cryo-EM structure. Nat. Commun. 2018, 9, 5326. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Lee, S.; Zhang, Y.P.; McKinney, B.R.; Wengler, G.; Rossmann, M.G.; Kuhn, R.J. Structural analysis of Sindbis virus capsid mutants involving assembly and catalysis. J. Mol. Biol. 1996, 262, 151–167. [Google Scholar] [CrossRef]
- Lee, S.; Owen, K.E.; Choi, H.K.; Lee, H.; Lu, G.; Wengler, G.; Brown, D.T.; Rossmann, M.G.; Kuhn, R.J. Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly. Structure 1996, 4, 531–541. [Google Scholar] [CrossRef]
- Lee, S.; Kuhn, R.J.; Rossmann, M.G. Probing the potential glycoprotein binding site of sindbis virus capsid protein with dioxane and model building. Proteins 1998, 33, 311–317. [Google Scholar] [CrossRef]
- Lescar, J.; Roussel, A.; Wien, M.W.; Navaza, J.; Fuller, S.D.; Wengler, G.; Rey, F.A. The Fusion glycoprotein shell of Semliki Forest virus: An icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 2001, 105, 137–148. [Google Scholar] [CrossRef]
- Roussel, A.; Lescar, J.; Vaney, M.C.; Wengler, G.; Rey, F.A. Structure and Interactions at the Viral Surface of the Envelope Protein E1 of Semliki Forest Virus. Structure 2006, 14, 75–86. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.; Liu, S.; Wang, H.; Sun, J.; Chai, Y.; Zhou, J.; Wang, Y.; Shi, Y.; Song, H.; et al. Structural basis of Semliki Forest virus entry using the very-low-density lipoprotein receptor. hLife 2023, 1, 124–136. [Google Scholar] [CrossRef]
- Gibbons, D.L.; Vaney, M.C.; Roussel, A.; Vigouroux, A.; Reilly, B.; Lepault, J.; Kielian, M.; Rey, F.A. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 2004, 427, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Pierro, D.J.; Powers, E.L.; Olson, K.E. Genetic Determinants of Sindbis Virus Mosquito Infection Are Associated with a Highly Conserved Alphavirus and Flavivirus Envelope Sequence. J. Virol. 2008, 82, 2966–2974. [Google Scholar] [CrossRef]
- Fayzulin, R.; Frolov, I. Changes of the Secondary Structure of the 5′ End of the Sindbis Virus Genome Inhibit Virus Growth in Mosquito Cells and Lead to Accumulation of Adaptive Mutations. J. Virol. 2004, 78, 4953–4964. [Google Scholar] [CrossRef]
- Garneau, N.L.; Sokoloski, K.J.; Opyrchal, M.; Neff, C.P.; Wilusz, C.J.; Wilusz, J. The 3′ Untranslated Region of Sindbis Virus Represses Deadenylation of Viral Transcripts in Mosquito and Mammalian Cells. J. Virol. 2008, 82, 880–892. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Fu, S.; He, Y.; Li, J.; Liang, G. Amino acid substitutions in the E2 glycoprotein of Sindbis-like virus XJ-160 confer the ability to undergo heparan sulfate-dependent infection of mouse embryonic fibroblasts. Virol. J. 2010, 7, 225. [Google Scholar] [CrossRef]
- Dubuisson, J.; Lustig, S.; Ruggli, N.; Akov, Y.; Rice, C.M. Genetic determinants of Sindbis virus neuroinvasiveness. J. Virol. 1997, 71, 2636–2646. [Google Scholar] [CrossRef] [PubMed]
- Heise, M.T.; Simpson, D.A.; Johnston, R.E. Sindbis-Group Alphavirus Replication in Periosteum and Endosteum of Long Bones in Adult Mice. J. Virol. 2000, 74, 9294–9299. [Google Scholar] [CrossRef]
- Assunção-Miranda, I.; Cruz-Oliveira, C.; Da Poian, A.T. Molecular Mechanisms Involved in the Pathogenesis of Alphavirus-Induced Arthritis. Biomed Res. Int. 2013, 2013, 973516. [Google Scholar] [CrossRef] [PubMed]
