Synthesis, Crystal Structure, Antitumor, and Antimicrobial Activity of Novel Copper(II) Complexes with a Coumarin Derivative Containing a Histamine Substituent
Abstract
1. Introduction
2. Results
2.1. Synthesis of Compounds
2.2. Characterization of Ligand–Coumarin Derivatives 2a–2c and Their Complexes 3a–3c
The Selected Identification Methods
2.3. X-Ray Determination
The Structure of Ligand 2b
2.4. The Structure of the Dimeric Cu(II) Complex 3a
2.5. Antimicrobial Activity
2.6. Evaluation of Cell Viability by the MTT Spectrophotometric Method (Cytotoxicity Test)
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. General Procedure for Compounds 2a–2c
4.2.2. General Procedure for Compounds 3a–3c
4.2.3. Refinement of X-Ray Data
4.2.4. Preparation of Tested Compounds and Antibiotics
Tested Bacterial Strains and Culture Conditions
4.3. Anticancer Activity
4.3.1. Biological Material, Culture, and Passage of Cells
4.3.2. In Vitro Assessment of Cell Viability Using the MTT Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fromantin, I.; Watson, S.; Baffie, A.; Rivat, A.; Falcou, M.C.; Kriegel, I.; Ingenior, Y. A Prospective, Descriptive Cohort Study of Malignant Wound Characteristics and Wound Care Strategies in Patients with Breast Cancer. Ostomy Wound Manag. 2014, 60, 38–48. [Google Scholar]
- Delgado, A.; Guddati, A.K. Infections in hospitalized cancer patients. World J. Oncol. 2021, 12, 195–205. [Google Scholar] [CrossRef]
- Payne, W.G.; Naidu, D.K.; Wheeler, C.K.; Barkoe, D.; Mentis, M.; Salas, R.E.; Smith, D.J., Jr.; Robson, M.C. Wound healing in patients with cancer. Eplasty 2008, 8, e9. [Google Scholar] [PubMed]
- Nesher, L.; Rolston, K.V.I. The current spectrum of infections in cancer patients with chemotherapy related neutropenia. Infection 2014, 42, 5–13. [Google Scholar] [CrossRef]
- Hangan, A.C.; Lucaciu, R.L.; Turza, A.; Dican, L.; Sevastre, B.; Páll, E.; Oprean, L.S.; Borodi, G. New Copper Complexes with Antibacterial and Cytotoxic Activity. Int. J. Mol. Sci. 2023, 24, 13819. [Google Scholar] [CrossRef]
- Balewski, Ł.; Plech, T.; Korona-Głowniak, I.; Hering, A.; Szczesio, M.; Olczak, A.; Bednarski, P.J.; Kokoszka, J.; Kornicka, A. Copper(II) Complexes with 1-(Isoquinolin-3-yl)heteroalkyl-2-ones: Synthesis, Structure and Evaluation of Anticancer, Antimicrobial and Antioxidant Potential. Int. J. Mol. Sci. 2024, 25, 8. [Google Scholar] [CrossRef]
- Keri, R.S.; Budagumpi, S.; Pai, R.K.; Balakrishna, R.G. Chromones as a privileged scaffold in drug discovery: A review. Eur. J. Med. Chem. 2014, 78, 340–374. [Google Scholar] [CrossRef]
- Kamboj, S.; Singh, R. Chromanone—A prerogative therapeutic scaffold: An overview. Arab. J. Sci. Eng. 2021, 47, 75–111. [Google Scholar] [CrossRef]
