Effects of Dietary Terpinen-4-ol on Oxidative Stress and Mitochondrial Biogenesis in the Liver of Broilers with Pulmonary Hypertension Syndrome
Abstract
1. Introduction
2. Results
2.1. Pathological Changes in Different Group
2.2. Ascites Heart Index and Hepatic Coefficient
2.3. Effects of T4O on Hepatic Enzymes Activity of PHS-Affected Broilers
2.4. Effects of T4O on Hepatic Histopathological Changes in PHS-Affected Broilers
2.5. Effects of T4O on Hepatic Mitochondria Ultrastructure of PHS-Affected Broilers
2.6. Effects of T4O on Oxidative Stress in Liver
2.7. Effects of T4O on Mitochondrial Biogenesis in Liver
3. Discussion
4. Materials and Methods
4.1. Broiler Feeding and Grouping
4.2. PHS Model Establishment and Sampling
4.3. Ascites Heart Index
4.4. Hepatic Coefficient Evaluations
4.5. Serum Biochemical Analysis of Hepatic Enzymes
4.6. Histopathological Examination of Liver
4.7. Mitochondrial Ultrastructure Observation of Liver
4.8. Detection of Oxidative Stress in Liver
4.9. Gene Expression Analysis by Real-Time Quantitative PCR
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Arbor Acres |
AHI | Ascites heart index |
ALT | Alanine aminotransferase |
AS | Ascites syndrome |
AST | Aspartate aminotransferase |
ARE | Antioxidant response elements |
BCA | Bicinchoninic acid |
CAT | Catalase |
DCFH-DA | 2′,7′-Dichlorodihydrofluorescein diacetate |
ERR-α | Estrogen-related receptor-α |
GPX4 | Glutathione peroxidase 4 |
HE | Hematoxylin and eosin |
HO-1 | Heme oxygenase-1 |
Keap1 | Kelch-like ECH-associated protein 1 |
mtDNA | Mitochondrial deoxyribonucleic acid |
MDA | Malondialdehyde |
Nrf-1 | Nuclear respiratory factor 1 |
Nrf-2 | Nuclear respiratory factor 2 |
NQO-1 | NAD(P)H quinone dehydrogenase 1 |
PGC-1α | Peroxisome proliferator-activated receptor-γ coactivator-1α |
PHS | Pulmonary hypertension syndrome |
ROS | Reactive oxygen species |
RT-qPCR | Real-time fluorescence quantitative PCR |
TFAM | Mitochondrial transcription factor A |
SOD | Superoxide dismutase |
References
- Parveen, A.; Jackson, C.D.; Dey, S.; Tarrant, K.; Anthony, N.; Rhoads, D.D. Identification and validation of quantitative trait loci for ascites syndrome in broiler chickens using whole genome resequencing. BMC Genet. 2020, 21, 54. [Google Scholar] [CrossRef]
- Hamberger, F.; Legchenko, E.; Chouvarine, P.; Mederacke, Y.S.; Taubert, R.; Meier, M.; Jonigk, D.; Hansmann, G.; Mederacke, I. Pulmonary Arterial Hypertension and Consecutive Right Heart Failure Lead to Liver Fibrosis. Front. Cardiovasc. Med. 2022, 9, 862330. [Google Scholar] [CrossRef]
- Popov, L.D. Mitochondrial biogenesis: An update. J. Cell. Mol. Med. 2020, 24, 4892–4899. [Google Scholar] [CrossRef]
- Jornayvaz, F.R.; Shulman, G.I. Regulation of mitochondrial biogenesis. Essays Biochem. 2010, 47, 69–84. [Google Scholar] [CrossRef]
