Novel CF₃-Substituted Pyridine- and Pyrimidine-Based Fluorescent Probes for Lipid Droplet Bioimaging
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis of Push–Pull Systems
2.2. Photophysical Studies of the Obtained Fluorophores 9a–e and 10a–e in Solutions and Solid States
2.3. The Cytotoxicity, Cellular Uptake, and Fluorescence Imaging of Compounds 9a–e and 10a–e
3. Experimental
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olzmann, J.A.; Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell. Biol. 2019, 20, 137–155. [Google Scholar] [CrossRef]
- Gaoa, M.; Huang, X.; Song, B.-L.; Yang, H. The biogenesis of lipid droplets: Lipids take center stage. Prog. Lipid Res. 2019, 75, 100989. [Google Scholar] [CrossRef] [PubMed]
- Shyu, P.; Wong, X.F.A.; Crasta, K.; Thibault, G. Dropping in on lipid droplets: Insights into cellular stress and cancer. Biosci. Rep. 2018, 38, BSR20180764. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, X.; Liu, P. Lipid droplet proteins and metabolic diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1968–1983. [Google Scholar] [CrossRef]
- Xu, N.; Qiao, Q.; Fang, X.; Wang, G.; An, K.; Jiang, W.; Li, J.; Xu, Z. Solvatochromic Buffering Fluorescent Probe Resolves the Lipid Transport and Morphological Changes during Lipid Droplet Fusion by Super-Resolution Imaging. Anal. Chem. 2024, 96, 4709–4715. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yin, H.; Li, Y.; Mao, G.; Yang, S.; Zhang, K. Recent Advances in Small Molecular Fluorescence Probes for Fatty Liver Diseases. Chemosensors 2023, 11, 241. [Google Scholar] [CrossRef]
- Bäck, M.; Yurdagul AJr Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol. 2019, 16, 389–406. [Google Scholar] [CrossRef]
- Fam, T.K.; Klymchenko, A.S.; Collot, M. Recent Advances in Fluorescent Probes for Lipid Droplets. Materials 2018, 11, 1768. [Google Scholar] [CrossRef]
- Cui, W.-L.; Wang, M.-H.; Chen, X.-Q.; Zhang, Z.-H.; Qu, J.; Wang, J.-Y. A novel polarity-sensitive fluorescent probe for lighting up lipid droplets and its application in discriminating dead and living zebrafish. Dyes Pigm. 2022, 204, 110433. [Google Scholar] [CrossRef]
- Yang, T.; Fang, Y.; Zhang, Q.; Wang, F.; Xu, X.; Li, C. Lipid droplets-targeting multifunctional fluorescent probe and its application in ferroptosis and bioimaging. Sens. Actuators B Chem. 2024, 417, 136138. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Huang, H.; Shu, Y.; Wang, J. A red probe with large Stokes shift for imaging the viscosity of lipid droplets. Dyes Pigm. 2024, 229, 112305. [Google Scholar] [CrossRef]
- Yang, X.-Z.; Yao, S.; Wu, J.; Diao, J.; He, W.; Guo, Z.; Chen, Y. Recent advances in single fluorescent probes for monitoring dual organelles in two channels. Smart Mol. 2024, 2, e20240040. [Google Scholar] [CrossRef]
- Zhuang, Z.; Li, J.; Tang, B.Z.; Zhao, Z. Phosphole-Based Fluorescent Biomaterials for Imaging and Therapy. Chem. Biomed. Imaging 2025. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Ran, X.; Tang, H.; Cao, D. Recent advance of lipid droplets fluorescence imaging with aggregation-induced emission luminogens (AIEgens). Dyes Pigm. 2022, 203, 110332. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhuang, W.; Chen, J.; Li, C.; Li, S.; Chen, M. Aggregation-induced emission fluorescent probes for lipid droplets-specific bioimaging of cells and atherosclerosis plaques. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 286, 122017. [Google Scholar] [CrossRef]
