Primary Biliary Cholangitis: Immunopathogenesis and the Role of Bile Acid Metabolism in Disease Progression
Abstract
1. Introduction
2. Pathophysiology of PBC
2.1. Autoimmunity
2.1.1. Autoantibodies in PBC
2.1.2. Cellular Immune Responses
2.2. Cholestasis
2.2.1. Altered Bile Acid Metabolism
2.2.2. Dysregulation of Lipid Metabolism
2.2.3. Biliary Damage
2.3. Integrative Theories: The Bicarbonate Umbrella Hypothesis
3. Bile Acids in the Treatment of PBC
4. Bile Acids as Biomarkers of PBC Progression and Therapy Response
5. Current Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AHT | Arterial hypertension |
ALP | Alkaline phosphatase |
AMA | Anti-Mitochondrial Antibody |
ANA | Anti-Nuclear Antibodies |
APOB | Apolipoprotein B |
ASBT | Apical sodium-dependent bile acid transporter |
AUROC | Area under the receiver operating characteristic curves |
BA | Bile acid |
BSEP | Bile salt export pump |
C4 | 7α-hydroxy-4-cholesten-3-one |
CA | Cholic acid |
CDCA | Chenodeoxycholic acid |
CFTR | Cystic fibrosis transmembrane regulator |
CVE | Cardiovascular events |
CVR | Cardiovascular risk |
CYP7A1 | Cholesterol 7α-hydroxylase |
DCA | Deoxycholic acid |
FA | Fatty acid |
FGF19 | Fibroblast growth factor 19 |
FGF21 | Fibroblast growth factor 21 |
FXR | Farnesoid X receptor |
GCA | Glycocholic acid |
GCDCA | Glycochenodeoxycholic acid |
GDCA | Glycodeoxycholic acid |
GLCA | Glycolithocholic acid |
GUDCA | Glycoursodeoxycholic acid |
GWAS | Genome-wide association study |
HBV | Hepatitis B virus |
HCO3 | Bicarbonate |
HCV | Hepatitis C virus |
HDL | High-density lipoproteins |
IIF | Indirect immunofluorescence |
LCA | Lithocholic acid |
LDL | Low-density lipoproteins |
Lp-X | X lipoprotein |
NASH | Nonalcoholic steatohepatitis |
NK | Natural killer |
NKT | Natural killer T cells |
OCA | Obeticholic acid |
PBC | Primary Biliary Cholangitis |
PPAR | Peroxisome Proliferator–Activated Receptors |
Sct | Secretin |
SMA | Anti-Smooth Muscle Antibodies |
TCA | Taurocholic acid |
TCDCA | Taurochenodeoxycholic acid |
TDCA | Taurodeoxycholic acid |
TG | Triglycerides |
TGR5 | G protein-coupled bile acid receptor |
TLCA | Taurolithocholic acid |
TPR | Total bile acids to platelet ratio |
Treg | Regulatory T cells |
TUDCA | Tauroursodeoxycholic acid |
UDCA | Ursodeoxycholic acid |
ULN | Upper limit of normal |
VLDL | Very low-density lipoproteins |
References
- Trivedi, P.J.; Hirschfield, G.M. Recent Advances in Clinical Practice: Epidemiology of Autoimmune Liver Diseases. Gut 2021, 70, 1989–2003. [Google Scholar] [CrossRef]
- Parés, A. Colangitis Biliar Primaria. Med. Clin. 2018, 151, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Hirschfield, G.M.; Beuers, U.; Corpechot, C.; Invernizzi, P.; Jones, D.; Marzioni, M.; Schramm, C. EASL Clinical Practice Guidelines: The Diagnosis and Management of Patients with Primary Biliary Cholangitis. J. Hepatol. 2017, 67, 145–172. [Google Scholar] [CrossRef]
- Gazda, J.; Drazilova, S.; Janicko, M.; Jarcuska, P. The Epidemiology of Primary Biliary Cholangitis in European Countries: A Systematic Review and Meta-Analysis. Can. J. Gastroenterol. Hepatol. 2021, 2021, 9151525. [Google Scholar] [CrossRef] [PubMed]
- Neumann, M.; Quintero, J.; Shih, T.; Capitle, E.M. Not All Sicca Is Sjögren’s and Not All Sjögren’s Is Sicca. Cureus 2021, 13, e12996. [Google Scholar] [CrossRef]
- Ito, M.; Kojima, T.; Miyata, M.; Saka, M.; Kokobun, M.; Ohira, H.; Ishikawa, H.; Kuroda, M.; Sato, Y.; Takagi, T.; et al. Primary Biliary Cirrhosis(PBC)-CREST(Calcinosis, Raynaud’s Phenomenon, Esophageal Dysfunction, Sclerodactyly and Telangiectasia) Overlap Syndrome Complicated by Sjoegren’s Syndrome and Arthritis. Intern. Med. 1995, 34, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Higashi, S.; Tomoda, K.; Tsukano, M.; Sugi, K. Primary Biliary Cirrhosis (PBC)–CREST Overlap Syndrome with Coexistence of Sjögren’s Syndrome and Thyroid Dysfunction. Clin. Rheumatol. 2007, 26, 596–600. [Google Scholar] [CrossRef]
- Shah, R.A.; Kowdley, K. V Current and Potential Treatments for Primary Biliary Cholangitis. Lancet Gastroenterol. Hepatol. 2020, 5, 306–315. [Google Scholar] [CrossRef]
- AEMPS (5 December 2024). La AEMPS Actualiza La Información Sobre Ocaliva (Ácido Obeticólico): La Comisión Europea Revoca La Autorización de Comercialización [Nota informativa MUH, 33/2024]. Available online: https://www.aemps.gob.es/informa/ocaliva-la-comision-europea-revoca-autorizacion-comercializacion/# (accessed on 21 May 2025).