- Puigserver, P.; Wu, Z.; Park, C.W.; Graves, R.; Wright, M.; Spiegelman, B.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998, 92, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, X.; Ma, L.; Huang, X.; Peng, Y.; Huang, H.; Gao, X.; Chen, Y.; Cao, Z. PGC-1 alpha regulates mitochondrial biogenesis to ameliorate hypoxia-inhibited cementoblast mineralization. Ann. N. Y. Acad. Sci. 2022, 1516, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Baek, S.Y.; Park, J.Y.; Kim, Y.W. Emodin in Rheum undulatum inhibits oxidative stress in the liver via AMPK with Hippo/Yap signalling pathway. Pharm. Biol. 2020, 58, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Zhang, R.; Wang, X.; He, P.; Tan, L.; Ma, X. Dietary grape-seed procyanidins decreased postweaning diarrhea by modulating intestinal permeability and suppressing oxidative stress in rats. J. Agric. Food. Chem. 2011, 59, 6227–6232. [Google Scholar] [CrossRef]
- Miyata, T.; Suzuki, N.; van Ypersele, D.S.C. Diabetic nephropathy: Are there new and potentially promising therapies targeting oxygen biology? Kidney Int. 2013, 84, 693–702. [Google Scholar] [CrossRef]
- Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 89–116. [Google Scholar] [CrossRef]
- Banjerdpongchai, R.; Khaw-On, P. Terpinen-4-ol induces autophagic and apoptotic cell death in human leukemic HL-60 cells. Asian Pac. J. Cancer Prev. 2013, 14, 7537–7542. [Google Scholar] [CrossRef]
- Chen, D.; Wang, J.; Sullivan, D.A.; Kam, W.R.; Liu, Y. Effects of Terpinen-4-ol on Meibomian Gland Epithelial Cells In Vitro. Cornea 2020, 39, 1541–1546. [Google Scholar] [CrossRef]
- Ning, J.; Xu, L.; Zhao, Q.; Zhang, Y.Y.; Shen, C.Q. The Protective Effects of Terpinen-4-ol on LPS-Induced Acute Lung Injury via Activating PPAR-gamma. Inflammation 2018, 41, 2012–2017. [Google Scholar] [CrossRef]
- Tit, D.M.; Bungau, S.G. Antioxidant Activity of Essential Oils. Antioxidants 2023, 12, 383. [Google Scholar] [CrossRef] [PubMed]
- Julian, R.J. Ascites in poultry. Avian Pathol. 1993, 22, 419–454. [Google Scholar] [CrossRef] [PubMed]
- Kalia, S.; K. Bharti, V.; Gogoi, D.; Giri, A.; Kumar, B. Studies on the growth performance of different broiler strains at high altitude and evaluation of probiotic effect on their survivability. Sci. Rep. 2017, 7, 46074. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wei, X.; Ying, M.; Huang, H.; Sha, Y.; Hong, X.; Xiao, P.; Tao, G. Natural Pyrethrin-Induced Oxidative Damage in Human Liver Cells through Nrf-2 Signaling Pathway. Toxics 2024, 12, 258. [Google Scholar] [CrossRef]
- He, L.; Zhang, L.; Zhang, J.; Jiang, H.; He, Y.; Leng, D.; Gong, Y.; Yang, D.; Song, Y.; Xiong, C.; et al. Terpinen-4-ol inhibits proliferation of VSMCs exposed to high glucose via regulating KLF4/NF-kappaB signaling pathway. Zhongguo Zhong Yao Za Zhi 2023, 48, 2530–2537. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Ye, X. Mitochondrial Dynamics Disturbances in the Liver of Broilers with Pulmonary Hypertension Syndrome. Pak. Vet. J. 2023, 43, 537–544. [Google Scholar] [CrossRef]
- van Beek, J.H.D.A.; de Moor, M.H.M.; de Geus, E.J.C.; Lubke, G.H.; Vink, J.M.; Willemsen, G.; Boomsma, D.I. The genetic architecture of liver enzyme levels: GGT, ALT and AST. Behav. Genet. 2013, 43, 329–339. [Google Scholar] [CrossRef]
- Maxwell, M.H.; Robertson, G.W.; Spence, S. Studies on an ascitic syndrome in young broilers. 1. Haematology and pathology. Avian Pathol. 1986, 15, 511–524. [Google Scholar] [CrossRef]
- Al-Zahrani, K.; Licknack, T.; Watson, D.L.; Anthony, N.B.; Rhoads, D.D. Further investigation of mitochondrial biogenesis and gene expression of key regulators in ascites- susceptible and ascites- resistant broiler research lines. PLoS ONE 2019, 14, e0205480. [Google Scholar] [CrossRef] [PubMed]
