Establishment of a QuEChERS-FaPEx Rapid Analytical Method for N-Nitrosamines in Meat Products
Abstract
1. Introduction
2. Results and Discussion
2.1. Development of LC–MS/MS Method for Simultaneous Determination of Nine NAs
2.2. Optimization of Condition for QuEChERS Extraction Plus FaPEx Clean Up
2.2.1. Evaluation of FaPEx Cartridge Types
2.2.2. Evaluation of Extraction Solvents
2.2.3. Evaluation of Filter Membrane Materials
2.3. Comparison Among Solvent Extraction, QuEChERS Extraction Plus d-SPE Clean Up (QuEChERS/d-SPE), and QuEChERS Extraction Plus FaPEx-Chl Clean Up (QuEChERS/FaPEx-Chl)
2.4. Method Validation
2.4.1. Limits of Detection (LOD) and Quantitation (LOQ)
2.4.2. Precision
2.4.3. Accuracy
2.4.4. Matrix Effect
2.5. Determination of NAs in Commercial Food Samples
3. Materials and Methods
3.1. Materials
3.2. Chemicals and Reagents
3.3. Instrumentation
3.4. Analysis of NAs by LC-MS/MS
3.5. Evaluation of the Effectiveness of Different Methods for NAs Extraction
3.5.1. Solvent Extraction
3.5.2. QuEChERS Extraction Plus d-SPE Cleanup (QuEChER/d-SPE)
3.5.3. QuEChERS Extraction Plus FaPEx-Chl Cleanup (QuEChERS/FaPEx-Chl)
Evaluation of FaPEx Cartridge
Evaluation of QuEChERS Extraction Solvents
Evaluation of Syringe Filter Membrane Types
3.6. Validation of Analytical Performance
3.6.1. Limits of Detection (LOD) and Quantitation (LOQ)
3.6.2. Recovery Tests
3.6.3. Precision (Repeatability and Intermediate Precision)
3.6.4. Matrix Effect
3.7. Quantification of NAs
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Mey, E.; De Maere, H.; Paelinck, H.; Fraeye, I. Volatile N-nitrosamines in meat products: Potential precursors, influence of processing, and mitigation strategies. Crit. Rev. Food Sci. Nutr. 2017, 57, 2909–2923. [Google Scholar] [CrossRef]
- Park, J.E.; Seo, J.E.; Lee, J.Y.; Kwon, H. Distribution of seven N-nitrosamines in food. Toxicol. Res. 2015, 31, 279–288. [Google Scholar] [CrossRef]
- Rot, T.; Kovačević, D.; Habschied, K.; Mastanjević, K. N-nitrosamines in meat products: Formation, detection and regulatory challenges. Processes 2025, 13, 1555. [Google Scholar] [CrossRef]
- Chih, P.S.; Wang, W.R.; Chen, C.Y.; Yan, P.R.; Mahmudiono, T.; Lee, C.C.; Chen, C.C. Influence of cooking and storage conditions on the formation of N-nitrosamines in processed meats and pickled fish. LWT-Food Sci. Technol. 2025, 224, 117822. [Google Scholar] [CrossRef]
- Ozbay, S.; Sireli, U.T. Volatile N-nitrosamines in processed meat products and salami from Turkey. Food Addit. Contam. Part B Surveill. 2021, 14, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Fu, W.; Fang, Q.; Ni, L.; Zheng, R.; Yong, L.; Huang, Z.; Pang, J.; Lin, Z.; Lin, H.; et al. Occurrence and carcinogenic risk assessment of N-itrosamines in some dried aquatic products in China. Food Control 2023, 152, 109845. [Google Scholar] [CrossRef]
- Crews, C. The determination of N-nitrosamines in food. Qual. Assur. Saf. Crops Foods 2010, 2, 2–12. [Google Scholar] [CrossRef]
- Lu, S.; Wu, D.; Li, G.; Lv, Z.; Gong, P.; Xia, L.; Sun, Z.; Chen, G.; Chen, X.; You, J. Facile and sensitive determination of N-nitrosamines in food samples by high-performance liquid chromatography via combining fluorescent labeling with dispersive liquid-liquid microextraction. Food Chem. 2017, 234, 408–415. [Google Scholar] [CrossRef]