- Blair, H.A. Elafibranor: First Approval. Drugs 2024, 84, 1143–1148. [Google Scholar] [CrossRef]
- Hoy, S.M. Seladelpar: First Approval. Drugs 2024, 84, 1487–1495. [Google Scholar] [CrossRef]
- Shah, S.K.; Bowlus, C.L. Autoimmune Markers in Primary Biliary Cholangitis. Clin. Liver Dis. 2024, 28, 93–101. [Google Scholar] [CrossRef]
- Mattalia, A.; Quaranta, S.; Leung, P.S.C.; Bauducci, M.; Van de Water, J.; Calvo, P.L.; Danielle, F.; Rizzetto, M.; Ansari, A.; Coppel, R.L.; et al. Characterization of Antimitochondrial Antibodies in Healthy Adults. Hepatology 1998, 27, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Liang, E.; Liu, M.; Ke, P.; Han, G.; Zhang, C.; Deng, L.; Wang, Y.; Huang, H.; Huang, W.; Liu, R.; et al. A Population-Based Characterization Study of Anti-Mitochondrial M2 Antibodies and Its Consistency with Anti-Mitochondrial Antibodies. Lab. Med. 2023, 54, 618–625. [Google Scholar] [CrossRef]
- Dahlqvist, G.; Gaouar, F.; Carrat, F.; Meurisse, S.; Chazouillères, O.; Poupon, R.; Johanet, C.; Corpechot, C. Large-scale Characterization Study of Patients with Antimitochondrial Antibodies but Nonestablished Primary Biliary Cholangitis. Hepatology 2017, 65, 152–163. [Google Scholar] [CrossRef]
- Duan, W.; Chen, S.; Li, S.; Lv, T.; Li, B.; Wang, X.; Wang, Y.; Zhao, X.; Ma, H.; Ou, X.; et al. The Future Risk of Primary Biliary Cholangitis (PBC) Is Low among Patients with Incidental Anti-mitochondrial Antibodies but without Baseline PBC. Hepatol. Commun. 2022, 6, 3112–3119. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.K.; Hirschfield, G.M. Autoantibodies in Primary Biliary Cholangitis. Clin. Liver Dis. 2022, 26, 613–627. [Google Scholar] [CrossRef] [PubMed]
- Colapietro, F.; Lleo, A.; Generali, E. Antimitochondrial Antibodies: From Bench to Bedside. Clin. Rev. Allergy Immunol. 2021, 63, 166–177. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Ran, Y.; Li, L.; Wang, B.; Zhou, L. Anti-Gp210-Positive Primary Biliary Cholangitis: The Dilemma of Clinical Treatment and Emerging Mechanisms. Ann. Hepatol. 2023, 28, 101121. [Google Scholar] [CrossRef]
- Reig, A.; Norman, G.L.; Garcia, M.; Shums, Z.; Ruiz-Gaspà, S.; Bentow, C.; Mahler, M.; Romera, M.A.; Vinas, O.; Pares, A. Novel Anti–Hexokinase 1 Antibodies Are Associated with Poor Prognosis in Patients with Primary Biliary Cholangitis. Am. J. Gastroenterol. 2020, 115, 1634–1641. [Google Scholar] [CrossRef]
- Norman, G.L.; Yang, C.; Ostendorff, H.P.; Shums, Z.; Lim, M.J.; Wang, J.; Awad, A.; Hirschfield, G.M.; Milkiewicz, P.; Bloch, D.B.; et al. Anti-kelch-like 12 and Anti-hexokinase 1: Novel Autoantibodies in Primary Biliary Cirrhosis. Liver Int. 2015, 35, 642–651. [Google Scholar] [CrossRef]
- Prieto, J.; Banales, J.M.; Medina, J.F. Primary Biliary Cholangitis: Pathogenic Mechanisms. Curr. Opin. Gastroenterol. 2021, 37, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, H.; Nakamura, M.; Shimoda, S.; Eric Gershwin, M. T Cell Immunity and Primary Biliary Cirrhosis. Autoimmun. Rev. 2003, 2, 19–24. [Google Scholar] [CrossRef]
- Ronca, V.; Mancuso, C.; Milani, C.; Carbone, M.; Oo, Y.H.; Invernizzi, P. Immune System and Cholangiocytes: A Puzzling Affair in Primary Biliary Cholangitis. J. Leukoc. Biol. 2020, 108, 659–671. [Google Scholar] [CrossRef]
- Mulcahy, V.; Liaskou, E.; Martin, J.-E.; Kotagiri, P.; Badrock, J.; Jones, R.L.; Rushbrook, S.M.; Ryder, S.D.; Thorburn, D.; Taylor-Robinson, S.D.; et al. Regulation of Immune Responses in Primary Biliary Cholangitis: A Transcriptomic Analysis of Peripheral Immune Cells. Hepatol. Commun. 2023, 7, e0110. [Google Scholar] [CrossRef]
- Fuchs, C.D.; Simbrunner, B.; Baumgartner, M.; Campbell, C.; Reiberger, T.; Trauner, M. Bile Acid Metabolism and Signalling in Liver Disease. J. Hepatol. 2025, 82, 134–153. [Google Scholar] [CrossRef]