- Rodríguez-Arce, E.; Saldías, M. Antioxidant properties of flavonoid metal complexes and their potential inclusion in the development of novel strategies for the treatment against neurodegenerative diseases. Biomed. Pharmacother. 2021, 143, 112236. [Google Scholar] [CrossRef]
- Abdolmaleki, S.; Aliabadi, A.; Khaksar, S. Bridging the gap between theory and treatment: Transition metal complexes as successful candidates in medicine. Coord. Chem. Rev. 2025, 531, 216477. [Google Scholar] [CrossRef]
- Duncan, C.; White, A.R. Copper complexes as therapeutic agents. Metallomics 2012, 4, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Avdović, E.; Dimić, D.; Milenković, D. Investigation of Coumarin Derivative 3-(1-o-Toluidinoethylidene)-chromane-2,4-dione: IR Spectroscopic Characterization, NBO, and AIM Analysis and Molecular Docking Studies; Springer: Cham, Switzerland, 2020; pp. 127–142. [Google Scholar] [CrossRef]
- Milenković, D.; Avdović, E.; Dimić, D.; Sudha, S.; Ramarajan, D.; Trifunović, S.; Marković, Z.S. Vibrational and Hirshfeld surface analyses, quantum chemical calculations, and molecular docking studies of coumarin derivative 3-(1-m-toluidinoethylidene)-chromane-2,4-dione and its corresponding palladium(II) complex. J. Mol. Struct. 2020, 1209, 127935. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, L.; Nandakumar, K.S.; Cheng, K. Imidazole scaffold-based compounds in the development of therapeutic drugs. Curr. Top. Med. Chem. 2021, 21, 2514–2528. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Recent development of imidazole derivatives as potential anticancer agents. Phys. Sci. Rev. 2023, 8, 2903–2941. [Google Scholar] [CrossRef]
- Chopra, B.; Dhingra, A.K.; Prasad, D.N. Imidazole: An emerging scaffold showing its therapeutic voyage to develop valuable molecular entities. Curr. Drug Res. Rev. 2020, 12, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Kasperkiewicz, K.; Ponczek, M.B.; Owczarek, J.; Guga, P.; Budzisz, E. Antagonists of vitamin K—Popular coumarin drugs and new synthetic and natural coumarin derivatives. Molecules 2020, 25, 1465. [Google Scholar] [CrossRef]
- Oxford Diffraction/Agilent Technologies UK Ltd. CrysAlisPRO; 1.171.42.57a. Rigaku: Yarnton, UK, 2022. Available online: https://www.rigaku.com/products/crystallography/crysalis#specs (accessed on 28 October 2025).
- SAINT; Bruker AXS: Madison, WI, USA, 2012.
- Sheldrick, G.M. SADABS, Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen: Göttingen, Germany, 1996. Available online: https://api.semanticscholar.org/CorpusID:221929729 (accessed on 25 August 2025).
