Green Extraction and Liposomal Encapsulation of Inonotus obliquus (Chaga) Extracts: Comparative Phytochemical and Antioxidant Analysis
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemical Profiling of Chaga Extracts
2.2. Antioxidant Activity of Chaga Extracts
2.2.1. Effect of Solvent Type
2.2.2. Effect of Extraction Method
2.2.3. Selectivity Towards Hydroxyl Radical
2.3. Correlation Between Chemical Composition and Antioxidant Activity
2.4. Selection of Optimal Extracts for Liposomal Incorporation
2.5. Liposomal Characterization and Antioxidant Activity
2.6. Effect of Liposomal Encapsulation on Antioxidant Activity
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Sample Preparation
3.3. Extraction Procedure
3.3.1. Maceration
3.3.2. Ultrasound-Assisted Extraction (UAE)
3.3.3. Combined Supercritical CO2 and Pressurized Liquid Extraction (ScCO2-PLE)
3.4. Liposome Preparation and Characterization
3.5. Encapsulation Efficiency and Stability of Liposomal Formulations
3.6. LC–MS Characterization-Chemical Composition of Chaga Extracts
3.7. Determination of Antioxidant Activity Towards DPPH Radicals
3.8. Determination of Antioxidant Activity Towards Hydroxyl Radicals
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| UAE | Ultrasound-Assisted Extraction |
| ScCO2-PLE | Supercritical CO2-Pressurized Liquid Extraction |
| HPLC | High-Performance Liquid Chromatography |
| LC | Liquid Chromatography |
| MS | Mass Spectrometry |
| PCA | Principal Component Analysis |
| EPR | Electron Paramagnetic Resonance |
| AA | Antioxidant Activity |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl |
| DEPMPO | 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide |
| •OH | Hydroxyl radical |
| TEM | Transmission Electron Microscopy |
| DLS | Dynamic Light Scattering |
| ELS | Electrophoretic Light Scattering |
| SE | Standard Error |
References
- Tee, P.Y.; Tang, Y.Q.; Fung, S.Y.; Chia, A.C.Y. Therapeutic properties of Inonotus obliquus (Chaga mushroom): A review. Mycology 2023, 15, 144–161. [Google Scholar] [CrossRef]
- Szychowski, K.A.; Skóra, B.; Pomianek, T.; Gmiński, J. Inonotus obliquus—From folk medicine to clinical use. J. Tradit. Complement. Med. 2020, 11, 293–302. [Google Scholar] [CrossRef]
- Duru, K.C.; Kovaleva, E.G.; Danilova, I.G.; van der Bijl, P. The pharmacological potential and possible molecular mechanisms of action of Inonotus obliquus from preclinical studies. Phytother. Res. 2019, 33, 1966–1980. [Google Scholar] [CrossRef]
- Zheng, W.; Miao, K.; Liu, Y.; Zhao, Y.; Zhang, M.; Pan, S.; Dai, Y. Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production. Appl. Microbiol. Biotechnol. 2010, 87, 1237–1254. [Google Scholar] [CrossRef]
- Géry, A.; Dubreule, C.; André, V.; Rioult, J.P.; Bouchart, V.; Heutte, N.; Eldin de Pécoulas, P.; Krivomaz, T.; Garon, D. Chaga (Inonotus obliquus), a future potential medicinal fungus in oncology? A chemical study and a comparison of the cytotoxicity against human lung adenocarcinoma cells (A549) and human bronchial epithelial cells (BEAS-2B). Integr. Cancer Ther. 2018, 17, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Hur, H.; Chang, K.C.; Lee, T.S.; Ka, K.H.; Jankovsky, L. Introduction to distribution and ecology of sterile conks of Inonotus obliquus. Mycobiology 2008, 36, 199–202. [Google Scholar] [CrossRef]
- Shashkina, M.Y.; Shashkin, P.N.; Sergeev, A.V. Chemical and Medicobiological Properties of Chaga (Review). Pharm. Chem. J. 2006, 40, 560–568. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, J.; Wu, J.; Xu, Y.; Liu, Y.; Li, F.; Liu, Q.; Lu, K.; Liang, T.; Hao, J.; et al. Natural Products and Health Care Functions of Inonotus obliquus. Curr. Issues Mol. Biol. 2025, 47, 269. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, E.; Blundell, R.; Baral, B.; Karpinski, T.M.; Aruci, E.; Atrooz, O.M. A brief overview of the medicinal and nutraceutical importance of Inonotus obliquus (Chaga) mushrooms. Heliyon 2024, 10, e35638. [Google Scholar] [CrossRef]