- Verkade, H.J.; Felzen, A.; Keitel, V.; Thompson, R.; Gonzales, E.; Strnad, P.; Kamath, B.; van Mil, S. EASL Clinical Practice Guidelines on Genetic Cholestatic Liver Diseases. J. Hepatol. 2024, 81, 303–325. [Google Scholar] [CrossRef]
- Fickert, P.; Fuchsbichler, A.; Marschall, H.-U.; Wagner, M.; Zollner, G.; Krause, R.; Zatloukal, K.; Jaeschke, H.; Denk, H.; Trauner, M. Lithocholic Acid Feeding Induces Segmental Bile Duct Obstruction and Destructive Cholangitis in Mice. Am. J. Pathol. 2006, 168, 410–422. [Google Scholar] [CrossRef]
- Szekeres, M.; Viskolcz, B.; Poša, M.; Csanádi, J.; Škorić, D.; Illés, E.; Tóth, I.Y.; Tombácz, E. The Effect of Hydroxyl Moieties and Their Oxosubstitution on Bile Acid Association Studied in Floating Monolayers. Sci. World J. 2014, 2014, 152972. [Google Scholar] [CrossRef]
- Suga, T.; Yamaguchi, H.; Sato, T.; Maekawa, M.; Goto, J.; Mano, N. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3. PLoS ONE 2017, 12, e0169719. [Google Scholar] [CrossRef] [PubMed]
- Ceci, L.; Gaudio, E.; Kennedy, L. Cellular Interactions and Crosstalk Facilitating Biliary Fibrosis in Cholestasis. Cell Mol. Gastroenterol. Hepatol. 2024, 17, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Trottier, J.; Białek, A.; Caron, P.; Straka, R.J.; Heathcote, J.; Milkiewicz, P.; Barbier, O. Metabolomic Profiling of 17 Bile Acids in Serum from Patients with Primary Biliary Cirrhosis and Primary Sclerosing Cholangitis: A Pilot Study. Dig. Liver Dis. 2012, 44, 303–310. [Google Scholar] [CrossRef]
- Tang, Y.-M.; Wang, J.-P.; Bao, W.-M.; Yang, J.-H.; Ma, L.-K.; Yang, J.; Chen, H.; Xu, Y.; Yang, L.-H.; Li, W.; et al. Urine and Serum Metabolomic Profiling Reveals That Bile Acids and Carnitine May Be Potential Biomarkers of Primary Biliary Cirrhosis. Int. J. Mol. Med. 2015, 36, 377–385. [Google Scholar] [CrossRef]
- Chen, W.; Wei, Y.; Xiong, A.; Li, Y.; Guan, H.; Wang, Q.; Miao, Q.; Bian, Z.; Xiao, X.; Lian, M.; et al. Comprehensive Analysis of Serum and Fecal Bile Acid Profiles and Interaction with Gut Microbiota in Primary Biliary Cholangitis. Clin. Rev. Allergy Immunol. 2020, 58, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M. Identificación de Un Nuevo Defecto Genético Del Metabolismo de Los Ácidos Biliares: Deficiencia de La Enzima Acox2. Bases Moleculares, Fisiopatología e Implicación En El Daño Hepatocelular Idiopático. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2019. [Google Scholar]
- Ridlon, J.M.; Kang, D.-J.; Hylemon, P.B. Bile Salt Biotransformations by Human Intestinal Bacteria. J. Lipid Res. 2006, 47, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Devendran, S.; Shrestha, R.; Alves, J.M.P.; Wolf, P.G.; Ly, L.; Hernandez, A.G.; Méndez-García, C.; Inboden, A.; Wiley, J.; Paul, O.; et al. Clostridium Scindens ATCC 35704: Integration of Nutritional Requirements, the Complete Genome Sequence, and Global Transcriptional Responses to Bile Acids. Appl. Environ. Microbiol. 2019, 85, e00052-19. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Chu, H. Targeting Gut Microbiota for the Treatment of Primary Biliary Cholangitis: From Bench to Bedside. J. Clin. Transl. Hepatol. 2023, 11, 958–966. [Google Scholar] [CrossRef]
- Fiorucci, S.; Biagioli, M.; Zampella, A.; Distrutti, E. Bile Acids Activated Receptors Regulate Innate Immunity. Front. Immunol. 2018, 9, 1853. [Google Scholar] [CrossRef]