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing—EUCAST. 2012. Available online: http://www.eucast.org (accessed on 20 August 2025).
- Coppola, G.M.; Dodsworth, R.W. Synthetic applications of α,β-unsaturated carbonyl compounds. Synthesis 1981, 7, 52. [Google Scholar]
- Etter, M.C. Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds. Acc. Chem. Res. 1990, 23, 120–126. [Google Scholar] [CrossRef]
- Makowska, A.; Sączewski, F.; Bednarski, P.J.; Gdaniec, M.; Balewski, Ł.; Warmbier, M.; Kornicka, A. Synthesis, Structure and Cytotoxic Properties of Copper(II) Complexes of 2-Iminocoumarins Bearing a 1,3,5-Triazine or Benzoxazole/Benzothiazole Moiety. Molecules 2022, 27, 7155. [Google Scholar] [CrossRef] [PubMed]
- Mahfouz, M.S.; Ali, A.A.M.; Shebl, M.; Adly, O.M.I. Fouad Copper(II) Chelates of a Coumarin-Based Acyl Hydrazone Ligand: Structural Characterization and Computational Evaluations for Prospective Applications in Antimicrobial, Antiviral, Antioxidant, and Anticancer Therapies. RSC Adv. 2025, 15, 22972–22988. [Google Scholar] [CrossRef] [PubMed]
- Emami, S.; Dadashpour, S. Current developments of coumarin-based anticancer agents in medicinal chemistry. Eur. J. Med. Chem. 2015, 102, 611–630. [Google Scholar] [CrossRef] [PubMed]
- Jevtić, M.; Stanojević Pirković, M.; Komazec, T.; Mojić, M.; Mijatović, S.; Maksimović-Ivanić, D.; Dimić, D.; Marković, Z.; Simijonović, D.; Milenković, D.; et al. A comprehensive evaluation of a coumarin derivative and its corresponding palladium complex as potential therapeutic agents in the treatment of gynecological cancers: Synthesis, characterization, and cytotoxicity. Pharmaceutics 2024, 16, 1437. [Google Scholar] [CrossRef]
- Yadav, A.K.; Maharjan Shrestha, R.; Yadav, P.N. Anticancer mechanism of coumarin-based derivatives. Eur. J. Med. Chem. 2024, 267, 116179. [Google Scholar] [CrossRef]
- Rogalewicz, B.; Czylkowska, A. Recent Advances in the Discovery of Copper(II) Complex-es as Potential Anticancer Drugs. Eur. J. Med. Chem. 2025, 292, 117702. [Google Scholar] [CrossRef]
- Lu, W.; Tang, J.; Gu, Z.; Sun, L.; Wei, H.; Wang, Y.; Yang, S.; Chi, X.; Xu, L. Crystal Structure, In Vitro Cytotoxicity, DNA Binding and DFT Calculations of New Copper(II) Complexes with a Coumarin–Amide Ligand. J. Inorg. Biochem. 2023, 238, 112030. [Google Scholar] [CrossRef]
- Ballazhi, L.; Imeri, F.; Jashari, A.; Popovski, E.; Stojković, G.; Dimovski, A.J.; Mikhova, B.; Mladenovska, K. Hydrazinyldiene-chroman-2,4-diones in inducing growth arrest and apoptosis in breast cancer cells: Synergism with doxorubicin and correlation with physicochemical properties. Acta Pharm. 2017, 67, 35–52. [Google Scholar] [CrossRef]