- Arata, S.; Watanabe, J.; Maeda, M.; Yamamoto, M.; Matsuhashi, H.; Mochizuki, M.; Kagami, N.; Honda, K.; Inagaki, M. Continuous intake of the Chaga mushroom (Inonotus obliquus) aqueous extract suppresses cancer progression and maintains body temperature in mice. Heliyon 2016, 2, e00111. [Google Scholar] [CrossRef]
- Szychowski, K.A.; Rybczyńska-Tkaczyk, K.; Tobiasz, J.; Yelnytska-Stawasz, V.; Pomianek, T.; Gmiński, J. Biological and anticancer properties of Inonotus obliquus extracts. Process Biochem. 2018, 73, 180–187. [Google Scholar] [CrossRef]
- Glamočlija, J.; Ćirić, A.; Nikolić, M.; Fernandes, Â.; Barros, L.; Calhelhal, R.C.; Ferreira, I.C.F.R.; Soković, M.; van Griensven, L.J.L.D. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”. J. Ethnopharmacol. 2015, 162, 323–332. [Google Scholar] [CrossRef]
- Baek, J.; Roh, H.S.; Baek, K.H.; Lee, S.; Lee, S.; Song, S.S.; Kim, K.H. Bioactivity-based analysis and chemical characterization of cytotoxic constituents from Chaga mushroom (Inonotus obliquus) that induce apoptosis in human lung adenocarcinoma cells. J. Ethnopharmacol. 2018, 224, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Raal, A.; Kaldmäe, H.; Kütt, K.; Jürimaa, K.; Silm, M.; Bleive, U.; Aluvee, A.; Adamson, K.; Vester, M.; Erik, M.; et al. Chemical Content and Cytotoxic Activity on Various Cancer Cell Lines of Chaga (Inonotus obliquus) Growing on Betula pendula and Betula pubescens. Pharmaceuticals 2024, 17, 1013. [Google Scholar] [CrossRef]
- Liang, L.; Zhang, Z.; Wang, H. Antioxidant activities of extracts and subfractions from Inonotus obliquus. Int. J. Food Sci. Nutr. 2009, 60, 175–184. [Google Scholar] [CrossRef]
- Wang, J.; Beghelli, D.; Amici, A.; Sut, S.; Dall’Acqua, S.; Lupidi, G.; Dal Ben, D.; Bistoni, O.; Tomassoni, D.; Belletti, B.; et al. Chaga mushroom triterpenoids inhibit dihydrofolate reductase and act synergistically with conventional therapies in breast cancer. Biomolecules 2024, 14, 1454. [Google Scholar] [CrossRef]
- Lazić, V.; Klaus, A.; Kozarski, M.; Doroški, A.; Tosti, T.; Simić, S.; Vunduk, J. The Effect of Green Extraction Technologies on the Chemical Composition of Medicinal Chaga Mushroom Extracts. J. Fungi 2024, 10, 225. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.; Beltrame, G.; Tarvainen, M.; Suomela, J.P.; Yang, B. Supercritical CO2 Extraction of Triterpenoids from Chaga Sterile Conk of Inonotus obliquus. Molecules 2022, 27, 1880. [Google Scholar] [CrossRef]
- Herrero, M.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E. Supercritical fluid extraction: Recent advances and applications. J. Chromatogr. A 2010, 1217, 2495–2511. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Wontcheu Fotso, Y.A.; Ghazi, S.; Belkaid, A.; Soucy, J.; Tremblay, L.; Lamarre, S.; Clarisse, O.; Touaibia, M. Extraction, Chemical Composition, Antiradical Capacity, and Photoprotective Effect of Inonotus obliquus from Eastern Canada. Nutraceuticals 2023, 3, 380–402. [Google Scholar] [CrossRef]
- Hu, Y.; Sheng, Y.; Yu, M.; Li, K.K.; Ren, G.M.; Xu, X.H.; Qu, J.J. Antioxidant Activity of Inonotus obliquus Polysaccharide and Its Amelioration for Chronic Pancreatitis in Mice. Int. J. Biol. Macromol. 2016, 87, 348–356. [Google Scholar] [CrossRef]