- Jose, J.; Przybyla, L.; Edwards, T.J.; Perera, R.; Burgner, J.W.; Kuhn, R.J. Interactions of the cytoplasmic domain of Sindbis virus E2 with nucleocapsid cores promote alphavirus budding. J. Virol. 2012, 86, 2585–2599. [Google Scholar] [CrossRef]
- Knight, R.L.; Schultz, K.L.W.; Kent, R.J.; Venkatesan, M.; Griffin, D.E. Role of N-Linked Glycosylation for Sindbis Virus Infection and Replication in Vertebrate and Invertebrate Systems. J. Virol. 2009, 83, 5640–5647. [Google Scholar] [CrossRef]
- Myles, K.M.; Pierro, D.J.; Olson, K.E. Deletions in the putative cell receptor-binding domain of Sindbis virus strain MRE16 E2 glycoprotein reduce midgut infectivity in Aedes aegypti. J. Virol. 2003, 77, 8872–8881. [Google Scholar] [CrossRef]
- Sanz, M.A.; Madan, V.; Nieva, J.L.; Carrasco, L. The Alphavirus 6K Protein. In Viral Membrane Proteins: Structure, Function, and Drug Design; Fischer, W.B., Ed.; Springer: Boston, MA, USA, 2005; pp. 233–244. [Google Scholar]
- He, L.; Piper, A.; Meilleur, F.; Myles, D.A.A.; Hernandez, R.; Brown, D.T.; Heller, W.T. The Structure of Sindbis Virus Produced from Vertebrate and Invertebrate Hosts as Determined by Small-Angle Neutron Scattering. J. Virol. 2010, 84, 5270–5276. [Google Scholar] [CrossRef]
- Dunbar, C.A.; Rayaprolu, V.; Wang, J.C.Y.; Brown, C.J.; Leishman, E.; Jones-Burrage, S.; Trinidad, J.C.; Bradshaw, H.B.; Clemmer, D.E.; Mukhopadhyay, S.; et al. Dissecting the Components of Sindbis Virus from Arthropod and Vertebrate Hosts: Implications for Infectivity Differences. ACS Infect. Dis. 2019, 5, 892–902. [Google Scholar] [CrossRef]
- Sokoloski, K.J.; Nease, L.M.; May, N.A.; Gebhart, N.N.; Jones, C.E.; Morrison, T.E.; Hardy, R.W. Identification of Interactions between Sindbis Virus Capsid Protein and Cytoplasmic vRNA as Novel Virulence Determinants. PLoS Pathog. 2017, 13, e1006473. [Google Scholar] [CrossRef] [PubMed]
- Owen, K.E.; Kuhn, R.J. Alphavirus budding is dependent on the interaction between the nucleocapsid and hydrophobic amino acids on the cytoplasmic domain of the E2 envelope glycoprotein. Virology 1997, 230, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Navaratnarajah, C.K.; Kuhn, R.J. Functional characterization of the Sindbis virus E2 glycoprotein by transposon linker-insertion mutagenesis. Virology 2007, 363, 134–147. [Google Scholar] [CrossRef]
- Snyder, A.J.; Sokoloski, K.J.; Mukhopadhyay, S. Mutating Conserved Cysteines in the Alphavirus E2 Glycoprotein Causes Virus-Specific Assembly Defects. J. Virol. 2012, 86, 3100–3111. [Google Scholar] [CrossRef]
- Rose, P.P.; Hanna, S.L.; Spiridigliozzi, A.; Wannissorn, N.; Beiting, D.P.; Ross, S.R.; Hardy, R.W.; Bambina, S.A.; Heise, M.T.; Cherry, S. Natural Resistance-associated Macrophage Protein (NRAMP) is a cellular receptor for Sindbis virus in both insect and mammalian hosts. Cell Host Microbe 2011, 10, 97–104. [Google Scholar] [CrossRef]
- Byrnes, A.P.; Griffin, D.E. Binding of Sindbis Virus to Cell Surface Heparan Sulfate. J. Virol. 1998, 72, 7349–7356. [Google Scholar] [CrossRef]
- Chmielewski, D.; Su, G.C.; Kaelber, J.T.; Pintilie, G.D.; Chen, M.; Jin, J.; Auguste, A.J.; Chiu, W. Cryogenic electron microscopy and tomography reveal imperfect icosahedral symmetry in alphaviruses. Proc. Natl. Acad. Sci. USA Nexus 2024, 3, pgae102. [Google Scholar] [CrossRef]