- Joshi, C.; Chejara, P.; Mahajan, D.H. Facile synthesis and characterization of some new 5-ethylidene-thiazolidine-2,4-diones and their antimicrobial evaluation. Indian J. Pharm. Sci. 2020, 82, 871–880. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A review on anti-tumor mechanisms of coumarins. Front. Oncol. 2020, 10, 592853. [Google Scholar] [CrossRef]
- Dimić, D.S.; Marković, Z.S.; Saso, L.; Avdović, E.H.; Đorović, J.R.; Petrović, I.P.; Stanisavljević, D.D.; Stevanović, M.J.; Potočňák, I.; Samoľová, E.; et al. Synthesis and characterization of 3-(1-((3,4-dihydroxyphenethyl)amino)ethylidene)-chroman-2,4-dione as a potential antitumor agent. Oxid. Med. Cell. Longev. 2019, 2019, 2069250. [Google Scholar] [CrossRef]
- Wu, D.-L.; Liao, Z.-D.; Chen, F.-F.; Zhang, W.; Ren, Y.-S.; Wang, C.-C.; Chen, X.-X.; Peng, D.-Y.; Kong, L.-Y. Benzophenones from Anemarrhena asphodeloides Bge. exhibit anticancer activity in HepG2 cells via the NF-κB signaling pathway. Molecules 2019, 24, 2246. [Google Scholar] [CrossRef]
- Kumar, P.; Asati, V.; Choubey, A. Synthesis and characterization of novel 3-(aminomethyl)-5-benzylidenethiazolidine-2,4-dione derivatives as anticancer agents. J. Appl. Sci. Res. 2021, 12, 154–164. [Google Scholar] [CrossRef]
- Nastasă, C.; Tamaian, R.; Oniga, O.; Tiperciuc, B. 5-Arylidene(chromenyl-methylene)-thiazolidinediones: Potential new agents against mutant oncoproteins K-Ras, N-Ras and B-Raf in colorectal cancer and melanoma. Medicina 2019, 55, 85. [Google Scholar] [CrossRef] [PubMed]
- Chothani, S.R.; Chamakiya, C.A.; Joshi, R.J.; Karmur, M.B.; Karmur, S.B.; Varu, H.L.; Pissurlenkar, R.R.S.; Patel, A.S.; Kapuriya, N.P. Synthesis, anticancer evaluation and in silico studies of novel N-substituted arylidenethiazolidine-2,4-dione derivatives as adenosine monophosphate-activated protein kinase activators. J. Heterocycl. Chem. 2024, 61, 789–800. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E., Jr. Descriptors for Pentane-2,4-dione and Its Derivatives. J. Solution Chem. 2017, 46, 1625–1638. [Google Scholar] [CrossRef]
- Asati, V.; Bharti, S.K.; Rathore, A.; Mahapatra, D.K. SWFB and GA Strategies for Variable Selection in QSAR Studies for the Validation of Thiazolidine- 2,4-Dione Derivatives as Promising Antitumor Candidates. Indian J. Pharm. Educ. Res. 2017, 51, 436–451. [Google Scholar] [CrossRef]
- Mutebi, J.K.; Wu, C.-C.; Fang, C.-Y.; Hsu, T.-K.; Lin, I.-C.; Huang, S.-W.; Chiu, Y.-C.; Hsu, B.-M. Exploring the impact of chemotherapy on the emergence of antibiotic resistance in the gut microbiota of colorectal cancer patients. Antibiotics 2025, 14, 264. [Google Scholar] [CrossRef] [PubMed]