- Windsor, C.; Kreynes, A.E.; Chilton, J.S.; Chioffi, W.A.; Krishnamurthy, A.; Ishii, M. Comparative study of Chaga (Inonotus obliquus) dietary supplements using complementary analytical techniques. Int. J. Mol. Sci. 2025, 26, 2970. [Google Scholar] [CrossRef]
- Lu, Y.; Jia, Y.; Xue, Z.; Li, N.; Liu, J.; Chen, H. Recent Developments in Inonotus obliquus (Chaga mushroom) Polysaccharides: Isolation, Structural Characteristics, Biological Activities and Application. Polymers 2021, 13, 1441. [Google Scholar] [CrossRef]
- Fordjour, E.; Manful, C.F.; Javed, R.; Galagedara, L.W.; Cuss, C.W.; Cheema, M.; Thomas, R. Chaga mushroom: A super-fungus with countless facets and untapped potential. Front. Pharmacol. 2023, 14, 1273786. [Google Scholar] [CrossRef]
- Beltrame, G.; Trygg, J.; Hemming, J.; Han, Z.; Yang, B. Comparison of Polysaccharides Extracted from Cultivated Mycelium of Inonotus obliquus with Polysaccharide Fractions Obtained from Sterile Conk (Chaga) and Birch Heart Rot. J. Fungi 2021, 7, 189. [Google Scholar] [CrossRef]
- Milutinović, M.; Nakarada, Đ.; Božunović, J.; Todorović, M.; Gašić, U.; Živković, S.; Skorić, M.; Ivković, Đ.; Savić, J.; Devrnja, N.; et al. Solanum dulcamara L. Berries: A Convenient Model System to Study Redox Processes in Relation to Fruit Ripening. Antioxidants 2023, 12, 346. [Google Scholar] [CrossRef] [PubMed]
- Drenkhan, R.; Kaldmäe, H.; Silm, M.; Adamson, K.; Bleive, U.; Aluvee, A.; Erik, M.; Raal, A. Comparative Analyses of Bioactive Compounds in Inonotus obliquus Conks Growing on Alnus and Betula. Biomolecules 2022, 12, 1178. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Sato, Y.; Konishi, T. Antioxidant small phenolic ingredients in Inonotus obliquus (persoon) Pilat (Chaga). Chem. Pharm. Bull. 2007, 55, 1222–1226. [Google Scholar] [CrossRef]
- Gao, X.Y.; Li, X.Y.; Zhang, C.Y.; Bai, C.Y. Scopoletin: A review of its pharmacology, pharmacokinetics, and toxicity. Front. Pharmacol. 2024, 23, 1268464. [Google Scholar] [CrossRef] [PubMed]
- Kornicka, A.; Balewski, Ł.; Lahutta, M.; Kokoszka, J. Umbelliferone and Its Synthetic Derivatives as Suitable Molecules for the Development of Agents with Biological Activities: A Review of Their Pharmacological and Therapeutic Potential. Pharmaceuticals 2023, 16, 1732. [Google Scholar] [CrossRef]
- Sakthivel, K.M.; Vishnupriya, S.; Priya Dharshini, L.C.; Rasmi, R.R.; Ramesh, B. Modulation of multiple cellular signalling pathways as targets for anti-inflammatory and anti-tumorigenesis action of Scopoletin. J. Pharm. Pharmacol. 2022, 74, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.; Kumar, V.; Srivastava, S.K.; Agarwal, S.K.; Burman, A.C. Betulinic acid derivatives as anticancer agents: Structure activity relationship. Anticancer Agents Med. Chem. 2006, 6, 271–279. [Google Scholar] [CrossRef]
- Hong, E.H.; Song, J.H.; Kang, K.B.; Sung, S.H.; Ko, H.J.; Yang, H. Anti-Influenza Activity of Betulinic Acid from Zizyphus jujuba on Influenza A/PR/8 Virus. Biomol. Ther. 2015, 23, 345–349. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, H.; Dong, Q.; Hao, X.; Qiao, L. Maslinic acid induces anticancer effects in human neuroblastoma cells mediated via apoptosis induction and caspase activation, inhibition of cell migration and invasion and targeting MAPK/ERK signaling pathway. AMB Express 2020, 10, 104. [Google Scholar] [CrossRef]
- Hsum, Y.W.; Yew, W.T.; Hong, P.L.; Soo, K.K.; Hoon, L.S.; Chieng, Y.C.; Mooi, L.Y. Cancer chemopreventive activity of maslinic acid: Suppression of COX-2 expression and inhibition of NF-κB and AP-1 activation in Raji cells. Planta Med. 2011, 77, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Huie, C.W. A review of modern sample preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem. 2002, 373, 23–30. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Hajimirsadeghi, S.S. Supercritical fluid extraction in plant essential and volatile oil analysis. J. Chromatogr. A 2007, 1163, 2–24. [Google Scholar] [CrossRef]