- Tong, Y.; Lavillette, D.; Li, Q.; Zhong, J. Role of Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly. Front. Immunol. 2018, 9, 1411. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, M.; Kaur, R.; Saha, A.; Mudgal, R.; Yadav, R.; Dash, P.K.; Parida, M.; Kumar, P.; Tomar, S. Evaluation of antiviral activity of piperazine against Chikungunya virus targeting hydrophobic pocket of alphavirus capsid protein. Antivir. Res. 2017, 146, 102–111. [Google Scholar] [CrossRef]
- Sharma, R.; Kesari, P.; Kumar, P.; Tomar, S. Structure-function insights into chikungunya virus capsid protein: Small molecules targeting capsid hydrophobic pocket. Virology 2018, 515, 223–234. [Google Scholar] [CrossRef]
- Sharma, R.; Fatma, B.; Saha, A.; Bajpai, S.; Sistla, S.; Dash, P.K.; Parida, M.; Kumar, P.; Tomar, S. Inhibition of chikungunya virus by picolinate that targets viral capsid protein. Virology 2016, 498, 265–276. [Google Scholar] [CrossRef]
- Wan, J.J.; Brown, R.S.; Kielian, M. Berberine Chloride is an Alphavirus Inhibitor That Targets Nucleocapsid Assembly. mBio 2020, 11, e01382-20. [Google Scholar] [CrossRef]
- Fatma, B.; Kumar, R.; Singh, V.A.; Nehul, S.; Sharma, R.; Kesari, P.; Kuhn, R.J.; Tomar, S. Alphavirus capsid protease inhibitors as potential antiviral agents for Chikungunya infection. Antivir. Res. 2020, 179, 104808. [Google Scholar] [CrossRef]
- Aggarwal, M.; Dhindwal, S.; Kumar, P.; Kuhn, R.J.; Tomar, S. trans-Protease Activity and Structural Insights into the Active Form of the Alphavirus Capsid Protease. J. Virol. 2014, 88, 12242–12253. [Google Scholar] [CrossRef]
- Kim, A.S.; Kafai, N.M.; Winkler, E.S.; Gilliland, T.C., Jr.; Cottle, E.L.; Earnest, J.T.; Jethva, P.N.; Kaplonek, P.; Shah, A.P.; Fong, R.H.; et al. Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell 2021, 184, 4414–4429. [Google Scholar] [CrossRef]
- Calvert, A.E.; Bennett, S.L.; Hunt, A.R.; Fong, R.H.; Doranz, B.J.; Roehrig, J.T.; Blair, C.D. Exposing cryptic epitopes on the Venezuelan equine encephalitis virus E1 glycoprotein prior to treatment with alphavirus cross-reactive monoclonal antibody allows blockage of replication early in infection. Virology 2022, 565, 13–21. [Google Scholar] [CrossRef]
- Hernandez, R.; Paredes, A.; Brown, D.T. Sindbis Virus Conformational Changes Induced by a Neutralizing Anti-E1 Monoclonal Antibody. J. Virol. 2008, 82, 5750–5760. [Google Scholar] [CrossRef] [PubMed]
- Roman-Sosa, G.; Kielian, M. The Interaction of Alphavirus E1 Protein with Exogenous Domain III Defines Stages in Virus- Membrane Fusion. J. Virol. 2011, 85, 12271–12279. [Google Scholar] [CrossRef]
- Sánchez-San Martín, C.; Sosa, H.; Kielian, M. A Stable Prefusion Intermediate of the Alphavirus Fusion Protein Reveals Critical Features of Class II Membrane Fusion. Cell Host Microbe 2008, 4, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Schuchman, R.M.; Vancini, R.; Piper, A.; Breuer, D.; Ribeiro, M.; Ferreira, D.; Magliocca, J.; Emmerich, V.; Hernandez, R.; Brown, D.T. Role of the vacuolar ATPase in the Alphavirus replication cycle. Heliyon 2018, 4, e00701. [Google Scholar] [CrossRef]
- Kononchik, J.P., Jr.; Hernandez, R.; Brown, D.T. An alternative pathway for alphavirus entry. Virol. J. 2011, 8, 304. [Google Scholar] [CrossRef]
- Hunt, S.R.; Hernandez, R.; Brown, D.T. Role of the Vacuolar-ATPase in Sindbis Virus Infection. J. Virol. 2011, 85, 1257–1266. [Google Scholar] [CrossRef]
- Liu, C.Y.; Kielian, M. Identification of a Specific Region in the E1 Fusion Protein Involved in Zinc Inhibition of Semliki Forest Virus Fusion. J. Virol. 2012, 86, 3588–3594. [Google Scholar] [CrossRef]