- Safdar, A.; Bodey, G.; Armstrong, D. Infections in patients with cancer: Overview. In Principles and Practice of Cancer Infectious Diseases; Springer: New York, NY, USA, 2011; pp. 3–15. [Google Scholar] [CrossRef]
- Karcz, D.; Starzak, K.; Ciszkowicz, E.; Lecka-Szlachta, K.; Kamiński, D.; Creaven, B.; Jenkins, H.; Radomski, P.; Miłoś, A.; Ślusarczyk, L.; et al. Novel coumarin–thiadiazole hybrids and their Cu(II) and Zn(II) complexes as potential antimicrobial agents and acetylcholinesterase inhibitors. Int. J. Mol. Sci. 2021, 22, 9709. [Google Scholar] [CrossRef] [PubMed]
- Yernale, N.G.; Mathada, M.B.H. Preparation of octahedral Cu(II), Co(II), Ni(II), and Zn(II) complexes derived from 8-formyl-7-hydroxy-4-methylcoumarin: Synthesis, characterization and biological study. Mol. Struct. 2020, 1220, 128659. [Google Scholar] [CrossRef]
- Sunitha, N.; Raj, C.I.S.; Kumari, B.S. Synthesis, spectral studies, biological evaluation and molecular docking studies of metal complexes from coumarin derivative. Mol. Struct. 2023, 1285, 135443. [Google Scholar] [CrossRef]
- Abdel-Kader, N.S.; Moustafa, H.; El-Ansary, A.L.; Sherif, O.E.; Farghaly, A.M. A coumarin Schiff base and its Ag(I) and Cu(II) complexes: Synthesis, characterization, DFT calculations and biological applications. New J. Chem. 2021, 45, 7714–7730. [Google Scholar] [CrossRef]









| Bonds | Angles | ||
| O1–C3 | 1.2533(1) | C1–O2–C9 | 122.52(1) |
| O2–C1 | 1.3836(1) | C10–N1–C11 | 128.28(1) |
| O2–C9 | 1.3701(1) | C13–N2–C15 | 104.91(1) |
| O3–C1 | 1.2090(1) | C14–N3–C15 | 107.48(1) |
| N1–C10 | 1.3018(1) | O2–C1–O3 | 112.95(1) |
| N1–C11 | 1.4678(1) | O2–C1–C2 | 118.60(1) |
| N2–C13 | 1.3722(1) | O3–C1–C2 | 128.45(1) |
| N2–C15 | 1.3216(1) | O1–C3–C2 | 123.69(1) |
| N3–C14 | 1.3688(1) | O1–C3–C4 | 118.59(1) |
| N3–C15 | 1.3123(1) | O2–C9–C4 | 121.50(1) |
| C1–C2 | 1.4392(1) | O2–C9–C8 | 117.05(1) |
| C2–C3 | 1.4272(1) | N1–C10–C2 | 118.48(1) |
| C2–C10 | 1.4290(1) | N1–C10–C16 | 118.05(1) |
| C3–C4 | 1.4689(1) | N1–C11–C12 | 109.53(1) |
| C4–C5 | 1.3851(1) | N2–C13–C12 | 120.64(1) |
| C4–C9 | 1.3729(1) | N2–C13–C14 | 109.51(1) |
| C5–C6 | 1.3801(1) | N3–C14–C13 | 106.06(1) |
| C6–C7 | 1.3748(1) | N2–C15–N3 | 112.04(1) |
| C7–C8 | 1.3652(1) | ||
| C8–C9 | 1.3843(1) | ||
| C10–C16 | 1.4896(1) | ||
| C11–C12 | 1.5097(1) | ||
| C12–C13 | 1.4834(1) | ||
| C13–C14 | 1.3469(1) | ||
| D–H···A | D–H | H···A | D···A | D–H···A | Symmetry |
| N1-H1...O1 | 0.86 | 1.82 | 2.5510(1) | 142 | Intra |
| N3-H3...O3 | 0.86 | 2.05 | 2.8495(1) | 154 | 1 − x,1/2 + y,5/2 − z |
| O1M-H1M...N2 | 0.82 | 1.94 | 2.7587(1) | 173 | x,y, −1 + z |
| C8-H8…O1M | 0.93 | 2.59 | 3.3493(2) | 140 | −x, −y,1 − z |
| C14-H14...O1M | 0.93 | 2.38 | 3.2176(2) | 149 | 1 + x,y,1 + z |
