A Validated Isocratic HPLC–UV Method for the Simultaneous Quantification of Corilagin and Geraniin in Geranium wilfordii Maxim. Extract
Abstract
1. Introduction
2. Results and Discussion
2.1. Method Development
2.2. Method Validation Results
2.2.1. Specificity Results
2.2.2. Linearity Results
2.2.3. Precision and Accuracy Results
2.2.4. Limits of Detection and Quantification Results
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Preparation of G. wilfordii Extract
3.3. Preparation of Standard Solution
3.4. Preparation of Sample Solution
3.5. HPLC Instruments
3.6. Method Validation
3.6.1. Specificity
3.6.2. Linearity
3.6.3. Accuracy by Recovery
3.6.4. Precision
3.6.5. Limit of Detection (LOD) and Limit of Quantification (LOQ)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kozłowski, J.; Szczyglewska, D.; Kitkowska, S. Biology of germination of medicinal plant seeds. part XX. Seeds of Geranium robertianum L.—The only medicinal species from Geraniaceae family. Herba Pol. 1999, 45, 318–323. [Google Scholar]
- Kong, C.; Pang, X.; Su, Z.; Liu, Y. Botany, ethnopharmacology, phytochemistry and pharmacology of Erodii Herba Geranii Herba—An review. J. Ethnopharmacol. 2023, 302, 115858. [Google Scholar] [CrossRef]
- Zhang, T.; Peng, C. Chinese Clinical Pharmacy; People’s Medical Publishing House: Beijing, China, 2015; pp. 1045–1048. [Google Scholar]
- Zhao, Z.; Gao, H.; Yu, X. Study on the extractive technique of total flavonoids from Geranium wilfordii Maxim. by microwave extraction method. Contemp. Chem. Ind. 2015, 44, 955–957. [Google Scholar]
- He, C.; Chen, J.; Liu, J.; Li, Y.; Zhou, Y.; Mao, T.; Li, Z.; Qin, X.; Jin, S. Geranium wilfordii maxim.: A review of its traditional uses, phytochemistry, pharmacology, quality control and toxicology. J. Ethnopharmacol. 2022, 285, 114907. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, H.; Liu, C.; You, J.; Zhao, R.; Shi, A.; He, M. Volatiles, Flavonoids, and Antibacterial Activity of Ethanol-extract from Geranium wilfordii. Fujian J. Agric. Sci. 2020, 35, 1397–1404. [Google Scholar]
- Lee, S.-H.; Ryu, S.Y.; Choi, S.U.; Lee, C.O.; No, Z.; Kim, S.-K.; Ahn, J.-W. Hydrolysable tannins and related compound having cytotoxic activity from the fruits of Terminalia chebula. Arch. Pharmacal Res. 1995, 18, 118–120. [Google Scholar] [CrossRef]
- Liu, D.; Ma, Y.; Wang, Y.; Su, Z.; Gu, M.; Janson, J.C. One-step separation and purification of hydrolysable tannins from Geranium wilfordii Maxim by adsorption chromatography on cross-linked 12% agarose gel. J. Sep. Sci. 2011, 34, 995–998. [Google Scholar] [CrossRef]
- Shen, Y.; Teng, L.; Qu, Y.; Liu, J.; Zhu, X.; Chen, S.; Yang, L.; Huang, Y.; Song, Q.; Fu, Q. Anti-proliferation and anti-inflammation effects of corilagin in rheumatoid arthritis by downregulating NF-κB and MAPK signaling pathways. J. Ethnopharmacol. 2022, 284, 114791. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.G.; Jo, B.-G.; Lee, S.H.; Kim, T.-Y.; Kim, S.-N.; Yang, M.H. Inhibitory effects of compounds isolated from Geranium wilfordii on IL-4 production and β-hexosaminidase release in RBL-2H3 cells. Nat. Prod. Res. 2024, 39, 5318–5323. [Google Scholar] [CrossRef]
- Palanisamy, U.D.; Ling, L.T.; Manaharan, T.; Appleton, D. Rapid isolation of geraniin from Nephelium lappaceum rind waste and its anti-hyperglycemic activity. Food Chem. 2011, 127, 21–27. [Google Scholar] [CrossRef]