- Qin, S.; Wang, X.; Jiang, Y. Dual-state emission, mechanofluorochromism, and lipid droplet imaging of asymmetric D-π-A-D′-type triads. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 311, 124014. [Google Scholar] [CrossRef]
- Aknine, N.; Klymchenko, A.S. Push–Pull Fluorescent Dyes with Trifluoroacetyl Acceptor for High-Fidelity Sensing of Polarity and Heterogeneity of Lipid Droplets. Anal. Chem. 2024, 96, 13242–13251. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan, D.; Young, R.J. Future challenges and opportunities with fluorine in drugs? Med. Chem. Res. 2023, 32, 1231–1234. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review. Dyes Pigm. 2020, 180, 108414. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. Azines as unconventional anchoring groups for dye-sensitized solar cells: The first decade of research advances and a future outlook. Dyes Pigm. 2021, 194, 109650. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Lipunova, G.N.; Nosova, E.V.; Charushin, V.N. Advances in the design of functionalized 1,4-diazines as components for photo- or/and electroactive materials. Dyes Pigm. 2023, 220, 111763. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Lipunova, G.N.; Nosova, E.V.; Charushin, V.N. Recent advances in design of fluorescent sensors based on azole and azine derivatives towards nitroaromatic explosives and related compounds. Dyes Pigm. 2025, 240, 112848. [Google Scholar] [CrossRef]
- Belyaev, D.V.; Chizhov, D.L.; Rusinov, G.L.; Charushin, V.N. Synthesis of 2-Substituted 6-(Polyfluoromethyl)pyrimidine-4-carbaldehyde Acetals. Russ. J. Org. Chem. 2019, 55, 879–882. [Google Scholar] [CrossRef]
- Belyaev, D.V.; Chizhov, D.L.; Kodess, M.I.; Ezhikova, M.A.; Rusinov, G.L.; Charushin, V.N. Synthesis of 2-(polyfluoromethyl)pyrimido[1,2-a]benzimidazole-4-carbaldehyde derivatives. Mendeleev Commun. 2019, 29, 249–251. [Google Scholar] [CrossRef]
- Verbitskiy, E.V.; Eltsov, O.S.; Zhilina, E.F.; Pakhomov, I.M.; Rusinov, G.L.; Chupakhin, O.N.; Charushin, V.N. New approach to unsymmetrical 1,3-diazatriphenylenes through intramolecular oxidative cyclodehydrogenation. Tetrahedron 2019, 75, 2687–2696. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T.; Peng, Q.; Wanga, D.; Shuai, Z. Aggregation induced blue-shifted emission—The molecular picture from a QM/MM study. Phys. Chem. Chem. Phys. 2014, 16, 5545–5552. [Google Scholar] [CrossRef]
- Chen, Y.; Lam, J.W.Y.; Kwok, R.T.K.; Liu, B.; Tang, B.Z. Aggregation-induced emission: Fundamental understanding and future developments. Mater. Horiz. 2019, 6, 428–433. [Google Scholar] [CrossRef]
- Petiti, J.; Revel, L.; Divieto, C. Standard Operating Procedure to Optimize Resazurin-Based Viability Assays. Biosensors 2024, 14, 156. [Google Scholar] [CrossRef]
- Krasilnikov, V.A.; Fomin, T.O.; Vargina, M.V.; Minin, A.S.; Slepukhin, P.A.; Benassi, E.; Belskaya, N.P. Fluorescent scaffold integrating 2-aryl-1,2,3-triazole and thiazole rings with tuneable optical properties. Fundamental aspects and application prospects. J. Photochem. Photobiol. A. 2025, 460, 116104. [Google Scholar] [CrossRef]
- Lakowicz, J.R.; Keating-Nakamoto, S. Red-edge excitation of fluorescence and dynamic properties of proteins and membranes. Biochemistry 1984, 23, 3013–3021. [Google Scholar] [CrossRef]