| C15-H15...O1 | 0.93 | 2.39 | 3.2506(2) | 154 | x,1/2 − y,1/2 + z |
| Bonds | Angles | ||
| Cu1–Cl1 | 2.3555(3) | N1–Cu1–O1 | 90.22(4) |
| Cu1–N1 | 2.0200(11) | N1–Cu1–N2 | 91.94(4) |
| Cu1–N2 | 1.9783(11) | N1–Cu1–Cl1 | 166.89(3) |
| Cu1–O1 | 1.9497(9) | O1–Cu1–N2 | 173.06(4) |
| Cu1–Cl1 | 2.6668(4) | N1–Cu1–Cl1 | 98.42(3) |
| N1–C10 | 1.2947(15) | N2–Cu1–Cl1 | 94.36(3) |
| N1–C11 | 1.4721(16) | O1–Cu1–Cl1 | 91.85(3) |
| N2–C13 | 1.3860(17) | Cl1–Cu1–Cl1 | 93.949(11) |
| N2–C15 | 1.3332(16) | Cu1–Cl1–Cu1 | 86.051(11) |
| Cu1–N1–C10 | 124.08(9) | ||
| N1–C10–C2 | 126.93(11) | ||
| C10–C2–C3 | 122.63(11) | ||
| Cu1–O1–C3 | 129.26(9) | ||
| Cu1–N1–C11 | 121.36(8) | ||
| Cu1–N2–C13 | 125.31(8) | ||
| N1–C11–C12 | 109.99(10) | ||
| C11–C12–C13 | 109.71(10) | ||
| C12–C13–N2 | 120.94(11) | ||
| Cell Line | Cytotoxic Effect of Chromane-2,4-Dione and Imidazole Compounds, and the Reference Compound Cisplatin, IC50 (μM) | ||||||
| 2a | 2b | 2c | 3a | 3b | 3c | Cisplatin | |
| MCF-7 | 80.4 ± 1.4 | 129.5 ± 1.9 | 90.4 ± 3.2 | 52.1 ± 3.4 | 84.2 ± 3.9 | 67.8 ± 6.4 | 7.5 ± 1.1 |
| HCC38 | 82.3 ± 2.4 | >148.7 ± 4.4 | 79.6 ± 2.2 | 56.5 ± 1.8 | 40.1 ± 4.4 | 43.2 ± 2.6 | 3.1 ± 0.8 |
| HeLa | 155.5 ± 3.8 | >500 | 99.4 ± 3.4 | 95.2 ± 6.1 | 175.1 ± 7.4 | 98.8 ± 7.1 | 20.5 ± 2.7 |
| Hec-1-A | 73.3 ± 1.9 | 84.7 ± 2.7 | 90.5 ± 4.4 | 83.9 ± 4.9 | 83.2 ± 3.4 | 81.1 ± 7.1 | 63.4 ± 2.1 |
| Ishikawa | 74.2 ± 3.9 | 121.6 ± 6.3 | 110.2 ± 3.2 | 72.7 ± 4.4 | 86.6 ± 6.2 | 69.9 ± 1.7 | 12.5 ± 2.3 |
| HT-29 | 52.1 ± 2.4 | >500 | 232.2 ± 8.1 | 51.9 ± 2.1 | 71.3 ± 3.1 | 79.5 ± 7.1 | 125.6 ± 1.3 |
| HCT116 | 61.3 ± 4.1 | 77.1 ± 4.4 | 70.4 ± 1.1 | 80.7± 4.1 | 75.7 ± 4.4 | 92.5 ± 5.1 | 8.4 ± 1.1 |
| COLO205 | 62.1 ± 6.6 | >500 | 198.7 ± 6.4 | 93.4 ± 3.9 | 54.2 ± 5.1 | 79.3 ± 2.14 | 21.5 ± 1.7 |
| SW620 | 119.2 ± 2.2 | 332.1 ± 7.1 | 221.4 ± 2.7 | 162.9 ± 2.5 | 71.4 ± 5.2 | 145 ± 2.8 | 7.4 ± 1 |
| LoVo | 63.6 ± 1.2 | 169.1 ± 5.8 | 125.6± 7.7 | 35.5± 5.6 | 42.5 ± 6.4 | 53.6 ± 4.2 | 8.6 ± 0.9 |
| CaCo-2 | 91.4 ± 4 | 174 ± 2.9 | 95.2 ± 3.1 | 65.8 ± 5.1 | 60.7 ± 4.7 | 65.2 ± 4.8 | 5.4 ± 1.4 |
| WM-115 | 143.3 ± 1.6 | >500 | 324.5 ± 4.2 | 110.4 ± 3.1 | 213.8 ± 1.9 | 201.6 ± 2.8 | 15.4 ± 1 |
| HL60 | 51.6 ± 1.9 | 63.4 ± 1.2 | 68.7 ± 2.8 | 42.1 ± 2.9 | 66.3 ± 2.2 | 68.5 ± 6.7 | 4.2 ± 0.8 |
| Hep3b | 69.7± 5.8 | 40.3 ± 7.1 | 52.6 ± 1.9 | 10 ± 2.1 | 8.1 ± 3.1 | 38.8 ± 2.9 | 22.8 ± 1.2 |
| A549 | 261.7 ± 6.9 | >500 | 243.4 ± 5.2 | 175.2 ± 4.9 | 145.2 ± 4.6 | 279.8 ± 6.4 | 46.6 ± 3.4 |
| HMEC-1 | 167.2 ± 1.7 | >500 | 211.2 ± 4.9 | 168.7 ± 7.1 | 112.7 ± 5.1 | 156.7 ± 4 | 11.7 ± 0.9 |
| 2b | 3a | |
| net formula | C17H19N3O4 | C30H24Cl2Cu2N6O6 |
| Mr/g mol−1 | 329.35 | 762.53 |
| crystal size/mm | 0.231 × 0.175 × 0.036 | 0.100 0.040 × 0.020 |