- Lin, J.-D.; Devlin, J.C.; Yeung, F.; McCauley, C.; Leung, J.M.; Chen, Y.-H.; Cronkite, A.; Hansen, C.; Drake-Dunn, C.; Ruggles, K.V.; et al. Rewilding Nod2 and Atg16l1 Mutant Mice Uncovers Genetic and Environmental Contributions to Microbial Responses and Immune Cell Composition. Cell Host Microbe 2020, 27, 830–840.e4. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Shaoyong, W.; Chen, Y.; Li, M.; Gan, Y.; Sun, L.; Liu, Y.; Wang, Y.; Jin, M. The Functions of Gut Microbiota-Mediated Bile Acid Metabolism in Intestinal Immunity. J. Adv. Res. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Trauner, M.; Fuchs, C.D. Novel Therapeutic Targets for Cholestatic and Fatty Liver Disease. Gut 2022, 71, 194–209. [Google Scholar] [CrossRef]
- Pineda Torra, I.; Claudel, T.; Duval, C.; Kosykh, V.; Fruchart, J.-C.; Staels, B. Bile Acids Induce the Expression of the Human Peroxisome Proliferator-Activated Receptor α Gene via Activation of the Farnesoid X Receptor. Mol. Endocrinol. 2003, 17, 259–272. [Google Scholar] [CrossRef]
- Bougarne, N.; Weyers, B.; Desmet, S.J.; Deckers, J.; Ray, D.W.; Staels, B.; De Bosscher, K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr. Rev. 2018, 39, 760–802. [Google Scholar] [CrossRef]
- Claudel, T.; Sturm, E.; Duez, H.; Torra, I.P.; Sirvent, A.; Kosykh, V.; Fruchart, J.-C.; Dallongeville, J.; Hum, D.W.; Kuipers, F.; et al. Bile Acid-Activated Nuclear Receptor FXR Suppresses Apolipoprotein A-I Transcription via a Negative FXR Response Element. J. Clin. Investig. 2002, 109, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Reshetnyak, V.I.; Maev, I.V. Features of Lipid Metabolism Disorders in Primary Biliary Cholangitis. Biomedicines 2022, 10, 3046. [Google Scholar] [CrossRef]
- Claudel, T.; Staels, B.; Kuipers, F. The Farnesoid X Receptor. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2020–2030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, X.; Chang, J.; Chen, J.; Han, X.; Zhang, T.; Shen, J.; Shang, N.; Han, J.; Wang, H.; et al. The Liver Steatosis Severity and Lipid Characteristics in Primary Biliary Cholangitis. BMC Gastroenterol. 2021, 21, 395. [Google Scholar] [CrossRef] [PubMed]
- Loaeza-del Castillo, A.M.; Gaytán-Santillán, A.; López-Tello, A.; Merit, M.V.-A.; Milke-García, M.d.P.; Flores-Rodríguez, J.; Alvirde-García, U. Patterns of Serum Lipids Derangements and Cardiovascular Risk Assessment in Patients with Primary Biliary Cholangitis. Ann. Hepatol. 2019, 18, 879–882. [Google Scholar] [CrossRef]
- Longo, M.; Crosignani, A.; Battezzati, P.M.; Squarcia Giussani, C.; Invernizzi, P.; Zuin, M.; Podda, M. Hyperlipidaemic State and Cardiovascular Risk in Primary Biliary Cirrhosis. Gut 2002, 51, 265–269. [Google Scholar] [CrossRef]
- Solaymani-Dodaran, M.; Aithal, G.P.; Card, T.; West, J. Risk of Cardiovascular and Cerebrovascular Events in Primary Biliary Cirrhosis: A Population-Based Cohort Study. Am. J. Gastroenterol. 2008, 103, 2784–2788. [Google Scholar] [CrossRef]
- Allocca, M.; Crosignani, A.; Gritti, A.; Ghilardi, G.; Gobatti, D.; Caruso, D.; Zuin, M.; Podda, M.; Battezzati, P.M. Hypercholesterolaemia Is Not Associated with Early Atherosclerotic Lesions in Primary Biliary Cirrhosis. Gut 2006, 55, 1795–1800. [Google Scholar] [CrossRef]
- Floreani, A.; Cazzagon, N.; Franceschet, I.; Canesso, F.; Salmaso, L.; Baldo, V. Metabolic Syndrome Associated with Primary Biliary Cirrhosis. J. Clin. Gastroenterol. 2015, 49, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-L.; Yao, T.; Wang, Y.-W.; Yu, J.-S.; Zhen, C.; Lin, J.-F.; Chen, S.-B. Association between Primary Biliary Cholangitis with Diabetes and Cardiovascular Diseases: A Bidirectional Multivariable Mendelian Randomization Study. Clin. Res. Hepatol. Gastroenterol. 2024, 48, 102419. [Google Scholar] [CrossRef]
- Namisaki, T.; Moriya, K.; Kitade, M.; Kawaratani, H.; Takeda, K.; Okura, Y.; Takaya, H.; Nishimura, N.; Seki, K.; Kaji, K.; et al. Clinical Significance of the Scheuer Histological Staging System for Primary Biliary Cholangitis in Japanese Patients. Eur. J. Gastroenterol. Hepatol. 2017, 29, 23–30. [Google Scholar] [CrossRef]
