Occupational Exposure to Volatile Organic Compounds in Polyurethane Foam Production—Concentration, Variability and Health Risk Assessment
Abstract
1. Introduction
2. Results
2.1. VOC in the Workplace
2.2. Chronic Exposure Intake
2.3. Health Risk Assessment
2.4. Remarks on Diisocyanates and Compliance with Legal Exposure Limits
3. Discussion
4. Materials and Methods
4.1. Facility Description and Production Characteristics
4.2. Air Sampling Protocol
4.3. Analytical Procedure for VOC Identification
4.4. Supplementary Exposure Assessment and Verification
4.5. Exposure and Health Risk Assessment
- −
- CA is the concentration of VOCs in inhaled air (µg/m3),
- −
- ET is the exposure time in hours per day (assumed as 8 h/day or longer depending on individual worker data),
- −
- EF is the exposure frequency (5 days/week × 50 weeks/year = 250 days/year),
- −
- ED is the exposure duration (25 years),
- −
- AT is the averaging time, calculated as:
- ○
- ECNCR—non-cancer risk estimation: 219,150 h for occupational exposure (25 years)
- ○
- ECLCR—lifetime cancer risk assessment: 613,200 h for (70 years × 365 days/year × 24 h/day).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Indoor air quality: Organic pollutants. In Proceedings of the Report on a WHO Meeting, Berlin, Germany, 23–27 August 1987; EURO Reports and Studies 111. World Health Organization Regional Office for Europe: Copenhagen, Denmark, 1989. [Google Scholar]
- Hillier, K.; Schupp, T.; Carney, I. An investigation into VOC emissions from polyurethane flexible foam mattresses. Cell. Polym. 2003, 22, 237–259. [Google Scholar] [CrossRef]
- Oz, K.; Merav, B.; Sara, S.; Yael, D. Volatile organic compound emissions from polyurethane mattresses under variable environmental conditions. Environ. Sci. Technol. 2019, 53, 9171–9180. [Google Scholar] [CrossRef]
- De Souza, F.M.; Kahol, P.K.; Gupta, R.K. Introduction to polyurethane chemistry. In Polyurethane Chemistry: Renewable Polyols and Isocyanates; American Chemical Society: Washington, DC, USA, 2021; pp. 1–24. [Google Scholar]
- Creta, M.; Poels, K.; Thoelen, L.; Vranckx, K.; Collaerts, P.; Jansen, F.; Vangeel, M.; Godderis, L.; Duca, R.-C.; Vanoirbeek, J.A. A method to quantitatively assess dermal exposure to volatile organic compounds. Ann. Work Expo. Health 2017, 61, 975–985. [Google Scholar] [CrossRef]
- Garrido, J.A.; Parthasarathy, S.; Moschet, C.; Young, T.M.; McKone, T.E.; Bennett, D.H. Exposure assessment for air-to-skin uptake of semivolatile organic compounds (SVOCs) indoors. Environ. Sci. Technol. 2018, 53, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Simon, L. Estimation of volatile organic compound exposure concentrations and time to reach a specific dermal absorption using physiologically based pharmacokinetic modeling. J. Occup. Environ. Hyg. 2024, 21, 1–12. [Google Scholar] [CrossRef]
- OSHA. 2020. Available online: https://www.osha.gov/chemicaldata (accessed on 10 December 2025).