| T/K | 294 | 102.(2) |
| radiation | CuKα | MoKα |
| diffractometer | ‘XtaLAB Synergy, Dualflex, HyPix’ | ‘Bruker D8 Venture TXS’ |
| crystal system | monoclinic | triclinic |
| space group | ‘P21/c’ | ‘P -1’ |
| a/Å | 7.9524(4) | 7.1965(2) |
| b/Å | 23.2722(9) | 9.0330(3) |
| c/Å | 8.7869(4) | 11.6841(4) |
| α/° | 90 | 95.1950(10) |
| β/° | 93.344(5) | 106.2340(10) |
| γ/° | 90 | 98.5700(10) |
| V/Å3 | 1623.43(13) | 714.08(4) |
| Z | 4 | 1 |
| calc. density/g cm−3 | 1.348 | 1.773 |
| μ/mm−1 | 0.807 | 1.735 |
| absorption correction | Multi-Scan | Multi-Scan |
| transmission factor range | 0.551–1.000 | 0.88–0.97 |
| refls. measured | 24714 | 17067 |
| Rint | 0.01 | 0.0365 |
| mean σ(I)/I | 0.0590 | 0.0471 |
| θ range | 3.799–77.269 | 2.998–36.318 |
| observed refls. | 1625 | 5753 |
| x, y (weighting scheme) | 0.1227, 0 | 0.0192, 0.4084 |
| hydrogen refinement | rigid body model | mixed |
| refls in refinement | 3274 | 6852 |
| parameters | 220 | 212 |
| restraints | 0 | 0 |
| R(Fobs) | 0.0664 | 0.0315 |
| Rw(F2) | 0.1351 | 0.0777 |
| S | 0.985 | 1.068 |
| shift/errormax | 0 | 0.001 |
| max electron density/e Å−3 | 0.202 | 0.702 |
| min electron density/e Å−3 | −0.247 | −0.627 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Namiecińska, E.; Hikisz, P.; Czapnik, P.; Małecka, M.; Grazul, M.; Mayer, P.; Lorenz, I.-P.; Budzisz, E. Synthesis, Crystal Structure, Antitumor, and Antimicrobial Activity of Novel Copper(II) Complexes with a Coumarin Derivative Containing a Histamine Substituent. Molecules 2026, 31, 162. https://doi.org/10.3390/molecules31010162
Namiecińska E, Hikisz P, Czapnik P, Małecka M, Grazul M, Mayer P, Lorenz I-P, Budzisz E. Synthesis, Crystal Structure, Antitumor, and Antimicrobial Activity of Novel Copper(II) Complexes with a Coumarin Derivative Containing a Histamine Substituent. Molecules. 2026; 31(1):162. https://doi.org/10.3390/molecules31010162
Chicago/Turabian StyleNamiecińska, Ewelina, Pawel Hikisz, Patryk Czapnik, Magdalena Małecka, Magdalena Grazul, Peter Mayer, Ingo-Peter Lorenz, and Elzbieta Budzisz. 2026. "Synthesis, Crystal Structure, Antitumor, and Antimicrobial Activity of Novel Copper(II) Complexes with a Coumarin Derivative Containing a Histamine Substituent" Molecules 31, no. 1: 162. https://doi.org/10.3390/molecules31010162
APA StyleNamiecińska, E., Hikisz, P., Czapnik, P., Małecka, M., Grazul, M., Mayer, P., Lorenz, I.-P., & Budzisz, E. (2026). Synthesis, Crystal Structure, Antitumor, and Antimicrobial Activity of Novel Copper(II) Complexes with a Coumarin Derivative Containing a Histamine Substituent. Molecules, 31(1), 162. https://doi.org/10.3390/molecules31010162