- Ogueji, E.; Nwani, C.; Mbah, C.; Iheanacho, S.; Nweke, F. Oxidative stress, biochemical, lipid peroxidation, and antioxidant responses in Clarias gariepinus exposed to acute concentrations of ivermectin. Environ. Sci. Pollut. Res. 2020, 27, 16806–16815. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Roberts, L.J.N. Measurement of lipid peroxidation. Free Radic. Res. 1998, 28, 659–671. [Google Scholar] [CrossRef]
- Aslam, S.; Younis, W.; Malik, M.N.H.; Jahan, S.; Alamgeer; Uttra, A.M.; Munir, M.U.; Roman, M. Pharmacological evaluation of anti-arthritic potential of terpinen-4-ol using in vitro and in vivo assays. Inflammopharmacology 2022, 30, 945–959. [Google Scholar] [CrossRef]
- Tonelli, C.; Chio, I.; Tuveson, D.A. Transcriptional Regulation by Nrf2. Antioxid. Redox Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef]
- Friedman, J.R.; Nunnari, J. Mitochondrial form and function. Nature 2014, 505, 335–343. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Y.; Li, X.; Wang, Z.; Zhang, B.; Luo, Y.; Wu, Y.; Li, Z.; Niu, W. Tom70-regulated mitochondrial biogenesis via TFAM improves hypoxia-induced dysfunction of pulmonary vascular endothelial cells and alleviates hypoxic pulmonary hypertension. Respir. Res. 2023, 24, 310. [Google Scholar] [CrossRef]
- Piantadosi, C.A.; Carraway, M.S.; Babiker, A.; Suliman, H.B. Heme Oxygenase-1 Regulates Cardiac Mitochondrial Biogenesis via Nrf2-Mediated Transcriptional Control of Nuclear Respiratory Factor-1. Circ. Res. 2008, 103, 1232–1240. [Google Scholar] [CrossRef]
- Tohme, S.; Yazdani, H.O.; Liu, Y.; Loughran, P.; van der Windt, D.J.; Huang, H.; Simmons, R.L.; Shiva, S.; Tai, S.; Tsung, A. Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction. Hepatology 2017, 66, 182–197. [Google Scholar] [CrossRef]
- Rowe, G.C.; Jiang, A.; Arany, Z. PGC-1 coactivators in cardiac development and disease. Circ. Res. 2010, 107, 825–838. [Google Scholar] [CrossRef]
- Baek, J.; Lee, Y.H.; Jeong, H.Y.; Lee, S. Mitochondrial quality control and its emerging role in the pathogenesis of diabetic kidney disease. Kidney Res. Clin. Pract. 2023, 42, 546–560. [Google Scholar] [CrossRef]
- Machado, I.F.; Miranda, R.G.; Dorta, D.J.; Rolo, A.P.; Palmeira, C.M. Targeting Oxidative Stress with Polyphenols to Fight Liver Diseases. Antioxidants 2023, 12, 1212. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, K.; Yamamoto, M. The KEAP1-NRF2 System in Cancer. Front. Oncol. 2017, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, R.E.; Khalaf, A.A.A.; Elhady, M.A.; Ibrahim, M.A.; Hassanen, E.I.; Noshy, P.A. Antioxidant and antiapoptotic effects of quercetin against ochratoxin A-induced nephrotoxicity in broiler chickens. Environ. Toxicol. Pharmacol. 2022, 96, 103982. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Lu, M.; Guo, Y.; Liang, S.; Mou, R.; He, Y.; Tang, L. Resveratrol relieves chronic heat stress-induced liver oxidative damage in broilers by activating the Nrf2-Keap1 signaling pathway. Ecotoxicol. Environ. Saf. 2023, 249, 114411. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, F.; Li, Z.; Jin, X.; Chen, X.; Geng, Z.; Hu, H.; Zhang, C. Effects of Resveratrol on Growth Performance, Intestinal Development, and Antioxidant Status of Broilers under Heat Stress. Animals 2021, 11, 1427. [Google Scholar] [CrossRef]