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 120; World Health Organization: Geneva, Switzerland, 2018; ISBN 13 978-92-832-0158-8. [Google Scholar]
- Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Vilahur, N.; Mattock, H.; Straif, K. Carcinogenicity of benzene. Lancet Oncol. 2017, 18, 1574–1575. [Google Scholar] [CrossRef]
- National Institute for Occupational Safety and Health. Methylene Chloride (Current Intelligence Bulletin 46; DHHS [NIOSH] Publication No. 86-114); U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control: Atlanta, GA, USA, 1986. [Google Scholar]
- Hoang, A.; Fagan, K.; Cannon, D.L.; Rayasam, S.D.; Harrison, R.; Shusterman, D.; Singla, V. Assessment of methylene chloride–related fatalities in the United States, 1980–2018. JAMA Intern. Med. 2021, 181, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Kauppinen, T.; Toikkanen, J.; Pedersen, D.; Young, R.; Ahrens, W.; Boffetta, P.; Hansene, J.; Kromhoutf, H.; Blascog, J.M.; Mirabelli, D. Occupational exposure to carcinogens in the European Union. Occup. Environ. Med. 2000, 57, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Saxena, V.; Verma, S. Managing VOC Hazards Proactively for a Safer, Healthier Workplace; BARC Newsletter: Mumbai, India, 2025. [Google Scholar]
- Çankaya, S.; Pekey, H.; Pekey, B.; Aydın, B.Ö. Volatile organic compound concentrations and their health risks in various workplace microenvironments. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 822–842. [Google Scholar] [CrossRef]
- Edwards, R.D.; Schweizer, C.; Jantunen, M.; Lai, H.K.; Bayer-Oglesby, L.; Katsouyanni, K.; Nieuwenhuijsen, M.; Saarela, K.; Sram, R.; Künzli, N. Personal exposures to VOC in the upper end of the distribution—Relationships to indoor, outdoor and workplace concentrations. Atmos. Environ. 2005, 39, 2299–2307. [Google Scholar] [CrossRef]
- Li, L.; Zhang, D.; Hu, W.; Yang, Y.; Zhang, S.; Yuan, R.; Lv, P.; Zhang, W.; Zhang, Y.; Zhang, Y. Improving VOC control strategies in industrial parks based on emission behavior, environmental effects, and health risks: A case study through atmospheric measurement and emission inventory. Sci. Total Environ. 2023, 865, 161235. [Google Scholar] [CrossRef]
- Diisocyanate, M.D. Air Toxics Hot Spots Program; OEHHA: Sacramento, CA, USA, 2016. [Google Scholar]
- Orloff, K.G.; Batts-Osborne, D.; Kilgus, T.; Metcalf, S.; Cooper, M. Antibodies to toluene diisocyanate in an environmentally exposed population. Environ. Health Perspect. 1998, 106, 665–666. [Google Scholar] [CrossRef]
- EU. Directive 2012/18/EU of the European Parliament and of the Council of 4 July 2012 on the Control of Major-Accident Hazards Involving Dangerous Substances, Amending and Subsequently Repealing Council Directive 96/82/EC; European Union: Brussels, Belgium, 2012. [Google Scholar]
- Kumari, D.; Janmeda, P.; Singh, D. Sources, exposure, metabolism, transportation, ecological effects, preventive measures and alternatives of carcinogenic methylene chloride: A review. Discov. Toxicol. 2024, 1, 15. [Google Scholar] [CrossRef]
- Pecka, I.; Wiglusz, R.; Sitko, E.; Nikiel, G. Ocena emisji lotnych zwiazkow organicznych z pianek poliuretanowych. Rocz. Państwowego Zakładu Hig. 2004, 55, 181–185. (In Polish) [Google Scholar]
- Singh, O.; Singh, V.K. The epitome of toxic dichloromethane (methylene chloride): An approach to understand hazards and safety. In Hazardous Chemicals; Academic Press: New York, NY, USA, 2025; pp. 305–313. [Google Scholar]
- Collins, J.J.; Anteau, S.; Conner, P.R.; Cassidy, L.D.; Doney, B.; Wang, M.L.; Kurth, L.; Carson, M.D.; Molenaar, D.; Redlich, C.A.; et al. Incidence of occupational asthma and exposure to toluene diisocyanate in the United States toluene diisocyanate production industry. J. Occup. Environ. Med. 2017, 59, S22–S27. [Google Scholar] [CrossRef] [PubMed]
- Krone, C.A. Diisocyanates and nonoccupational disease: A review. Arch. Environ. Health Int. J. 2003, 58, 306–316. [Google Scholar] [CrossRef]
- Turek, S.J. Isocyanate Exposure Potential in Construction Industry Polyurethane Products Use. Master’s Thesis, Yale University, New Haven, CT, USA, 2010. [Google Scholar]
- Schlosser, P.M.; Bale, A.S.; Gibbons, C.F.; Wilkins, A.; Cooper, G.S. Human health effects of dichloromethane: Key findings and scientific issues. Environ. Health Perspect. 2015, 123, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, P.; Sun, D.; Zhou, Y.; Han, L.; Zhang, H.; Zhu, B.; Wang, B. Occupational health risk assessment of the benzene exposure industries: A comprehensive scoring method through 4 health risk assessment models. Environ. Sci. Pollut. Res. 2022, 29, 84300–84311. [Google Scholar] [CrossRef]
- Wakayama, T.; Ito, Y.; Sakai, K.; Miyake, M.; Shibata, E.; Ohno, H.; Kamijima, M. Comprehensive review of 2-ethyl-1-hexanol as an indoor air pollutant. J. Occup. Health 2019, 61, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Guan, X.; Peng, Y.; Gong, A.; Xie, H.; Chen, S.; Zhang, Q.; Zhang, X.; Wang, W.; Wang, Q. Characterization of VOC emissions and health risk assessment in the plastic manufacturing industry. J. Environ. Manag. 2024, 357, 120730. [Google Scholar] [CrossRef]
- Poulsen, P.B. (Ed.) Survey and Risk Assessment of VOCs in PU Foam Products; The Danish Environmental Protection Agency: Copenhagen, Denmark, 2020; ISBN 978-87-7038-230-4. [Google Scholar]
- Hornyák-Mester, E.; Mentes, D.; Farkas, L.; Hatvani-Nagy, A.F.; Varga, M.; Viskolcz, B.; Muránszky, G.; Fiser, B. Volatile emissions of flexible polyurethane foams as a function of time. Polym. Degrad. Stab. 2023, 216, 110507. [Google Scholar] [CrossRef]
- EU. Commission Directive (EU) 2017/164 of 31 January 2017 Establishing a Fourth List of Indicative Occupational Exposure Limit Values Pursuant to Council Directive 98/24/EC, and Amending Commission Directives 91/322/EEC, 2000/39/EC and 2009/161/EU; European Union: Brussels, Belgium, 2017. [Google Scholar]
- EC. Opinion on an EU Binding Occupational Exposure Limit Value (BOEL) for Benzene Under the Carcinogens and Mutagens Directive 2004/37/EC; Doc. 105619, Adopted on 04/06/2019; European Commission (EC): Brussels, Belgium, 2019. [Google Scholar]
- NIOSH. 2003. Available online: https://www.cdc.gov/niosh/docs/2003-144/ (accessed on 28 December 2025).