- Iammarino, M.; Mangiacotti, M.; Chiaravalle, A.E. Anion exchange polymeric sorbent coupled to high-performance liquid chromatography with UV diode array detection for the determination of ten N-nitrosamines in meat products: A validated approach. Int. J. Food Sci. Technol. 2020, 55, 1097–1109. [Google Scholar] [CrossRef]
- Lin, S.K.; Chuang, W.C.; Chen, J.W. Quick Extraction Kit Adapted to a Procedure of Detecting Pesticide Residues in Agricultural Sample by the Quick Extraction Kit. U.S. Patent No. 9,581,579, 28 February 2017. [Google Scholar]
- Belguet, A.; Dahamna, S.; Abdessemed, A.; Ouffroukh, K.; Guendouz, A. Determination of abamectin pesticide residues in green pepper and courgetti growing under greenhouse conditions (Eastern of Alegeria-Serif-). Eurasian J. Biosci. 2019, 13, 1741–1745. [Google Scholar]
- Chuang, W.C.; Chen, J.W.; Huang, C.H.; Shyu, T.H.; Lin, S.K. FaPEx® multipesticide residues extraction kit for minimizing sample preparation time in agricultural produce. J. AOAC Int. 2019, 102, 1864–1876. [Google Scholar]
- Bruce-Vanderpuije, P.; Megson, D.; Ryu, S.H.; Choi, G.H.; Park, S.W.; Kim, B.S.; Kim, J.H.; Lee, H.S. A comparison of the effectiveness of QuEChERS, FaPEx and a modified QuEChERS method on the determination of organochlorine pesticides in ginseng. PLoS ONE 2021, 16, e0246108. [Google Scholar]
- Lee, H.; Cho, Y.; Jung, G.; Kim, H.; Jeong, W. Comparison of recovery efficiency and matrixeffect reduction in pesticide residue analysis: QuEChERS with d-SPE, SPE, and FaPEx in apples and Korean cabbage. Anal. Methods 2023, 15, 3709. [Google Scholar] [PubMed]
- Rao Pasupuleti, R.; Ku, Y.J.; Tsai, T.Y.; Hua, H.T.; Lin, Y.C.; Shiea, J.; Huang, P.C.; Andaluri, G.; Ponnusamy, V.K. Novel fast pesticides extraction (FaPEx) strategy coupled with UHPLC-MS/MS for rapid monitoring of emerging pollutant fipronil and its metabolite in food and environmental samples. Environ. Res. 2023, 217, 114823. [Google Scholar] [PubMed]
- Huang, Y.F.; Chien, J.T.; Chen, H.C.; Liu, X.R.; Chang, J.P.; Huang, J.J. Rapid determination of benzophenone derivatives in cereals using FaPEx coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Food Drug Anal. 2021, 29, 287–302. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Chen, X.; Hu, S.; Gong, T.; Xian, Q. A novel molecularly imprinted polymer-solid phase extraction method coupled with high performance liquid chromatography tandem mass spectrometry for the determination of nitrosamines in water and beverage samples. Food Chem. 2019, 292, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Niklas, A.A.; Herrmann, S.S.; Pedersen, M.; Jakobsen, M.; Duedahl-Olesen, L. The occurrence of volatile and non- volatile N-nitrosamines in cured meat products from the Danish market. Food Chem. 2022, 378, 132046. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Zhao, Q.; Liu, Y.; Wang, Y. Simultaneous determination for nine kinds of N-nitrosamines compounds in groundwater by ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Int. J. Environ. Res. Public Health 2022, 19, 16680. [Google Scholar]