- Li, Y.; Fabiano-Tixier, A.S.; Vian, M.A.; Chemat, F. Solvent-free extraction of bioactive compounds provides a tool foor green analytical chemistry. TrAC Trends Anal. Chem. 2013, 47, 1–11. [Google Scholar] [CrossRef]
- Dikalov, S.; Kirilyuk, I.; Grigor’ev, I. Spin trapping of O-, C-, and S-centered radicals and peroxynitrite by 2H-imidazole-1-oxides. Biochem. Biophys. Res. Commun. 1996, 218, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, L.; Xiao, R.; Qiu, S.; Cao, J.; Fu, Y.; Wang, Z. New evidence for the involvement of superoxide and singlet oxygen in UV-activated peroxydisulfate system under acidic conditions. Chem. Eng. J. 2025, 505, 159531. [Google Scholar] [CrossRef]
- Howarth, D.F.; Weil, J.A.; Zimpel, Z. Generalization of the lineshape useful in magnetic resonance spectroscopy. J. Magn. Reson. 2003, 161, 215–221. [Google Scholar] [CrossRef]
- Morina, F.; Kuvelja, A.; Bruckner, D.; Mojović, M.; Nakarada, D.; Bokhari, S.N.H.; Vujić, B.; Falkenberg, G.; Kupper, H. How eriophyd mites shape metal metabolism in leaf galls on Tilia cordata. New Phytol. 2025, 246, 2222–2242. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, M.; Zhao, Y.; Miao, K.; Pan, S.; Cao, F.; Dai, Y. Analysis of antioxidant metabolites by solvent extraction from sclerotia of Inonotus obliquus (Chaga). Phytochem. Anal. 2011, 22, 95–102. [Google Scholar] [CrossRef]
- Muzolf-Panek, M.; Stuper-Szablewska, K. Comprehensive study on the antioxidant capacity and phenolic profiles of black seed and other spices and herbs: Effect of solvent and time of extraction. Food Meas. 2021, 15, 4561–4574. [Google Scholar] [CrossRef]
- Park, I.-H.; Chung, S.-K.; Lee, K.-B.; Yoo, Y.-C.; Kim, S.-K.; Kim, G.-S.; Song, K.-S. An antioxidant hispidin from the mycelial cultures of Phellinus linteus. Arch. Pharm. Res. 2004, 27, 615–618. [Google Scholar] [CrossRef]
- Huang, S.-Y.; Chang, S.-F.; Chau, S.-F.; Chiu, S.-C. The protective effect of hispidin against hydrogen peroxide-induced oxidative stress in ARPE-19 cells via Nrf2 signaling pathway. Biomolecules 2019, 9, 380. [Google Scholar] [CrossRef]
- Gao, H.; Yin, C.; Li, C.; Li, Y.; Shi, D.; Fan, X.; Yao, F.; Wu, W.; Li, J. Phenolic profile, antioxidation and anti-proliferation activity of phenolic-rich extracts from Sanghuangporusvaninii. Curr. Res. Food Sci. 2023, 6, 100519. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Chun, S.; Gopal, J.; Muthu, M. Antioxidant Activity of Mushroom Extracts/Polysaccharides—Their Antiviral Properties and Plausible AntiCOVID-19 Properties. Antioxidants 2021, 10, 1899. [Google Scholar] [CrossRef]
- Petraglia, T.; Russo, R.; Monti, D.; Liguori, G.; Capasso, R. Antioxidant activity of polysaccharides from the edible mushroom Pleurotus eryngii. Molecules 2023, 28, 2176. [Google Scholar] [CrossRef]
- Zuorro, A.; Iannone, R.; Lavecchia, R. Water-organic solvent extraction of phenolic antioxidants from brewers’ spent grain. Processes 2019, 7, 126. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Boulebd, H.; Amine Khodja, I.; Benarous, K.; Mączyński, M.; Spiegel, M. A Comprehensive Experimental and Theoretical Investigation of the Antioxidant Properties of Hispidin and Isohispidin. J. Org. Chem. 2025, 90, 3257–3268. [Google Scholar] [CrossRef]
- Anouar, E.H.; Shah, S.A.A.; Hassan, N.B.; Moussaoui, N.E.; Ahmad, R.; Zulkefeli, M.; Weber, J.-F.F. Antioxidant Activity of Hispidin Oligomers from Medicinal Fungi: A DFT Study. Molecules 2014, 19, 3489–3507. [Google Scholar] [CrossRef] [PubMed]