- Liang, Y.; Khandakar, B.; Hao, Y.; Xiong, Y.; Liu, B.L.; Zhang, X. Histology and Clinical Correlations in Autoimmune Hepatitis, Primary Biliary Cholangitis, and Autoimmune Hepatitis-Primary Biliary Cholangitis Overlap Syndrome. Ann. Diagn. Pathol. 2023, 67, 152178. [Google Scholar] [CrossRef]
- Colina, F.; Pinedo, F.; Solís, J.A.; Moreno, D.; Nevado, M. Nodular Regenerative Hyperplasia of the Liver in Early Histological Stages of Primary Biliary Cirrhosis. Gastroenterology 1992, 102, 1319–1324. [Google Scholar] [CrossRef] [PubMed]
- Hirschfield, G.M.; Gershwin, M.E. The Immunobiology and Pathophysiology of Primary Biliary Cirrhosis. Annu. Rev. Pathol. Mech. Dis. 2013, 8, 303–330. [Google Scholar] [CrossRef] [PubMed]
- Rong, G.; Zhong, R.; Lleo, A.; Leung, P.S.C.; Bowlus, C.L.; Yang, G.-X.; Yang, C.-Y.; Coppel, R.L.; Ansari, A.A.; Cuebas, D.A.; et al. Epithelial Cell Specificity and Apotope Recognition by Serum Autoantibodies in Primary Biliary Cirrhosis. Hepatology 2011, 54, 196–203. [Google Scholar] [CrossRef]
- Trussoni, C.E.; O’Hara, S.P.; LaRusso, N.F. Cellular Senescence in the Cholangiopathies: A Driver of Immunopathology and a Novel Therapeutic Target. Semin. Immunopathol. 2022, 44, 527–544. [Google Scholar] [CrossRef]
- Sasaki, M.; Sato, Y.; Nakanuma, Y. Increased P16INK4a-Expressing Senescent Bile Ductular Cells Are Associated with Inadequate Response to Ursodeoxycholic Acid in Primary Biliary Cholangitis. J. Autoimmun. 2020, 107, 102377. [Google Scholar] [CrossRef]
- Rodrigues, P.M.; Perugorria, M.J.; Santos-Laso, A.; Bujanda, L.; Beuers, U.; Banales, J.M. Primary Biliary Cholangitis: A Tale of Epigenetically-Induced Secretory Failure? J. Hepatol. 2018, 69, 1371–1383. [Google Scholar] [CrossRef] [PubMed]
- Beuers, U.; Hohenester, S.; de Buy Wenniger, L.J.M.; Kremer, A.E.; Jansen, P.L.M.; Elferink, R.P.J.O. The Biliary HCO3—Umbrella: A Unifying Hypothesis on Pathogenetic and Therapeutic Aspects of Fibrosing Cholangiopathies. Hepatology 2010, 52, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.; Carpino, G.; Owen, T.; Ceci, L.; Kundu, D.; Meadows, V.; Kyritsi, K.; Franchitto, A.; Onori, P.; Isidan, A.; et al. Secretin Alleviates Biliary and Liver Injury during Late-Stage Primary Biliary Cholangitis via Restoration of Secretory Processes. J. Hepatol. 2023, 78, 99–113. [Google Scholar] [CrossRef]
- Chang, J.; Go, S.; de Waart, D.R.; Munoz-Garrido, P.; Beuers, U.; Paulusma, C.C.; Oude Elferink, R. Soluble Adenylyl Cyclase Regulates Bile Salt-Induced Apoptosis in Human Cholangiocytes. Hepatology 2016, 64, 522–534. [Google Scholar] [CrossRef]
- Corpechot, C.; Chazouillères, O.; Poupon, R. Early Primary Biliary Cirrhosis: Biochemical Response to Treatment and Prediction of Long-Term Outcome. J. Hepatol. 2011, 55, 1361–1367. [Google Scholar] [CrossRef]
- Concepcion, A.R.; Salas, J.T.; Sarvide, S.; Sáez, E.; Ferrer, A.; López, M.; Portu, A.; Banales, J.M.; Hervás-Stubbs, S.; Oude Elferink, R.P.J.; et al. Anion Exchanger 2 Is Critical for CD8+ T Cells to Maintain PH i Homeostasis and Modulate Immune Responses. Eur. J. Immunol. 2014, 44, 1341–1351. [Google Scholar] [CrossRef]
- Sasaki, M.; Sato, Y.; Nakanuma, Y. An Impaired Biliary Bicarbonate Umbrella May Be Involved in Dysregulated Autophagy in Primary Biliary Cholangitis. Lab. Investig. 2018, 98, 745–754. [Google Scholar] [CrossRef]
- Chen, R.; Tang, R.; Ma, X.; Gershwin, M.E. Immunologic Responses and the Pathophysiology of Primary Biliary Cholangitis. Clin. Liver Dis. 2022, 26, 583–611. [Google Scholar] [CrossRef]
- Roma, M.G.; Toledo, F.D.; Boaglio, A.C.; Basiglio, C.L.; Crocenzi, F.A.; Sánchez Pozzi, E.J. Ursodeoxycholic Acid in Cholestasis: Linking Action Mechanisms to Therapeutic Applications. Clin. Sci. 2011, 121, 523–544. [Google Scholar] [CrossRef] [PubMed]