- Stirling, D.R.; Swain-Bowden, M.J.; Lucas, A.M.; Carpenter, A.E.; Cimini, B.A.; Goodman, A. CellProfiler 4: Improvements in speed, utility and usability. BMC Bioinformatics 2021, 22, 433. [Google Scholar] [CrossRef] [PubMed]
Compound | Absorption | Fluorescence | Stokes Shift | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Solution in MeCN | Solid | Solution in MeCN (nm/cm−1) | ||||||||
λabsmax (nm)/ ε (M−1·cm−1) | λex (nm) | λem (nm) | τ, [ns]/χ2 | ΦF | λex (nm) | λem (nm) | τavg, [ns]/χ2 | ΦF | ||
9a | 403/39,400; 290/13,800; 233/19,900; 195/67,900 | 411 | 551 | 0.60/1.295 | 0.04 | 440 | 520 | 6.10/1.277 | 0.08 | 148/6665 |
9b | 411/32,900; 339/15,500; 290/17,800; 235/58,400 199/57,200 | 239, 340, 412 | 556 | 0.88/1.104 | 0.08 | 502 | 536 | 0.75/1.179 | 0.05 | 145/6345 |
9c | 408/36,200; 289/27,200; 237/41,400; 197/46,200 | 240, 289, 410 | 550 | 0.64/1.309 | 0.11 | 500 | 515 | 8.43/1.145 | 0.08 | 142/6327 |
9d | 411/35,300; 258/20,200; 197/47,900 | 262, 411 | 556 | 0.53/1.241 | 0.05 | 470 | 535 | 3.40/1.166 | 0.08 | 145/6345 |
9e | 413/35,800; 244/19,800; 197/46,400 | 250, 414 | 564 | 0.78/1.050 | <0.01 | 475 | 525 | 4.64/1.067 | 0.12 | 151/6482 |
10a | 379/55,900; 300/13,500; 232/24,200; 197/60,300 | 247, 383 | 506 | 1.53/1.089 | 0.05 | 440, 400 | 463 | 1.76/1.074 | 0.09 | 127/6622 |
10b | 378/37,700; 343/26,900; 291/16,800; 235/63,900; 200/53,200 | 245, 380 | 533 | 2.12/1.044 | 0.05 | 440 | 470 | 2.12/1.083 | 0.06 | 155/7693 |
10c | 372/38,400; 297/34,300; 238/37,800; 195/37,300 | 245, 297, 374 | 495 | 2.38/1.068 | 0.33 | 405 | 436 | 1.36/1.024 | 0.11 | 123/6679 |
10d | 378/32,700; 255/23,500; 197/35,200 | 256, 378 | 513 | 1.78/1.103 | 0.13 | 420 | 456 | 2.79/1.160 | 0.08 | 135/6961 |
10e | 381/31,000; 253/25,200; 198/35,900 | 255, 384 | 620 | 0.77/1.184 | 0.01 | 423 | 470 | 1.08/1.065 | <0.01 | 239/10,118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chizhov, D.L.; Kvashnin, Y.A.; Demina, N.S.; Zhilina, E.F.; Minin, A.S.; Verbitskaia, N.A.; Dinastiia, E.M.; Rusinov, G.L.; Verbitskiy, E.V.; Charushin, V.N. Novel CF₃-Substituted Pyridine- and Pyrimidine-Based Fluorescent Probes for Lipid Droplet Bioimaging. Int. J. Mol. Sci. 2025, 26, 5271. https://doi.org/10.3390/ijms26115271
Chizhov DL, Kvashnin YA, Demina NS, Zhilina EF, Minin AS, Verbitskaia NA, Dinastiia EM, Rusinov GL, Verbitskiy EV, Charushin VN. Novel CF₃-Substituted Pyridine- and Pyrimidine-Based Fluorescent Probes for Lipid Droplet Bioimaging. International Journal of Molecular Sciences. 2025; 26(11):5271. https://doi.org/10.3390/ijms26115271
Chicago/Turabian StyleChizhov, Dmitrii L., Yuriy A. Kvashnin, Nadezhda S. Demina, Ekaterina F. Zhilina, Artem S. Minin, Natalia A. Verbitskaia, Ekaterina M. Dinastiia, Gennady L. Rusinov, Egor V. Verbitskiy, and Valery N. Charushin. 2025. "Novel CF₃-Substituted Pyridine- and Pyrimidine-Based Fluorescent Probes for Lipid Droplet Bioimaging" International Journal of Molecular Sciences 26, no. 11: 5271. https://doi.org/10.3390/ijms26115271
APA StyleChizhov, D. L., Kvashnin, Y. A., Demina, N. S., Zhilina, E. F., Minin, A. S., Verbitskaia, N. A., Dinastiia, E. M., Rusinov, G. L., Verbitskiy, E. V., & Charushin, V. N. (2025). Novel CF₃-Substituted Pyridine- and Pyrimidine-Based Fluorescent Probes for Lipid Droplet Bioimaging. International Journal of Molecular Sciences, 26(11), 5271. https://doi.org/10.3390/ijms26115271