- Izadiyan, Z.; Misran, M.; Kalantari, K.; Webster, T.J.; Kia, P.; Basrowi, N.A.; Rasouli, E.; Shameli, K. Advancements in Liposomal Nanomedicines: Innovative Formulations, Therapeutic Applications, and Future Directions in Precision Medicine. Int. J. Nanomed. 2025, 20, 1213–1262. [Google Scholar] [CrossRef]
- Losada-Barreiro, S.; Sezgin-Bayindir, Z.; Paiva-Martins, F.; Bravo-Díaz, C. Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines 2022, 10, 3051. [Google Scholar] [CrossRef] [PubMed]
- Marinković, A.; Nakarada, Đ.; Marinković, M.; Waisi, H.; Živanić, V.; Vazquez, A.; Mojović, M. From Analytical Profiling to Liposomal Delivery: Cannabinol as a Model for Antioxidant Encapsulation and Diffusion Enhancement. Molecules 2025, 30, 3433. [Google Scholar] [CrossRef]
- Pilařová, V.; Al Hamimi, S.; Cunico, L.P.; Nováková, L.; Turner, C. Extending the design space in solvent extraction—From supercritical fluids to pressurized liquids using carbon dioxide, ethanol, ethyl lactate, and water in a wide range of proportions. Green Chem. 2019, 21, 5427. [Google Scholar] [CrossRef]
- Kutluer, F. Effect of formaldehyde exposure on phytochemical content and functional activity of Agaricus bisporus (Lge.) Sing. Environ. Sci. Pollut. Res. 2024, 31, 35581–35594. [Google Scholar] [CrossRef]
- Kassymova, D.; Zhusupova, G.; Ogay, V.; Zhussupova, A.; Katragunta, K.; Avula, B.; Khan, I.A. Phytochemical Profiles and In Vitro Immunomodulatory Activities of Extracts Obtained from Limonium gmelinii Using Different Extraction Methods. Plants 2023, 12, 4019. [Google Scholar] [CrossRef]
- Jankov, M.; Léguillier, V.; Gašić, U.; Anba-Mondoloni, J.; Ristivojević, M.K.; Radoičić, A.; Dimkić, I.; Ristivojević, P.; Vidic, J. Antibacterial Activities of Agaricus bisporus Extracts and Their Synergistic Effects with the Antistaphylococcal Drug AFN-1252. Foods 2024, 13, 1715. [Google Scholar] [CrossRef]
- Glavinić, U.; Nakarada, Đ.; Stevanović, J.; Gašić, U.; Ristanić, M.; Mojović, M.; Stanimirović, Z. Chemical Composition and Antioxidant Activity of Prokupac Grape Pomace Extract: Implications for Redox Modulation in Honey Bee Cells. Antioxidants 2025, 14, 751. [Google Scholar] [CrossRef]
- Ahmoda, R.A.; Pirković, A.; Milošević, M.; Marinković, A.; Jovanović, A. UV Irradiation’s Influence on Fumitory Extract-Loaded Liposomes. Eng. Proc. 2025, 99, 16. [Google Scholar] [CrossRef]
- Stojković, D.; Gašić, U.; Uba, A.I.; Zengin, G.; Rajaković, M.; Stevanović, M.; Drakulić, D. Chemical profiling of Anthriscus cerefolium (L.) Hoffm., biological potential of the herbal extract, molecular modeling and KEGG pathway analysis. Fitoterapia 2024, 177, 106115. [Google Scholar] [CrossRef]
- Pantelić, M.M.; Dabić Zagorac, D.Č.; Davidović, S.M.; Todić, S.R.; Bešlić, Z.S.; Gašić, U.M.; Tešić, Ž.L.; Natić, M.M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chem. 2016, 211, 243–252. [Google Scholar] [CrossRef]
- Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic profiles of leaves, grapes and wine of grapevine variety Vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef] [PubMed]
- Fermo, P.; Comite, V.; Sredojević, M.; Ćirić, I.; Gašić, U.; Mutić, J.; Baošić, R.; Tešić, Ž. Elemental analysis and phenolic profiles of selected Italian wines. Foods 2021, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Ž.; Bajić, S.S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Tešić, Ž.L.; Pešić, M.B. Phenolic compounds and biopotential of grape pomace extracts from Prokupac red grape variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