- Lindor, K.D.; Lacerda, M.A.; Jorgensen, R.A.; DeSotel, C.K.; Batta, A.K.; Salen, G.; Dickson, E.R.; Rossi, S.S.; Hofmann, A.F. Relationship Between Biliary and Serum Bile Acids and Response to Ursodeoxycholic Acid in Patients With Primary Biliary Cirrhosis. Am. J. Gastroenterol. 1998, 93, 1498–1504. [Google Scholar] [CrossRef] [PubMed]
- Dilger, K.; Hohenester, S.; Winkler-Budenhofer, U.; Bastiaansen, B.A.J.; Schaap, F.G.; Rust, C.; Beuers, U. Effect of Ursodeoxycholic Acid on Bile Acid Profiles and Intestinal Detoxification Machinery in Primary Biliary Cirrhosis and Health. J. Hepatol. 2012, 57, 133–140. [Google Scholar] [CrossRef]
- Tang, R.; Wei, Y.; Li, Y.; Chen, W.; Chen, H.; Wang, Q.; Yang, F.; Miao, Q.; Xiao, X.; Zhang, H.; et al. Gut Microbial Profile Is Altered in Primary Biliary Cholangitis and Partially Restored after UDCA Therapy. Gut 2018, 67, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Kowdley, K.V.; Hirschfield, G.M.; Coombs, C.; Malecha, E.S.; Bessonova, L.; Li, J.; Rathnayaka, N.; Mells, G.; Jones, D.E.; Trivedi, P.J.; et al. COBALT: A Confirmatory Trial of Obeticholic Acid in Primary Biliary Cholangitis with Placebo and External Controls. Am. J. Gastroenterol. 2025, 120, 390–400. [Google Scholar] [CrossRef]
- Kjærgaard, K.; Frisch, K.; Sørensen, M.; Munk, O.L.; Hofmann, A.F.; Horsager, J.; Schacht, A.C.; Erickson, M.; Shapiro, D.; Keiding, S. Obeticholic Acid Improves Hepatic Bile Acid Excretion in Patients with Primary Biliary Cholangitis. J. Hepatol. 2021, 74, 58–65. [Google Scholar] [CrossRef]
- Corpechot, C.; Chazouillères, O.; Rousseau, A.; Le Gruyer, A.; Habersetzer, F.; Mathurin, P.; Goria, O.; Potier, P.; Minello, A.; Silvain, C.; et al. A Placebo-Controlled Trial of Bezafibrate in Primary Biliary Cholangitis. N. Engl. J. Med. 2018, 378, 2171–2181. [Google Scholar] [CrossRef]
- de Vries, E.; Bolier, R.; Goet, J.; Parés, A.; Verbeek, J.; de Vree, M.; Drenth, J.; van Erpecum, K.; van Nieuwkerk, K.; van der Heide, F.; et al. Fibrates for Itch (FITCH) in Fibrosing Cholangiopathies: A Double-Blind, Randomized, Placebo-Controlled Trial. Gastroenterology 2021, 160, 734–743.e6. [Google Scholar] [CrossRef]
- Schattenberg, J.M.; Pares, A.; Kowdley, K.V.; Heneghan, M.A.; Caldwell, S.; Pratt, D.; Bonder, A.; Hirschfield, G.M.; Levy, C.; Vierling, J.; et al. A Randomized Placebo-Controlled Trial of Elafibranor in Patients with Primary Biliary Cholangitis and Incomplete Response to UDCA. J. Hepatol. 2021, 74, 1344–1354. [Google Scholar] [CrossRef]
- Kouno, T.; Liu, X.; Zhao, H.; Kisseleva, T.; Cable, E.E.; Schnabl, B. Selective PPARδ Agonist Seladelpar Suppresses Bile Acid Synthesis by Reducing Hepatocyte CYP7A1 via the Fibroblast Growth Factor 21 Signaling Pathway. J. Biol. Chem. 2022, 298, 102056. [Google Scholar] [CrossRef]
- Xia, X.; Jung, D.; Webb, P.; Zhang, A.; Zhang, B.; Li, L.; Ayers, S.D.; Gabbi, C.; Ueno, Y.; Gustafsson, J.-Å.; et al. Liver X Receptor β and Peroxisome Proliferator-Activated Receptor δ Regulate Cholesterol Transport in Murine Cholangiocytes. Hepatology 2012, 56, 2288–2296. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-C.; Go, S.; Verhoeven, A.J.; Beuers, U.; Oude Elferink, R.P.J. Role of the Bicarbonate-Responsive Soluble Adenylyl Cyclase in Cholangiocyte Apoptosis in Primary Biliary Cholangitis; a New Hypothesis. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2018, 1864, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Kowdley, K.V.; Bowlus, C.L.; Levy, C.; Akarca, U.S.; Alvares-da-Silva, M.R.; Andreone, P.; Arrese, M.; Corpechot, C.; Francque, S.M.; Heneghan, M.A.; et al. Efficacy and Safety of Elafibranor in Primary Biliary Cholangitis. N. Engl. J. Med. 2024, 390, 795–805. [Google Scholar] [CrossRef]