- Giménez-Campillo, C.; Guerrero-Núñez, Y.; Campillo, N.; Arroyo-Manzanares, N.; Guillén, I.; Vizcaíno, P.; de Torre-Minguela, C.; Viñas, P. The development of an analytical method to evaluate the nitrosamine profile in cooked ham with different preservatives and in rat feces fed with them. Anal. Bioanal. Chem. 2025; online ahead of print. [Google Scholar]
- Zeng, X.; Bai, W.; Xian, Y.; Dong, H.; Luo, D. Application of QuEChERS-based purification coupled with isotope dilution gas chromatography-mass spectrometry method for the determination of N-nitrosamines in soy sauce. Anal. Methods 2016, 8, 5248–5254. [Google Scholar]
- Herrmann, S.S.; Duedahl-Olesen, L.; Granby, K. Simultaneous determination of volatile and non-volatile nitrosamines in processed meat products by liquid chromatography tandem mass spectrometry using atmospheric pressure chemical ionisation and electrospray ionisation. J. Chromatogr. A 2014, 1330, 20–29. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, J.H.; Yu, W.; Wang, P.; Rong, M.; Deng, H. Contamination of Chinese salted fish with volatile N-nitrosamines as determined by QuEChERS and gas chromatography–tandem mass spectrometry. Food Chem. 2017, 232, 763–769. [Google Scholar]
- Zhang, Q.; Jin, L.; Zhang, F.; Yao, K.; Ren, Y.; Zhang, J.; Zhang, Q.; He, Q.; Wan, Y.; Chi, Y. Analysis of 7 volatile N-nitrosamines in Chinese Sichuan salted vegetables by gas chromatography-tandem mass spectrometry coupled to modified QuEchERS extraction. Food Control 2019, 98, 342–347. [Google Scholar]
- Qian, Y.; Wu, M.; Wang, W.; Chen, B.; Zheng, H.; Krasner, S.W.; Hrudey, S.E.; Li, X.F. Determination of 14 nitrosamines at nanogram per liter levels in drinking water. Anal. Chem. 2015, 87, 1330–1336. [Google Scholar]
- Taiwan Food and Drug Administration (TFDA). Method Validation of Food Analysis. 2022. Available online: https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636935163435629279&type=2&cid=10975 (accessed on 5 March 2025).
- Santé-Lhoutellier, V.; Astruc, T.; Marinova, P.; Greve, E.; Gatellier, P. Effect of meat cooking on physicochemical state and in vitro digestibility of myofibrillar proteins. J. Agric. Food Chem. 2008, 56, 1488–1494. [Google Scholar] [CrossRef]
- Mirzazadeh, M.; Sadeghi, E.; Beigmohammadi, F. Comparison of the effects of microwave cooking by two conventional cooking methods on the concentrations of polycyclic aromatic hydrocarbons and volatile N-nitrosamines in beef cocktail smokies (smoked sausages). J. Food Process. Preserv. 2021, 45, e15560. [Google Scholar]
- Sun, C.; Wang, R.; Wang, T.; Li, Q. Primary evaluation of nine volatile N-nitrosamines in raw red meat from Tianjin, China, by HS-SPME-GC–MS. Food Chem. 2020, 310, 125945. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Lu, Y.; He, Q. From detection methods to risk prevention: Control of N-nitrosamines in foods and the role of natural bioactive compounds. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70000. [Google Scholar] [PubMed]
- Nabizadeh, S.; Barzegar, F.; Babaei, M.; Kamankesh, M.; Mohammadi, A. New and efficient direct-SLM two-phase hollow fiber electromembrane extraction coupled to GC/MS for the analysis of nitrosamines in different types of sausage: Inves- tigation of meat type, meat percent and cooking methods. Food Chem. 2023, 416, 135759. [Google Scholar] [PubMed]