- Nakarada, Đ.J.; Marković, S.Z.; Popović, M.D.; Dimitrijević, M.S.; Rakić, A.A.; Mojović, M.D. Redox properties of grape wine skin extracts from the Šumadija region: An electron paramagnetic resonance study. Hosp. Pharmacol. Int. Multidiscip. J. 2021, 8, 1004–1013. [Google Scholar] [CrossRef]
- Morpheus Software. Available online: https://software.broadinstitute.org/morpheus/ (accessed on 23 December 2025).






| No | tR, min | Molecular Formula, [M–H]− | Calculated Mass, m/z | Exact Mass, m/z | Δ ppm | MS2 Fragments, (% Base Peak) | Compound Name | Extract |
|---|---|---|---|---|---|---|---|---|
| 1 | 0.53 | C6H13O6− | 181.07176 | 181.07244 | −3.74 | 59.01408(75), 71.01416(59), 89.02478(100), 101.02483(79) | Mannitol | all |
| 2 | 0.55 | C6H11O7− | 195.05103 | 195.05185 | −4.20 | 59.01411(22), 75.00911(100), 87.00919(18), 99.00924(29), 129.01994(50), 195.05188(68) | Gluconic acid | all |
| 3 | 0.57 | C4H5O6− | 149.00920 | 149.00985 | −4.38 | 59.01409(53), 72.99344(46), 75.00909(12), 87.00916(90), 103.00414(20), 149.00986(100) | Dihydroxybutanedioic acid | all |
| 4 | 0.61 | C6H7O7− | 191.01973 | 191.02052 | −4.17 | 85.02984(33), 87.0091(47), 111.00922(100), 129.01984(8) | Isocitric acid | all |
| 5 | 0.61 | C7H7O8− | 219.01464 | 219.01565 | −4.61 | 69.03485(99), 83.05054(51), 85.02982(76), 99.00910(67), 113.02486(100), 131.03543(51) | 2-Hydroxy-4-oxo-1,2,4-butanetricarboxylic acid | all |
| 6 | 0.68 | C8H5O6− | 197.00916 | 197.00997 | −4.11 | 109.02995(100), 125.02489(5), 153.01997(97), 197.01007(12) | 2,5-Dihydroxyterephthalic acid | all |
| 7 | 0.72 | C12H15O7− | 271.08233 | 271.08339 | −3.90 | 109.02996(100), 121.06644(38), 139.04074(62), 139.0771(34), 227.05774(35), 227.09396(31) | Arbutin | Chaga 2, 5, 7–9 |
| 8 | 0.75 | C7H5O4− | 153.01933 | 153.02002 | −4.49 | 109.03004(100), 153.02011(31) | 3,4-Dihydroxybenzoic acid | all |
| 9 | 0.78 | C9H5O6− | 209.00916 | 209.01014 | −4.69 | 93.03501(7), 121.03004(100), 137.02505(8), 165.02008(45), 209.01004(5) | Benzenetricarboxylic acid | Chaga 1–5, 7–9 |
| 10 | 1.01 | C6H3O5− | 154.99860 | 154.99932 | −4.61 | 67.01929(100), 83.01434(6), 111.00941(64), 111.04633(3), 154.99959(13) | Furandicarboxylic acid | all |
| 11 | 1.04 | C7H3O7− | 198.98840 | 198.98928 | −4.44 | 67.01925(100), 111.00932(96), 154.99939(17) | Meconic acid | Chaga 1–4, 6–9 |
| 12 | 1.46 | C7H5O3− | 137.02442 | 137.02493 | −3.70 | 137.02499(100) | 3,4-Dihydroxybenzaldehyde | all |
| 13 | 2.62 | C9H7O4− | 179.03498 | 179.03572 | −4.12 | 135.04579(100), 179.03587(26) | Caffeic acid | Chaga 1, 2, 6, 8 |
| 14 | 5.67 | C8H5O5− | 181.01425 | 181.01505 | −4.46 | 93.03501(100), 137.02507(18), 181.01511(37) | 4-Hydroxyisophthalic acid | all |
| 15 | 5.76 | C12H15O7− | 271.08233 | 271.08345 | −4.14 | 138.03302(18), 153.05652(100), 167.03587(10), 196.03871(12), 197.04655(9), 212.07013(22) | 2-Hydroxy-1-(hydroxymethyl)ethyl 4-hydroxy-3,5-dimethoxybenzoate | all |
| 16 | 5.82 | C9H9O5− | 197.04555 | 197.04638 | −4.20 | 123.00948(9), 138.03305(14), 153.05661(5), 166.99947(26), 182.02299(100), 197.04655(12) | Syringic acid | all |
| 17 | 5.99 | C14H9O6− | 273.04046 | 273.04165 | −4.35 | 167.05093(18), 185.06160(30), 229.05151(33), 273.04156(100) | 6,6′-Dihydroxy[1,1′-biphenyl]-3,3′-dicarboxylic acid | all |
| 18 | 6.16 | C12H5O6− | 245.00916 | 245.01021 | −4.28 | 133.03009(61), 157.03021(100), 189.02017(50), 201.02036(23), 217.01501(24), 245.01038(83) | Gomphilactone | Chaga 3–6, 9 |
| 19 | 6.17 | C13H5O8− | 288.99899 | 289.00011 | −3.86 | 189.02022(16), 201.02042(10), 217.01517(100), 245.01030(41), 289.00015(71) | Phelligridin J | Chaga 3–6, 8, 9 |