- Jones, D.; Boudes, P.F.; Swain, M.G.; Bowlus, C.L.; Galambos, M.R.; Bacon, B.R.; Doerffel, Y.; Gitlin, N.; Gordon, S.C.; Odin, J.A.; et al. Seladelpar (MBX-8025), a Selective PPAR-δ Agonist, in Patients with Primary Biliary Cholangitis with an Inadequate Response to Ursodeoxycholic Acid: A Double-Blind, Randomised, Placebo-Controlled, Phase 2, Proof-of-Concept Study. Lancet Gastroenterol. Hepatol. 2017, 2, 716–726. [Google Scholar] [CrossRef]
- Hirschfield, G.M.; Shiffman, M.L.; Gulamhusein, A.; Kowdley, K.V.; Vierling, J.M.; Levy, C.; Kremer, A.E.; Zigmond, E.; Andreone, P.; Gordon, S.C.; et al. Seladelpar Efficacy and Safety at 3 Months in Patients with Primary Biliary Cholangitis: ENHANCE, a Phase 3, Randomized, Placebo-Controlled Study. Hepatology 2023, 78, 397–415. [Google Scholar] [CrossRef]
- Hirschfield, G.M.; Bowlus, C.L.; Mayo, M.J.; Kremer, A.E.; Vierling, J.M.; Kowdley, K.V.; Levy, C.; Villamil, A.; Ladrón de Guevara Cetina, A.L.; Janczewska, E.; et al. A Phase 3 Trial of Seladelpar in Primary Biliary Cholangitis. N. Engl. J. Med. 2024, 390, 783–794. [Google Scholar] [CrossRef]
- Kremer, A.E.; Mayo, M.J.; Hirschfield, G.M.; Levy, C.; Bowlus, C.L.; Jones, D.E.; Johnson, J.D.; McWherter, C.A.; Choi, Y.-J. Seladelpar Treatment Reduces IL-31 and Pruritus in Patients with Primary Biliary Cholangitis. Hepatology 2024, 80, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Kremer, A.E.; Mayo, M.J.; Hirschfield, G.; Levy, C.; Bowlus, C.L.; Jones, D.E.; Steinberg, A.; McWherter, C.A.; Choi, Y. Seladelpar Improved Measures of Pruritus, Sleep, and Fatigue and Decreased Serum Bile Acids in Patients with Primary Biliary Cholangitis. Liver Int. 2022, 42, 112–123. [Google Scholar] [CrossRef]
- Hirschfield, G.M.; Bowlus, C.L.; Jones, D.E.; Kremer, A.E.; Mayo, M.J.; Tanaka, A.; Andreone, P.; Jia, J.; Jin, Q.; Macias-Rodriguez, R.; et al. GS-011 Linerixibat Significantly Improves Cholestatic Pruritus in Primary Biliary Cholangitis: Results of the Pivotal Phase 3 GLISTEN Trial. EASL—European Association for the Study of the Liver. J. Hepatol. 2025, 82, p.S4–S5. [Google Scholar] [CrossRef]
- Thompson, R.J.; Arnell, H.; Artan, R.; Baumann, U.; Calvo, P.L.; Czubkowski, P.; Dalgic, B.; D’Antiga, L.; Durmaz, Ö.; Fischler, B.; et al. Odevixibat Treatment in Progressive Familial Intrahepatic Cholestasis: A Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Gastroenterol. Hepatol. 2022, 7, 830–842. [Google Scholar] [CrossRef]
- Gonzales, E.; Hardikar, W.; Stormon, M.; Baker, A.; Hierro, L.; Gliwicz, D.; Lacaille, F.; Lachaux, A.; Sturm, E.; Setchell, K.D.R.; et al. Efficacy and Safety of Maralixibat Treatment in Patients with Alagille Syndrome and Cholestatic Pruritus (ICONIC): A Randomised Phase 2 Study. Lancet 2021, 398, 1581–1592. [Google Scholar] [CrossRef]
- Hegade, V.S.; Pechlivanis, A.; McDonald, J.A.K.; Rees, D.; Corrigan, M.; Hirschfield, G.M.; Taylor-Robinson, S.D.; Holmes, E.; Marchesi, J.R.; Kendrick, S.; et al. Autotaxin, Bile Acid Profile and Effect of Ileal Bile Acid Transporter Inhibition in Primary Biliary Cholangitis Patients with Pruritus. Liver Int. 2019, 39, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Levy, C.; Kendrick, S.; Bowlus, C.L.; Tanaka, A.; Jones, D.; Kremer, A.E.; Mayo, M.J.; Haque, N.; von Maltzahn, R.; Allinder, M.; et al. GLIMMER: A Randomized Phase 2b Dose-Ranging Trial of Linerixibat in Primary Biliary Cholangitis Patients with Pruritus. Clin. Gastroenterol. Hepatol. 2023, 21, 1902–1912.e13. [Google Scholar] [CrossRef]
- Liu, D.; Li, G.; Liu, D.; Shi, W.; Wang, H.; Zhang, Q.; Shen, M.; Huang, X.; Lin, H. Quantitative Detection of 15 Serum Bile Acid Metabolic Products by LC/MS/MS in the Diagnosis of Primary Biliary Cholangitis. Chem. Biodivers. 2023, 20, e202200720. [Google Scholar] [CrossRef]