- Fox, J.M.; Long, F.; Edeling, M.A.; Lin, H.; van Duijl-Richter, M.K.; Fong, R.H.; Kahle, K.M.; Smit, J.M.; Jin, J.; Simmons, G.; et al. Broadly neutralizing alphavirus antibodies bind an epitope on E2 and inhibit entry and egress. Cell 2015, 163, 1095–1107. [Google Scholar] [CrossRef]
- Malonis, R.J.; Earnest, J.T.; Kim, A.S.; Angeliadis, M.; Holtsberg, F.W.; Aman, M.J.; Jangra, R.K.; Chandran, K.; Daily, J.P.; Diamond, M.S.; et al. Near-germline human monoclonal antibodies neutralize and protect against multiple arthritogenic alphaviruses. Proc. Natl. Acad. Sci. USA 2021, 118, e2100104118. [Google Scholar] [CrossRef]
- Earnest, J.T.; Holmes, A.C.; Basore, K.; Mack, M.; Fremont, D.H.; Diamond, M.S. The mechanistic basis of protection by non-neutralizing anti-alphavirus antibodies. Cell Rep. 2021, 35, 108962. [Google Scholar] [CrossRef]
- Porta, J.; Jose, J.; Roehrig, J.T.; Blair, C.D.; Kuhn, R.J.; Rossmann, M.G. Locking and Blocking the Viral Landscape of an Alphavirus with Neutralizing Antibodies. J. Virol. 2014, 88, 9616–9623. [Google Scholar] [CrossRef] [PubMed]
- Pence, D.F.; Davis, N.L.; Johnston, R.E. Antigenic and genetic characterization of Sindbis virus monoclonal antibody escape mutants which define a pathogenesis domain on glycoprotein E2. Virology 1990, 175, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Ching, K.C.; Ng, L.F.P.; Chai, C.L.L. A compendium of small molecule direct-acting and host-targeting inhibitors as therapies against alphaviruses. J. Antimicrob. Chemother. 2017, 72, 2973–2989. [Google Scholar] [CrossRef]
- Varghese, F.S.; Rausalu, K.; Hakanen, M.; Saul, S.; KÃijmmerer, B.M.; Susi, P.; Merits, A.; Ahola, T. Obatoclax Inhibits Alphavirus Membrane Fusion by Neutralizing the Acidic Environment of Endocytic Compartments. Antimicrob. Agents Chemother. 2017, 61, e02227-16. [Google Scholar] [CrossRef]
- Parker, M.D.; Buckley, M.J.; Melanson, V.R.; Glass, P.J.; Norwood, D.; Hart, M.K. Antibody to the E3 Glycoprotein Protects Mice against Lethal Venezuelan Equine Encephalitis Virus Infection. J. Virol. 2010, 84, 12683–12690. [Google Scholar] [CrossRef]
- Ozden, S.; Lucas-Hourani, M.; Ceccaldi, P.E.; Basak, A.; Valentine, M.; Benjannet, S.; Hamelin, J.; Jacob, Y.; Mamchaoui, K.; Mouly, V.; et al. Inhibition of Chikungunya Virus Infection in Cultured Human Muscle Cells by Furin Inhibitors: Impairment of the Maturation of the E2 Surface Glycoprotein. J. Biol. Chem. 2008, 283, 21899–21908. [Google Scholar] [CrossRef]
- Elmasri, Z.; Negi, V.; Kuhn, R.J.; Jose, J. Requirement of a functional ion channel for Sindbis virus glycoprotein transport, CPV-II formation, and efficient virus budding. PLoS Pathog. 2022, 18, e1010892. [Google Scholar] [CrossRef]
- Santos, I.A.; Pereira, A.K.d.S.; Guevara-Vega, M.; de Paiva, R.E.F.; Sabino-Silva, R.; Bergamini, F.R.G.; Corbi, P.P.; Jardim, A.C.G. Repurposing potential of rimantadine hydrochloride and development of a promising platinum(II)-rimantadine metallodrug for the treatment of Chikungunya virus infection. Acta Trop. 2022, 227, 106300. [Google Scholar] [CrossRef]
- Ramsey, J.; Renzi, E.C.; Arnold, R.J.; Trinidad, J.C.; Mukhopadhyay, S. Palmitoylation of Sindbis Virus TF Protein Regulates Its Plasma Membrane Localization and Subsequent Incorporation into Virions. J. Virol. 2017, 91, e02000-16. [Google Scholar] [CrossRef]
- UniProt Consortium. Structural polyprotein—Sindbis virus (SINV). 2025. Available online: https://www.uniprot.org/uniprotkb/P03316/entry (accessed on 13 May 2025).