Groups | Age | |||
---|---|---|---|---|
28 d | 35 d | 42 d | ||
AHI (g/g) | Control | 0.211 ± 0.023 | 0.213 ± 0.006 | 0.214 ± 0.022 |
PHS | 0.280 ± 0.030 A | 0.308 ± 0.021 A | 0.310 ± 0.055 A | |
50 mg/kg T4O | 0.230 ± 0.026 b | 0.232 ± 0.015 B | 0.236 ± 0.019 b | |
100 mg/kg T4O | 0.237 ± 0.022 b | 0.225 ± 0.014 B | 0.225 ± 0.020 B | |
Hepatic coefficient (g/g) | Control | 0.022 ± 0.001 | 0.021 ± 0.001 | 0.020 ± 0.002 |
PHS | 0.027 ± 0.003 a | 0.025 ± 0.002 A | 0.028 ± 0.008 a | |
50 mg/kg T4O | 0.025 ± 0.002 | 0.022 ± 0.001 b | 0.020 ± 0.001 b | |
100 mg/kg T4O | 0.024 ± 0.003 | 0.021 ± 0.001 B | 0.020 ± 0.002 b |
Groups | Age | |||
---|---|---|---|---|
28 d | 35 d | 42 d | ||
AST | Control | 318.40 ± 18.54 | 212.20 ± 9.72 | 273.05 ± 51.85 |
PHS | 435.83 ± 51.32 a | 384.73 ± 17.35 A | 345.70 ± 58.28 | |
50 mg/kg T4O | 291.67 ± 4.01 B | 299.28 ± 36.00 B | 255.00 ± 13.95 b | |
100 mg/kg T4O | 288.43 ± 3.82 B | 327.58 ± 65.34 | 301.18 ± 20.20 | |
ALT | Control | 4.48 ± 0.69 | 5.28 ± 0.60 | 5.23 ± 0.91 |
PHS | 6.55 ± 0.31 A | 7.56 ± 0.82 A | 6.75 ± 0.55 a | |
50 mg/kg T4O | 5.08 ± 0.56 B | 6.18 ± 0.76 b | 5.43 ± 0.45 B | |
100 mg/kg T4O | 5.05 ± 1.31 | 6.22 ± 0.73 b | 6.58 ± 0.21 |
Primer Name | Primer Sequence (5′ to 3′) |
---|---|
β-Actin-F | GTTGGTATGGGCCAGAAAGA |
β-Actin-R | CCGTGTTCAATGGGGTACTT |
PGC-1α-F | GCCAAACAAAGGGAGAGAC |
PGC-1α-R | CACCAAAAACTTCAAACCG |
Nrf-2-F | ACTGGGGGTGGAAGTGATGC |
Nrf-2-R | GCTCTCCCTGTGCTGTGCTG |
Keap1-F | TCAACTGGGTGCAGTACGAC |
Keap1-R | TCTGCGCCAGGTAATCCTTG |
Nrf-1-F | CTGTGTCCCTCATCCAGGTT |
Nrf-1-R | CCAGTTCTGCTCCACCTCTC |
HO-1-F | GCTGGGAAGGAGAGTGAGAGGAC |
HO-1-R | GCGACTGTGGTGGCGATGAAG |
Tfam-F | TTCTCAAAAGCAGCCATAC |
Tfam-R | TTCACGTCCAAGTTCAACC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Fei, L.; Yang, Y.; Han, J.; Tang, Z.; Liao, J.; Hu, L.; Li, Y.; Pan, J. Effects of Dietary Terpinen-4-ol on Oxidative Stress and Mitochondrial Biogenesis in the Liver of Broilers with Pulmonary Hypertension Syndrome. Int. J. Mol. Sci. 2025, 26, 7702. https://doi.org/10.3390/ijms26167702
Jiang X, Fei L, Yang Y, Han J, Tang Z, Liao J, Hu L, Li Y, Pan J. Effects of Dietary Terpinen-4-ol on Oxidative Stress and Mitochondrial Biogenesis in the Liver of Broilers with Pulmonary Hypertension Syndrome. International Journal of Molecular Sciences. 2025; 26(16):7702. https://doi.org/10.3390/ijms26167702
Chicago/Turabian StyleJiang, Xinyue, Liang Fei, Yayun Yang, Jiao Han, Zhaoxin Tang, Jianzhao Liao, Lianmei Hu, Ying Li, and Jiaqiang Pan. 2025. "Effects of Dietary Terpinen-4-ol on Oxidative Stress and Mitochondrial Biogenesis in the Liver of Broilers with Pulmonary Hypertension Syndrome" International Journal of Molecular Sciences 26, no. 16: 7702. https://doi.org/10.3390/ijms26167702
APA StyleJiang, X., Fei, L., Yang, Y., Han, J., Tang, Z., Liao, J., Hu, L., Li, Y., & Pan, J. (2025). Effects of Dietary Terpinen-4-ol on Oxidative Stress and Mitochondrial Biogenesis in the Liver of Broilers with Pulmonary Hypertension Syndrome. International Journal of Molecular Sciences, 26(16), 7702. https://doi.org/10.3390/ijms26167702