| NAs | Precursorion (m/z) | Quantitation | Confirmation | ||
|---|---|---|---|---|---|
| Production (m/z) | Collision Energy (V) | Production (m/z) | Collision Energy (V) | ||
| N-nitrosodiethylamine (NDEA) | 102 | 75 | 15 | 29 | 22 |
| N-nitrosomethylethylamine (NMEA) | 88 | 61 | 12 | 43 | 13 |
| N-nitrosopiperidine (NPIP) | 114 | 69 | 15 | 41 | 20 |
| N-nitrosopyrrolidine (NPYP) | 100 | 55 | 16 | 41 | 17 |
| N-nitrosodimethylamine (NDMA) | 74 | 43 | 10 | 58 | 14 |
| N-nitrosodibutylamine (NDBA) | 158 | 103 | 10 | 57 | 14 |
| N-nitrosodiphenylamine (NDPHA) | 198 | 169 | 13 | 66 | 26 |
| N-nitrosodipropylamine (NDPA) | 130 | 89 | 11 | 43 | 13 |
| N-nitrosomorpholine (NMO) | 116 | 86 | 14 | 73 | 14 |
| N-nitrosopyrrolidine-d8 (NPYP-d8) | 106 | 62 | 10 | 46 | 15 |
| NAs | LOD (ng/g) 1 | LOQ (ng/g) 2 | Matrix Effect | Recovery (%) 3 | Variability (RSD%) 4 | ||
|---|---|---|---|---|---|---|---|
| 50 ng/g | 20 ng/g | Inter-Day | Intra-Day | ||||
| NDMA | 0.088 | 0.294 | 2.700 | 111 ± 1.15 | 52.1 ± 2.16 | 7.3 | 2.9 |
| NMO | 0.250 | 0.833 | 55.63 | 110 ± 5.31 | 78.1 ± 8.88 | 4.9 | 4.9 |
| NPYP | 0.060 | 0.200 | 49.32 | 110 ± 6.57 | 62.7 ± 2.27 | 5.4 | 5.4 |
| NMEA | 0.037 | 0.122 | 31.97 | 98.0 ± 7.92 | 103 ± 5.80 | 2.7 | 3.8 |
| NDEA | 0.100 | 0.333 | 27.24 | 103 ± 6.96 | 57.9 ± 0.78 | 6.0 | 3.2 |
| NPIP | 0.300 | 1.000 | 33.65 | 98.0 ± 1.18 | 65.1 ± 5.95 | 4.6 | 5.6 |
| NDPA | 0.188 | 0.625 | 62.19 | 96.0 ± 3.11 | 54.3 ± 2.47 | 17 | 4.2 |
| NDBA | 0.013 | 0.045 | 73.45 | 76.0 ± 5.19 | 65.8 ± 1.57 | 15 | 17 |
| NDPHA | 0.002 | 0.006 | 53.19 | 82.0 ± 7.63 | 54.3 ± 5.66 | 8.7 | 6.3 |
| NAs | Grilled Bacon | Grilled German Sausage | Raw Sausage | Chinese Preserved Sausage | Pork Luncheon Meat |
|---|---|---|---|---|---|
| NDMA | 6.42 ± 1.74 | 3.74 ± 0.12 | N.D. 1 | N.D. | N.D. |
| NMEA | N.D. | N.D. | N.D. | N.D. | N.D. |
| NMO | N.D. | N.D. | N.D. | N.D. | N.D. |
| NPYP | N.D. | N.D. | N.D. | N.D. | N.D. |
| NDEA | N.D. | N.D. | N.D. | N.D. | N.D. |
| NPIP | N.D. | N.D. | N.D. | N.D. | N.D. |
| NDPA | N.D. | N.D. | N.D. | N.D. | N.D. |
| NDBA | 15.46 ± 0.61 | N.D. | N.D. | N.D. | 18.87 ± 0.12 |
| NDPHA | 31.1 ± 5.03 | 2.43 ± 0.49 | N.D. | N.D. | 48.55 ± 1.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Su, C.-H.; Tan, P.-W.; Kao, T.-H. Establishment of a QuEChERS-FaPEx Rapid Analytical Method for N-Nitrosamines in Meat Products. Molecules 2026, 31, 32. https://doi.org/10.3390/molecules31010032
Su C-H, Tan P-W, Kao T-H. Establishment of a QuEChERS-FaPEx Rapid Analytical Method for N-Nitrosamines in Meat Products. Molecules. 2026; 31(1):32. https://doi.org/10.3390/molecules31010032
Chicago/Turabian StyleSu, Chun-Han, Peng-Wang Tan, and Tsai-Hua Kao. 2026. "Establishment of a QuEChERS-FaPEx Rapid Analytical Method for N-Nitrosamines in Meat Products" Molecules 31, no. 1: 32. https://doi.org/10.3390/molecules31010032
APA StyleSu, C.-H., Tan, P.-W., & Kao, T.-H. (2026). Establishment of a QuEChERS-FaPEx Rapid Analytical Method for N-Nitrosamines in Meat Products. Molecules, 31(1), 32. https://doi.org/10.3390/molecules31010032