- Lu, Y.; He, B.; Zhang, X.; Yang, R.; Li, S.; Song, B.; Zhang, Y.; Yun, Y.; Yan, H.; Chen, P. Osteoprotective effect of geraniin against ovariectomy-induced bone loss in rats. Bioorg. Med. Chem. Lett. 2015, 25, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Phang, S.C.W.; Palanisamy, U.D.; Kadir, K.A. Effects of geraniin (rambutan rind extract) on blood pressure and metabolic parameters in rats fed high-fat diet. J. Integr. Med. 2019, 17, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Stephen Ambrose, S.; Solairaj, P.; Subramoniam, A. Hepatoprotective activity of geraniin isolated from Thespesia lampas Dalz. and Gibson. Int. Res. J. Pharm. Pharmacol. 2012, 2, 92–96. [Google Scholar]
- Yang, Y.-C.; Li, J.; Zu, Y.-G.; Fu, Y.-J.; Luo, M.; Wu, N.; Liu, X.-L. Optimisation of microwave-assisted enzymatic extraction of corilagin and geraniin from Geranium sibiricum Linne and evaluation of antioxidant activity. Food Chem. 2010, 122, 373–380. [Google Scholar] [CrossRef]
- An, J.-Y.; Kim, S.-Y.; Kim, H.-J.; Bae, H.J.; Lee, H.-D.; Choi, Y.-Y.; Cho, Y.E.; Cho, S.-Y.; Lee, S.-J.; Lee, S. Geraniin from the methanol extract of Pilea mongolica suppresses LPS-induced inflammatory responses by inhibiting IRAK4/MAPKs/NF-κB/AP-1 pathway in HaCaT cells. Int. Immunopharmacol. 2024, 140, 112767. [Google Scholar] [CrossRef]
- Perera, A.; Ton, S.H.; Moorthy, M.; Palanisamy, U.D. The insulin-sensitising properties of the ellagitannin geraniin and its metabolites from Nephelium lappaceum rind in 3T3-L1 cells. Int. J. Food Sci. Nutr. 2020, 71, 940–953. [Google Scholar] [CrossRef]
- Suciati, L.; Lestari, S.R.; Lukiati, B. Molecular docking studies of geraniin, corilagin, and ellagic acid from rambutan (Nephelium lappaceum L.) peel extract against squalene synthase as potential anti-hypercholesterolemia. In International Conference on Life Sciences and Technology (ICoLiST); AIP Publishing: Malang, Indonesia, 2020; Volume 2231, pp. 040040-1–040040-6. [Google Scholar]
- Li, Y.; Li, Z.; Hou, H.; Zhuang, Y.; Sun, L. Metal chelating, inhibitory DNA damage, and anti-inflammatory activities of phenolics from rambutan (Nephelium lappaceum) peel and the quantifications of geraniin and corilagin. Molecules 2018, 23, 2263. [Google Scholar] [CrossRef]
- Hernández-Hernández, C.; Aguilar, C.N.; Flores-Gallegos, A.C.; Sepúlveda, L.; Rodríguez-Herrera, R.; Morlett-Chávez, J.; Govea-Salas, M.; Ascacio-Valdés, J. Preliminary testing of ultrasound/microwave-assisted extraction (U/M-AE) for the isolation of geraniin from Nephelium lappaceum L. (Mexican variety) peel. Processes 2020, 8, 572. [Google Scholar] [CrossRef]
- Liu, D.; Su, Z.; Wang, C.; Gu, M.; Xing, S. Separation and purification of hydrolyzable tannin from Geranium wilfordii Maxim by reversed-phase and normal-phase high-speed counter-current chromatography. J. Sep. Sci. 2010, 33, 2266–2271. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L. Applications of high performance liquid chromatography in the analysis of herbal products. In Evidence-Based Validation of Herbal Medicine; Elsevier: Amsterdam, The Netherlands, 2015; pp. 405–425. [Google Scholar]
- Przybyciel, M.; Majors, R.E. Phase collapse in reversed-phase liquid chromatography. LC GC N. Am. 2002, 20, 516–523. [Google Scholar]
- Przybyciel, M.; Majors, R.E. Phase Collapse in Reversed-Phase LC. LC-GC Eur. 2002, 15, 652. [Google Scholar]
- Bastian, F.; Ito, Y.; Ogahara, E.; Ganeko, N.; Hatano, T.; Ito, H. Simultaneous quantification of ellagitannins and related polyphenols in geranium thunbergii using quantitative NMR. Molecules 2018, 23, 1346. [Google Scholar] [CrossRef]
- Jadhav, B.-K.; Mahadik, K.-R.; Paradkar, A.-R. Development and validation of improved reversed phase-HPLC method for simultaneous determination of curcumin, demethoxycurcumin and bis-demethoxycurcumin. Chromatographia 2007, 65, 483–488. [Google Scholar] [CrossRef]