- Brown, V.M.; Crump, D.R.; Plant, N.T.; Pengelly, I. Evaluation of the stability of a mixture of volatile organic compounds on sorbents for the determination of emissions from indoor materials and products using thermal desorption/gas chromatography/mass spectrometry. J. Chromatogr. A 2014, 1350, 1–9. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. EPA Method 8260C, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS); Revision 3, August 2006; U.S. Environmental Protection Agency: San Francisco, CA, USA, 2006. [Google Scholar]
- Chang, T.Y.; Liu, C.L.; Huang, K.H.; Kuo, H.W. Indoor and outdoor exposure to volatile organic compounds and health risk assessment in residents living near an optoelectronics industrial park. Atmosphere 2019, 10, 380. [Google Scholar] [CrossRef]
- Bradman, A.; Castorina, R.; Hoang, T.; Gaspar, F.; Shi, A.; Maddalena, R.; Russell, M. Evaluation and Identification of Volatile Organic Compounds in Childhood Education Facilities; California Environmental Protection Agency, Air Resources Board, Research Division: Sacramento, CA, USA, 2015. [Google Scholar]
- US EPA. Integrated Risk Information System (IRIS); United States Environmental Protection Agency: Washington, DC, USA, 2025. Available online: https://iris.epa.gov (accessed on 28 December 2025).
- Jia, H.; Gao, S.; Duan, Y.; Fu, Q.; Che, X.; Xu, H.; Wang, Z.; Cheng, J. Investigation of health risk assessment and odor pollution of volatile organic compounds from industrial activities in the Yangtze River Delta region, China. Ecotoxicol. Environ. Saf. 2021, 208, 111474. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; You, Y.; Bai, Z.; Hu, Y.; Zhang, J.; Zhang, N. Health risk assessment of personal inhalation exposure to volatile organic compounds in Tianjin, China. Sci. Total Environ. 2011, 409, 452–459. [Google Scholar] [CrossRef]

| Production Zone | No. of VOCs | ΣVOCs | Dichloromethane | |
|---|---|---|---|---|
| [-] | Concentration [µg/m3] | Concentration [µg/m3] | Contribution [%] | |
| Foaming hall | 38 | 1670 | 1026 | 61 |
| Rebounding unit | 42 | 2596 | 1556 | 60 |
| Curing room | 37 | 7119 | 4631 | 65 |
| Warehouse | 43 | 1845 | 1287 | 70 |
| Cutting area | 47 | 2445 | 1446 | 59 |
| Group of VOCs | Foaming Hall | Rebounding Unit | Curing Room | Warehouse | Cutting Area | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| ECNCR | ECLCR | ECNCR | ECLCR | ECNCR | ECLCR | ECNCR | ECLCR | ECNCR | ECLCR | |
| Alcohols | 0.021 | 7.3 | 0.029 | 3.2 | 0.043 | 15 | 0.012 | 4.3 | 0.014 | 4.8 |
| Aldehydes | 0.24 | 5.0 | 0.39 | 6.8 | 0.71 | 19 | 0.33 | 6.2 | 0.45 | 6.7 |
| Alkanes/Alkenes | 0.032 | 11 | 0.045 | 16 | 0.046 | 13 | 0.017 | 5.9 | 0.056 | 19 |
| Ketones | 0.0098 | 3.5 | 0.0059 | 2.1 | 0.0202 | 7.2 | 0.014 | 5.0 | 0.011 | 3.8 |
| Halogenated hydrocarbons | 0.18 | 63 | 0.27 | 95 | 0.53 | 188 | 0.26 | 93 | 0.31 | 111 |
| Aromatic hydrocarbons | 0.057 | 2.0 | 0.0099 | 3.6 | 0.0069 | 2.5 | 0.0052 | 1.9 | 0.011 | 3.8 |