| 20 | 6.28 | C9H5O7− | 225.00408 | 225.00509 | −4.50 | 93.03491(100), 137.02498(14), 181.01485(8), 225.00493(56) | Hydroxy-benzenetricarboxylic acid | Chaga 1–4, 6–8 |
| 21 | 6.28 | C9H5O3− | 161.02442 | 161.02512 | −4.39 | 117.03510(100), 161.02510(23) | Umbelliferone | all |
| 22 | 6.29 | C11H5O7− | 249.00408 | 249.00509 | −4.08 | 117.03514(28), 161.02512(100) | 3-Hydroxy-2-oxo-2H-1-benzopyran-4,6-dicarboxylic acid | all |
| 23 | 6.35 | C10H9O3− | 177.05570 | 177.05637 | −3.81 | 135.04570(4), 177.05637(100) | (E)-4-(3,4-Dihydroxyphenyl)but-3-en-2-one | all |
| 24 | 6.44 | C14H15O7− | 295.08233 | 295.08354 | −4.10 | 119.05084(65), 163.04097(77), 262.04962(92), 265.03656(20), 277.07303(100), 280.06021(73) | Aquilarin A | Chaga 1–6, 8,9 |
| 25 | 6.45 | C23H27O13− | 511.14572 | 511.14769 | −3.86 | 180.04359(12), 182.02277(18), 195.06709(96), 197.04636(100), 210.05417(16), 225.07782(55) | Dimethoxyhydroquinone syringoyl-hexsode | Chaga 2–9 |
| 26 | 6.57 | C12H9O8− | 281.03029 | 281.03145 | −4.13 | 137.02486(20), 149.06129(79), 193.01796(13), 193.05049(12), 237.04102(19), 281.03119(100) | Benzenetetracarboxylic acid dimethyl ester | Chaga 1–7, 9 |
| 27 | 6.60 | C10H7O4− | 191.03498 | 191.03580 | −4.30 | 132.02229(33), 147.04602(10), 176.01225(100), 191.03641(27) | Scopoletin | all |
| 28 | 6.65 | C12H7O8− | 279.01464 | 279.01580 | −4.17 | 132.02231(6), 147.04581(12), 176.01222(40), 191.03578(100) | Spinochrome A | all |
| 29 | 6.72 | C16H15O9− | 351.07216 | 351.07336 | −3.42 | 135.04578(16), 179.03586(11), 182.02275(9), 197.04654(11), 223.02573(100) | Auxarthrol C | all |
| 30 | 6.73 | C13H9O5− | 245.04555 | 245.04659 | −4.24 | 135.04564(5), 159.04578(100), 201.05643(45) | Hispidin | Chaga 1–6, 8,9 |
| 31 | 6.79 | C12H9O4− | 217.05063 | 217.05160 | −4.44 | 133.03008(61), 155.10849(11), 171.10339(10), 175.04076(16), 217.05165(100) | Inotilone | Chaga 1–6, 8,9 |
| 32 | 6.88 | C15H9O7− | 301.03538 | 301.03673 | −4.48 | 167.05087(7), 195.04597(26), 213.05667(53), 239.03612(15), 257.04657(100), 301.03659(63) | 4-(2,6-Dihydroxybenzoyl)-3-formyl-5-hydroxybenzoic acid | Chaga 1–8 |
| 33 | 6.99 | C9H15O4− | 187.09758 | 187.09840 | −4.39 | 125.09777(100) | Azelaic acid | all |
| 34 | 7.80 | C12H11O4− | 219.06628 | 219.06716 | −3.99 | 135.04575(100), 161.02509(5), 177.05649(3) | Hispolon | Chaga 2–6, 9 |
| 35 | 7.81 | C8H7O2− | 135.04515 | 135.04577 | −4.55 | NA | 4-Methoxybenzaldehyde | Chaga 3–6, 9 |
| 36 | 7.82 | C20H11O8− | 379.04594 | 379.04740 | −3.84 | 229.01538(18), 269.01025(100), 307.06244(17), 335.05743(35), 351.05225(14) | Phelligridin D | all |
| 37 | 9.04 | C17H25O4− | 293.17583 | 293.17724 | −4.81 | 117.03513(24), 161.02515(34), 205.01514(42), 220.14780(42), 221.15555(100), 236.10634(86) | Gingerol | all |
| 38 | 10.32 | C18H31O3− | 295.22787 | 295.22919 | −4.48 | 119.05076(22), 163.04105(15), 171.10347(48), 277.21844(100) | (12Z)-10-Oxo-12-octadecenoic acid | all |
| 39 | 10.56 | C30H49O4− | 473.36363 | 473.36524 | −3.40 | 473.36551(100) | Inonoterpene A | Chaga 1–6, 8,9 |
| 40 | 10.65 | C30H47O5− | 487.34290 | 487.34473 | −3.77 | 209.15549(11), 425.34958(4), 443.35507(17), 469.33310(5), 487.34460(100) | Maslinic acid | all |
| 41 | 10.67 | C31H49O4− | 485.36363 | 485.36535 | −3.53 | 485.36624(100) | Hispindic acid B | all |
| 42 | 11.02 | C31H47O4− | 483.34798 | 483.35008 | −4.34 | 357.28162(4), 367.26627(6), 369.28171(8), 439.37103(8), 483.35114(100) | Hispindic acid A | Chaga 3–6, 8, 9 |
| 43 | 11.91 | C39H55O5− | 603.40550 | 603.40758 | −3.44 | 161.02512(3), 603.40723(100) | Betulin-3-caffeate | all |
| 44 | 11.94 | C30H45O3− | 453.33742 | 453.33902 | −3.52 | 453.33911(100) | Pinicolic acid | all |
| 45 | 11.94 | C28H43O6− | 475.30651 | 475.30811 | −3.37 | 315.27060(23), 369.31760(15), 413.30756(31), 431.31805(100) | Polyporusterone B | all |