- Singh, J. International conference on harmonization of technical requirements for registration of pharmaceuticals for human use. J. Pharmacol. Pharmacother. 2015, 6, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Guillarme, D.; Ruta, J.; Rudaz, S.; Veuthey, J.-L. New trends in fast and high-resolution liquid chromatography: A critical comparison of existing approaches. Anal. Bioanal. Chem. 2010, 397, 1069–1082. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Kim, K.K.; Im, J.C.; Lee, H.R.; Kim, J.M. Effects of Geranium wilfordii Maxim. Ethanol Extract of on Adipogenesis and Lipogenesis. Korean J. Plant Resour. 2024, 37, 307–313. [Google Scholar]
- Latimer, G.W., Jr. (Ed.) Appendix K: Guidelines for dietary supplements and botanicals. In Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2013; Volume 2, pp. 1–32. [Google Scholar]










| Parameter | Conditions |
|---|---|
| Instrument | SHIMADZU LC-20A (Shimadzu, Kyoto, Japan) |
| Detector | SHIMADZU PDA Detector (Shimadzu, Kyoto, Japan) (SPD-M20A, wavelength at 270 nm) |
| Column | Polaris 3 C18-A 250 mm × 4.6 mm × 3 µm (Agilent, Santa Clara, CA, USA) |
| Mobile phase | (A) 0.2% formic acid in water 89% (B) Acetonitrile 11% |
| Run time | 40 min |
| Flow rate | 1.0 mL/min |
| Injection volume | 10 µL |
| Column temperature | 30 °C |
| Compound | Sample Concentration (mg/mL) | Contents (mg/g) | RSD (%) |
|---|---|---|---|
| Corilagin | 5 | 19.22 ± 0.11 | 0.55 |
| 10 | 19.06 ± 0.04 | 0.20 | |
| 15 | 19.01 ± 0.03 | 0.16 | |
| Geraniin | 5 | 23.88 ± 0.21 | 0.90 |
| 10 | 24.22 ± 0.22 | 0.89 | |
| 15 | 24.32 ± 0.26 | 1.09 |
| Compound | Repetition | Contents (mg/g) | RSD (%) |
|---|---|---|---|
| Corilagin | A | 19.26 ± 0.13 | 0.66 |
| B | 19.11 ± 0.15 | 0.80 | |
| C | 19.21 ± 0.15 | 0.81 | |
| Geraniin | A | 24.18 ± 0.09 | 0.39 |
| B | 24.13 ± 0.38 | 1.56 | |
| C | 23.96 ± 0.15 | 0.63 |
| Compound | Amount Added (µg/mL) | Amount Found (µg/mL) | Recovery (%) | RSD (%) |
|---|---|---|---|---|
| Corilagin | 150 | 149.64 ± 0.27 | 99.76 ± 0.18 | 0.18 |
| 180 | 179.85 ± 0.63 | 99.92 ± 0.35 | 0.35 | |
| 210 | 210.97 ± 0.66 | 100.46 ± 0.31 | 0.31 | |
| Geraniin | 200 | 199.82 ± 0.26 | 99.91 ± 0.26 | 0.26 |
| 240 | 241.56 ± 0.44 | 100.65 ± 0.44 | 0.44 | |
| 280 | 279.93 ± 0.17 | 99.97 ± 0.44 | 0.17 |
| Compound | Retention Time (min) | Range (µg/mL) | LOD (µg/mL) | LOQ (µg/mL) |
|---|---|---|---|---|
| Corilagin | 21.180 | 25–300 | 0.65 | 1.97 |
| Geraniin | 32.343 | 25–300 | 0.81 | 2.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kim, J.-M.; Song, K.-H.; Choi, Y.-S.; Ko, C.-K.; Lee, B.-S. A Validated Isocratic HPLC–UV Method for the Simultaneous Quantification of Corilagin and Geraniin in Geranium wilfordii Maxim. Extract. Molecules 2026, 31, 31. https://doi.org/10.3390/molecules31010031
Kim J-M, Song K-H, Choi Y-S, Ko C-K, Lee B-S. A Validated Isocratic HPLC–UV Method for the Simultaneous Quantification of Corilagin and Geraniin in Geranium wilfordii Maxim. Extract. Molecules. 2026; 31(1):31. https://doi.org/10.3390/molecules31010031
Chicago/Turabian StyleKim, Jung-Min, Kun-Ho Song, Yong-Seok Choi, Cheon-Kwang Ko, and Bong-Seop Lee. 2026. "A Validated Isocratic HPLC–UV Method for the Simultaneous Quantification of Corilagin and Geraniin in Geranium wilfordii Maxim. Extract" Molecules 31, no. 1: 31. https://doi.org/10.3390/molecules31010031
APA StyleKim, J.-M., Song, K.-H., Choi, Y.-S., Ko, C.-K., & Lee, B.-S. (2026). A Validated Isocratic HPLC–UV Method for the Simultaneous Quantification of Corilagin and Geraniin in Geranium wilfordii Maxim. Extract. Molecules, 31(1), 31. https://doi.org/10.3390/molecules31010031