| Esters | 0.076 | 2.7 | 0.012 | 4.4 | 0.025 | 8.8 | 0.0058 | 2.0 | 0.0034 | 1.2 |
| Terpens | NE | NE | 0.0095 | 3.4 | NE | NE | NE | NE | 0.011 | 4.0 |
| Ethers/epoxides | 0.038 | 1.4 | 0.0085 | 3.5 | 0.038 | 14 | 0.0085 | 3.0 | 0.0084 | 3.7 |
| Organosulfur compounds | NE | NE | 0.0012 | 0.42 | 0.0054 | 1.9 | NE | NE | 0.0036 | 1.3 |
| Organosilicon compounds | NE | NE | 0.018 | 6.3 | 0.036 | 17 | 0.013 | 6.3 | 0.019 | 6.9 |
| Others | NE | NE | 0.014 | 5.0 | 0.0011 | 0.41 | 0.0085 | 3.0 | 0.015 | 5.4 |
| VOCs Assessed | Foaming Hall | Rebounding Unit | Curing Room | Warehouse | Cutting Area | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| HQ | LCR | HQ | LCR | HQ | LCR | HQ | LCR | HQ | LCR | |
| Methyl Alcohol | 0.0053 | - | 0.0018 | - | 0.011 | - | 0.0035 | - | 0.0020 | - |
| Pentane | 0.0012 | - | 0.0071 | - | - | - | - | - | 0.0064 | - |
| Dichloromethane | 0.29 | 1.1 × 10−6 | 0.44 | 1.6 × 10−6 | 0.66 | 1.7 × 10−6 | 0.43 | 1.6 × 10−6 | 0.52 | 1.9 × 10−6 |
| Pentane, 3-methyl- | - | - | 0.028 | - | - | - | - | - | - | - |
| 2-Butanone | - | - | 0.00044 | - | - | - | - | - | - | - |
| n-Hexane | 0.015 | - | - | - | - | - | 0.0017 | - | 0.017 | - |
| 2-Butanone | 0.00033 | - | - | - | - | - | - | - | 0.00033 | - |
| Benzene | 0.053 | 1.3 × 10−6 | 0.049 | 1.2 × 10−6 | 0.17 | 2.2 × 10−6 | 0.054 | 1.7 × 10−6 | 0.052 | 1.2 × 10−6 |
| Propane, 1,2-dichloro- | - | - | - | - | - | - | 0.77 | - | 0.37 | - |
| Toluene | 0.00072 | - | 0.0014 | - | - | - | - | 0.0015 | - | |
| o-Xylene | 0.0051 | - | - | - | - | - | - | - | - | - |
| Benzene, 1,3-dimethyl- | - | - | - | - | - | - | - | - | 0.014 | - |
| Octanal | - | - | - | - | - | - | - | - | 0.034 | - |
| Ethanol, 2-butoxy- | 0.0027 | - | - | - | - | - | - | - | - | - |
| 1-Hexanol, 2-ethyl- | - | - | - | - | - | - | - | - | 5.7 | - |
| Benzaldehyde | 0.029 | - | 0.031 | - | 0.061 | - | 0.022 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Reindl, A.R.; Olkowska, E.; Pawłowski, J.; Wolska, L. Occupational Exposure to Volatile Organic Compounds in Polyurethane Foam Production—Concentration, Variability and Health Risk Assessment. Molecules 2026, 31, 145. https://doi.org/10.3390/molecules31010145
Reindl AR, Olkowska E, Pawłowski J, Wolska L. Occupational Exposure to Volatile Organic Compounds in Polyurethane Foam Production—Concentration, Variability and Health Risk Assessment. Molecules. 2026; 31(1):145. https://doi.org/10.3390/molecules31010145
Chicago/Turabian StyleReindl, Andrzej R., Ewa Olkowska, Jakub Pawłowski, and Lidia Wolska. 2026. "Occupational Exposure to Volatile Organic Compounds in Polyurethane Foam Production—Concentration, Variability and Health Risk Assessment" Molecules 31, no. 1: 145. https://doi.org/10.3390/molecules31010145
APA StyleReindl, A. R., Olkowska, E., Pawłowski, J., & Wolska, L. (2026). Occupational Exposure to Volatile Organic Compounds in Polyurethane Foam Production—Concentration, Variability and Health Risk Assessment. Molecules, 31(1), 145. https://doi.org/10.3390/molecules31010145