| 46 | 12.10 | C30H47O3− | 455.35307 | 455.35469 | −3.55 | 455.35474(100) | Betulinic acid | all |
| Extract | Extraction Method | Solvent | DPPH Scavenging (%) | OH Scavenging (%) |
|---|---|---|---|---|
| Chaga 1 | Maceration | Water | 56.2 ± 0.1 | 31.5 ± 1.2 |
| Chaga 2 | UAE | Water | 65.3 ± 0.1 | 45.3 ± 1.2 |
| Chaga 3 | Maceration | 50% Ethanol | 98.8 ± 0.3 | 90.6 ± 1.0 |
| Chaga 4 | UAE | 50% Ethanol | 98.4 ± 0.3 | 92.7 ± 1.0 |
| Chaga 5 | Maceration | 70% Ethanol | 94.3 ± 0.3 | 91.6 ± 1.0 |
| Chaga 6 | UAE | 70% Ethanol | 98.5 ± 0.3 | 91.7 ± 1.0 |
| Chaga 7 | ScCO2-PLE | Water | 38.1 ± 0.1 | 69.7 ± 1.2 |
| Chaga 8 | ScCO2-PLE | 50% Ethanol | 91.8 ± 0.3 | 89.6 ± 1.0 |
| Chaga 9 | ScCO2-PLE | 70% Ethanol | 15.7 ± 0.3 | 89.5 ± 1.0 |
| r (DPPH) | r (•OH) | |
|---|---|---|
| Azelaic acid | −0.94 *** | −0.86 ** |
| Dihydroxybutanedioic acid | −0.82 ** | 0.81 ** |
| Hispolon | 0.73 * | 0.81 ** |
| 4-Methoxybenzaldehyde | 0.72 * | 0.80 * |
| Hispidin | 0.66 | 0.79 * |
| Polyporusterone B | 0.63 | −0.79 * |
| 4-Hydroxyisophthalic acid | −0.62 | −0.79 * |
| Hispindic acid B | 0.59 | 0.78 * |
| Gluconic acid | −0.58 | −0.77 * |
| Gingerol | −0.58 | 0.75 * |
| Sample | Extraction Method | Solvent | DPPH Scavenging (%) | •OH Scavenging (%) |
|---|---|---|---|---|
| Liposomes + Chaga 7 | ScCO2-PLE | Water | 2.3 ± 0.7 | 16.1 ± 2.1 |
| Liposomes + Chaga 4 | UAE | 50% Ethanol | 93.5 ± 0.5 | 82.9 ± 1.6 |
| Liposomes + Chaga 6 | UAE | 70% Ethanol | 87.6 ± 0.5 | 86.1 ± 1.6 |
| Sample | Extraction Method | Solvent | DPPH Scavenging (%) | •OH Scavenging (%) |
|---|---|---|---|---|
| Chaga 7 | ScCO2-PLE | Water | 38.1 ± 0.1 | 69.7 ± 1.2 |
| Liposomes + Chaga 7 | ScCO2-PLE | Water | 2.3 ± 0.7 | 16.1 ± 2.1 |
| Chaga 4 | UAE | 50% Ethanol | 98.4 ± 0.3 | 92.7 ± 1.0 |
| Liposomes + Chaga 4 | UAE | 50% Ethanol | 93.5 ± 0.5 | 82.9 ± 1.6 |
| Chaga 6 | UAE | 70% Ethanol | 98.5 ± 0.3 | 91.7 ± 1.0 |
| Liposomes + Chaga 6 | UAE | 70% Ethanol | 87.6 ± 0.5 | 86.1 ± 1.6 |
| Extract | Extraction Method | Solvent |
|---|---|---|
| Chaga 1 | Maceration | Water |
| Chaga 2 | UAE | Water |
| Chaga 3 | Maceration | 50% Ethanol |
| Chaga 4 | UAE | 50% Ethanol |
| Chaga 5 | Maceration | 70% Ethanol |
| Chaga 6 | UAE | 70% Ethanol |
| Chaga 7 | ScCO2-PLE | Water |
| Chaga 8 | ScCO2-PLE | 50% Ethanol |
| Chaga 9 | ScCO2-PLE | 70% Ethanol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Preradović, N.; Nakarada, Đ.; Gašić, U.; Simonović Radosavljević, J.; Mojović, M. Green Extraction and Liposomal Encapsulation of Inonotus obliquus (Chaga) Extracts: Comparative Phytochemical and Antioxidant Analysis. Molecules 2026, 31, 146. https://doi.org/10.3390/molecules31010146
Preradović N, Nakarada Đ, Gašić U, Simonović Radosavljević J, Mojović M. Green Extraction and Liposomal Encapsulation of Inonotus obliquus (Chaga) Extracts: Comparative Phytochemical and Antioxidant Analysis. Molecules. 2026; 31(1):146. https://doi.org/10.3390/molecules31010146
Chicago/Turabian StylePreradović, Nevena, Đura Nakarada, Uroš Gašić, Jasna Simonović Radosavljević, and Miloš Mojović. 2026. "Green Extraction and Liposomal Encapsulation of Inonotus obliquus (Chaga) Extracts: Comparative Phytochemical and Antioxidant Analysis" Molecules 31, no. 1: 146. https://doi.org/10.3390/molecules31010146
APA StylePreradović, N., Nakarada, Đ., Gašić, U., Simonović Radosavljević, J., & Mojović, M. (2026). Green Extraction and Liposomal Encapsulation of Inonotus obliquus (Chaga) Extracts: Comparative Phytochemical and Antioxidant Analysis. Molecules, 31(1), 146. https://doi.org/10.3390/molecules31010146