- Kim, K.H.; Strauss, E.G.; Strauss, J.H. Adaptive Mutations in Sindbis Virus E2 and Ross River Virus E1 That Allow Efficient Budding of Chimeric Viruses. J. Virol. 2000, 74, 2663–2670. [Google Scholar] [CrossRef] [PubMed]
- Williamson, L.E.; Reeder, K.M.; Bailey, K.; Tran, M.H.; Roy, V.; Fouch, M.E.; Kose, N.; Trivette, A.; Nargi, R.S.; Winkler, E.S.; et al. Therapeutic alphavirus cross-reactive E1 human antibodies inhibit viral egress. Cell 2021, 184, 4430–4446.e22. [Google Scholar] [CrossRef] [PubMed]
- Tsetsarkin, K.A.; McGee, C.E.; Volk, S.M.; Vanlandingham, D.L.; Weaver, S.C.; Higgs, S. Epistatic Roles of E2 Glycoprotein Mutations in Adaption of Chikungunya Virus to Aedes Albopictus and Ae. Aegypti Mosquitoes. PLoS ONE 2009, 4, e6835. [Google Scholar] [CrossRef]
- Weger-Lucarelli, J.; Aliota, M.T.; Wlodarchak, N.; Kamlangdee, A.; Swanson, R.; Osorio, J.E. Dissecting the Role of E2 Protein Domains in Alphavirus Pathogenicity. J. Virol. 2016, 90, 2418–2433. [Google Scholar] [CrossRef]
- Fong, R.H.; Banik, S.S.R.; Mattia, K.; Barnes, T.; Tucker, D.; Liss, N.; Lu, K.; Selvarajah, S.; Srinivasan, S.; Mabila, M.; et al. Exposure of Epitope Residues on the Outer Face of the Chikungunya Virus Envelope Trimer Determines Antibody Neutralizing Efficacy. J. Virol. 2014, 88, 14364–14379. [Google Scholar] [CrossRef]
- Paredes, A.M.; Heidner, H.; Thuman-Commike, P.; Venkataram Prasad, B.V.; Johnston, R.E.; Chiu, W. Structural Localization of the E3 Glycoprotein in Attenuated Sindbis Virus Mutants. J. Virol. 1998, 72, 1534–1541. [Google Scholar] [CrossRef]
- Snyder, A.J.; Mukhopadhyay, S. The alphavirus E3 glycoprotein functions in a clade-specific manner. J. Virol. 2012, 86, 13609–13620. [Google Scholar] [CrossRef]
- Scott, C.; Griffin, S. Viroporins: Structure, function and potential as antiviral targets. J. Gen. Virol. 2015, 96, 2000–2027. [Google Scholar] [CrossRef]
- Schuchman, R.; Kilianski, A.; Piper, A.; Vancini, R.; Ribeiro, J.M.C.; Sprague, T.R.; Nasar, F.; Boyd, G.; Hernandez, R.; Glaros, T. Comparative Characterization of the Sindbis Virus Proteome from Mammalian and Invertebrate Hosts Identifies nsP2 as a Component of the Virion and Sorting Nexin 5 as a Significant Host Factor for Alphavirus Replication. J. Virol. 2018, 92, e00694-18. [Google Scholar] [CrossRef]
- Karki, D.; LaPointe, A.T.; Isom, C.; Thomas, M.; Sokoloski, K.J. Mechanistic insights into Sindbis virus infection: Noncapped genomic RNAs enhance the translation of capped genomic RNAs to promote viral infectivity. Nucleic Acids Res. 2024, 53, gkae1230. [Google Scholar] [CrossRef]
- Kam, Y.W.; Lum, F.M.; Teo, T.H.; Lee, W.W.L.; Simarmata, D.; Harjanto, S.; Chua, C.L.; Chan, Y.F.; Wee, J.K.; Chow, A.; et al. Early neutralizing IgG response to Chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Mol. Med. 2012, 4, 330–343. [Google Scholar] [CrossRef]
- Scaglione, A.; Opp, S.; Hurtado, A.; Lin, Z.; Pampeno, C.; Noval, M.G.; Thannickal, S.A.; Stapleford, K.A.; Meruelo, D. Combination of a Sindbis-SARS-CoV-2 Spike Vaccine and Îs’OX40 Antibody Elicits Protective Immunity Against SARS-CoV-2 Induced Disease and Potentiates Long-Term SARS-CoV-2-Specific Humoral and T-Cell Immunity. Front. Immunol. 2021, 12, 719077. [Google Scholar] [CrossRef]