- Ma, Z.-H.; Wang, X.-M.; Wu, R.-H.; Hao, D.-L.; Sun, L.-C.; Li, P.; Niu, J.-Q. Serum Metabolic Profiling of Targeted Bile Acids Reveals Potentially Novel Biomarkers for Primary Biliary Cholangitis and Autoimmune Hepatitis. World J. Gastroenterol. 2022, 28, 5764–5783. [Google Scholar] [CrossRef] [PubMed]
- Sang, C.; Wang, X.; Zhou, K.; Sun, T.; Bian, H.; Gao, X.; Wang, Y.; Zhang, H.; Jia, W.; Liu, P.; et al. Bile Acid Profiles Are Distinct among Patients with Different Etiologies of Chronic Liver Disease. J. Proteome Res. 2021, 20, 2340–2351. [Google Scholar] [CrossRef]
- Jiang, M.; Yan, X.; Song, X.; Yan, Q.; Zhao, Y.; Wang, L.; Gao, P. Total Bile Acid to Platelet Ratio. Medicine 2020, 99, e20502. [Google Scholar] [CrossRef]
- Martinez-Gili, L.; Pechlivanis, A.; McDonald, J.A.K.; Begum, S.; Badrock, J.; Dyson, J.K.; Jones, R.; Hirschfield, G.; Ryder, S.D.; Sandford, R.; et al. Bacterial and Metabolic Phenotypes Associated with Inadequate Response to Ursodeoxycholic Acid Treatment in Primary Biliary Cholangitis. Gut Microbes 2023, 15, 2208501. [Google Scholar] [CrossRef]
- Lv, T.; Chen, S.; Li, M.; Zhang, D.; Kong, Y.; Jia, J. Regional Variation and Temporal Trend of Primary Biliary Cholangitis Epidemiology: A Systematic Review and Meta-analysis. J. Gastroenterol. Hepatol. 2021, 36, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Sierra, E.F.; Muñoz-Maya, O.; Guerrero-Pérez, F.; Cardona-Jaramillo, M. Colangitis Biliar Primaria: Caracterización de Una Cohorte Retrospectiva. Hepatología 2022, 3, 203–217. [Google Scholar] [CrossRef]
- Guatibonza-García, V.; Gaete, P.V.; Pérez-Londoño, A.; Puerto-Baracaldo, D.K.; Gutiérrez-Romero, S.A.; Mendivil, C.O.; Tapias, M. Poor Performance of Anti-Mitochondrial Antibodies for the Diagnosis of Primary Biliary Cholangitis in Female Colombian Patients: A Single-Center Study. World J. Gastroenterol. 2021, 27, 4890–4899. [Google Scholar] [CrossRef]
- Trivella, J.; John, B.V.; Levy, C. Primary Biliary Cholangitis: Epidemiology, Prognosis, and Treatment. Hepatol. Commun. 2023, 7, e0179. [Google Scholar] [CrossRef]
Clinical Applicability | Biomarker | AUROC | Reference |
---|---|---|---|
Diagnosis | DCA | 0.99 | Liu et al. [93] |
GDCA | 0.95 | ||
TUDCA | 0.93 | ||
LCA | 0.93 | ||
TLCA | 0.91 | ||
TDCA | 0.91 | ||
GUDCA | 0.89 | ||
GCDCA | 0.83 | ||
Differential diagnosis | LCA | 0.68 | Ma et al. [94] |
LCA + TLCA | 0.73 | ||
CDCA | 0.74 | ||
TBA | 0.52 | ||
46 BAs | 0.97 | Sang et al. [95] | |
6 BAs | 0.95 | ||
Disease progression | TPR | 0.77 | Jiang et al. [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Barrio, M.; Díaz-González, Á.; Alonso-Peña, M. Primary Biliary Cholangitis: Immunopathogenesis and the Role of Bile Acid Metabolism in Disease Progression. Int. J. Mol. Sci. 2025, 26, 7905. https://doi.org/10.3390/ijms26167905
Del Barrio M, Díaz-González Á, Alonso-Peña M. Primary Biliary Cholangitis: Immunopathogenesis and the Role of Bile Acid Metabolism in Disease Progression. International Journal of Molecular Sciences. 2025; 26(16):7905. https://doi.org/10.3390/ijms26167905
Chicago/Turabian StyleDel Barrio, María, Álvaro Díaz-González, and Marta Alonso-Peña. 2025. "Primary Biliary Cholangitis: Immunopathogenesis and the Role of Bile Acid Metabolism in Disease Progression" International Journal of Molecular Sciences 26, no. 16: 7905. https://doi.org/10.3390/ijms26167905
APA StyleDel Barrio, M., Díaz-González, Á., & Alonso-Peña, M. (2025). Primary Biliary Cholangitis: Immunopathogenesis and the Role of Bile Acid Metabolism in Disease Progression. International Journal of Molecular Sciences, 26(16), 7905. https://doi.org/10.3390/ijms26167905