- Hall, R.A.; Nguyen, W.; Khromykh, A.A.; Suhrbier, A. Insect-specific virus platforms for arbovirus vaccine development. Front. Immunol. 2025, 16, 1521104. [Google Scholar] [CrossRef]
- Pampeno, C.; Opp, S.; Hurtado, A.; Meruelo, D. Sindbis Virus Vaccine Platform: A Promising Oncolytic Virus-Mediated Approach for Ovarian Cancer Treatment. Int. J. Mol. Sci. 2024, 25, 2925. [Google Scholar] [CrossRef] [PubMed]
ID | Protein(s)/Complex | Organism | Res. (Å) | Method | Key Relevance/Reference |
---|---|---|---|---|---|
Sindbis Virus Capsid Protein (C) | |||||
1KXA | C (106–264) | SINV | 3.10 | X-ray | C-term domain, protease fold [15] |
1KXF | C (1–264, C-term ordered) | SINV | 2.38 | X-ray | C-term chymotrypsin-like [15] |
1SVP | C (mutant, C-term) | SINV | 2.00 | X-ray | N-term arm binding pocket [16] |
1WYK | C (114–264) | SINV | 2.00 | X-ray | Pocket conformation study [17] |
2SNW | C (C-term) | SINV | 2.70 | X-ray | Type3 crystal form [15] |
Sindbis Virus Glycoproteins (E1, E2, E3) and Virions (Cryo-EM) | |||||
1LD4 | Virion (E1, E2, C fitted) | SINV | 11.4 | Cryo-EM | Early T = 4 model, E1/E2 shape [10] |
EMD-1121 | Virion (TE12 E2-N318Q) | SINV | 9.0 | Cryo-EM | E2 topology, spike differences [11] |
1Z8Y | E1/E2 model (fitted) | SINV | 9.0 | Model (EM) | E2 topology from EMD-1121 [11] |
3J0F | Virion (C, E1, E2 fitted) | SINV | 7.0 | Cryo-EM | Model of cdE2-CP interactions [12] |
3MUU | E1-E2 spike (low pH) | SINV | 3.29 | X-ray | Fusion intermediate structure [13] |
3MUW | E1-E2 shell (model) | SINV | 9.0 | Model (EM) | Pseudo-atomic E1/E2 shell [13] |
6IMM | Virion (E1, E2, E3) | SINV | 3.5 | Cryo-EM | High-res virion, E2 pocket [14] |
EMD-9693 | Virion map for 6IMM | SINV | 3.5 | Cryo-EM | High-res virion map [14] |
Semliki Forest Virus (SFV) Glycoproteins (Homologs for E1/E2) | |||||
1I9W | E1 ectodomain | SFV | 3.0 | X-ray | Class II fusion protein fold [18] |
2ALA | E1 ectodomain (monomer) | SFV | 3.0 | X-ray | Monomeric E1 structure [19] |
SFV, | |||||
8X0L | Virion with VLDLR | Homo sapiens | 3.5 | Cryo-EM | SFV-receptor complex [20] |
1RER | E1 ectodomain (trimer) | SFV | 3.3 | X-ray | Post-fusion trimer [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Q.; Navaratnarajah, C.K.; Zhang, W. Structural and Functional Hallmarks of Sindbis Virus Proteins: From Virion Architecture to Pathogenesis. Int. J. Mol. Sci. 2025, 26, 8323. https://doi.org/10.3390/ijms26178323
Geng Q, Navaratnarajah CK, Zhang W. Structural and Functional Hallmarks of Sindbis Virus Proteins: From Virion Architecture to Pathogenesis. International Journal of Molecular Sciences. 2025; 26(17):8323. https://doi.org/10.3390/ijms26178323
Chicago/Turabian StyleGeng, Qibin, Chanakha K. Navaratnarajah, and Wei Zhang. 2025. "Structural and Functional Hallmarks of Sindbis Virus Proteins: From Virion Architecture to Pathogenesis" International Journal of Molecular Sciences 26, no. 17: 8323. https://doi.org/10.3390/ijms26178323
APA StyleGeng, Q., Navaratnarajah, C. K., & Zhang, W. (2025). Structural and Functional Hallmarks of Sindbis Virus Proteins: From Virion Architecture to Pathogenesis. International Journal of Molecular Sciences, 26(17), 8323. https://doi.org/10.3390/ijms26178323