Is the Reindeer Lichen Cladonia arbuscula Really Producing Isousnic Acid? A Chemotaxonomy Query
Abstract
1. Introduction
2. Results
2.1. Identification of the Lichen Using DNA Barcoding
2.2. Purification and Identification of isoUA from Cladonia arbuscula
3. Discussion
4. Materials and Methods
4.1. Lichen Sampling
4.2. Identification of the Lichen by DNA Barcoding
4.3. Sample Preparation and Purification
4.4. Metabolite Profiling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACN | Acetonitrile |
| FA | Formic acid |
| HPLC | High-performance liquid chromatography |
| IsoUA | Isousnic acid |
| nrITS | Nuclear ribosomal internal transcribed spacer |
| RBP2 | RNA polymerase II second largest subunit |
| s.l. | Sensu lato (in the broad sense) |
| s.str. | Sensu stricto (in the strict sense) |
| ssp. | Subspecies |
| UA | Usnic acid |
| UHPLC-PDA-MS | Ultra-high-performance liquid chromatography–photodiode array detection–mass spectrometry |
References
- Hawksworth, D.L.; Grube, M. Lichens redefined as complex ecosystems. New Phytol. 2020, 227, 1281–1283. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Dal Grande, F.; Martin, F.M.; Medema, M.H. Breaking into nature’s secret medicine cabinet: Lichens—A biochemical goldmine ready for discovery. New Phytol. 2025, 246, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Heidmarsson, S.; Olafsdottir, E.S.; Buonfiglio, R.; Kogej, T.; Omarsdottir, S. Secondary metabolites from cetrarioid lichens: Chemotaxonomy, biological activities and pharmaceutical potential. Phytomedicine 2016, 23, 441–459. [Google Scholar] [CrossRef]
- Nguyen, K.-H.; Chollet-Krugler, M.; Gouault, N.; Tomasi, S. UV-protectant metabolites from lichens and their symbiotic partners. Nat. Prod. Rep. 2013, 30, 1490–1508. [Google Scholar] [CrossRef]
- Solhaug, K.A.; Gauslaa, Y. Secondary Lichen Compounds as Protection Against Excess Solar Radiation and Herbivores. In Progress in Botany 73; Lüttge, U., Beyschlag, W., Büdel, B., Francis, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 283–304. [Google Scholar]
- Rundel, P.W. The ecological role of secondary lichen substances. Biochem. Syst. Ecol. 1978, 6, 157–170. [Google Scholar] [CrossRef]
- Bačkor, M.; Goga, M.; Ručová, D.; Urminská, D.; Bačkorová, M.; Klejdus, B. Allelopathic effects of three lichen secondary metabolites on cultures of aposymbiotically grown lichen photobionts and free-living alga Scenedesmus quadricauda. S. Afr. J. Bot. 2023, 162, 688–693. [Google Scholar] [CrossRef]
- Molnár, K.; Farkas, E. Current Results on Biological Activities of Lichen Secondary Metabolites: A Review. Z. Naturforsch. C J. Biosci. 2010, 65, 157–173. [Google Scholar] [CrossRef]
- Shukla, V.; Joshi, G.P.; Rawat, M.S.M. Lichens as a potential natural source of bioactive compounds: A review. Phytochem. Rev. 2010, 9, 303–314. [Google Scholar] [CrossRef]
- Culberson, W.L. The use of chemistry in the systematics of the lichens. Taxon 1969, 18, 152–166. [Google Scholar] [CrossRef]
- Rogers, R.W. Chemical variation and the species concept in lichenized ascomycetes. Bot. J. Linn. Soc. 1989, 101, 229–239. [Google Scholar] [CrossRef]
- Lumbsch, H.T. The use of metabolic data in lichenology at the species and subspecific levels. Lichenologist 1998, 30, 357–367. [Google Scholar] [CrossRef]
- Cocchietto, M.; Skert, N.; Nimis, P.L.; Sava, G. A review on usnic acid, an interesting natural compound. Naturwissenschaften 2002, 89, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Shi, Q.; Fang, J.L.; Mei, N.; Ali, A.A.; Lewis, S.M.; Leakey, J.E.; Frankos, V.H. Review of usnic acid and Usnea barbata toxicity. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 317–338. [Google Scholar] [CrossRef]
- Ingólfsdóttir, K. Usnic acid. Phytochemistry 2002, 61, 729–736. [Google Scholar] [CrossRef]
- Wedin, M. A phylogenetic analysis of the lichen family Sphaerophoraceae (Caliciales); a new generic classification and notes on character evolution. Plant Syst. Evol. 1993, 187, 213–241. [Google Scholar] [CrossRef]
- Printzen, C. Corticolous and Lignicolous Species of Lecanora (Lecanoraceae, Lecanorales) with Usnic or Isousnic Acid in the Sonoran Desert Region. Bryologist 2001, 104, 382–409. [Google Scholar] [CrossRef]
- Shibata, S.; Taguchi, H. Occurrence of isousnic acid in lichens with reference to “isodihydrousnic acid” derived from dihydrousnic acid. Tetrahedron Lett. 1967, 8, 4867–4871. [Google Scholar] [CrossRef]
- Myllys, L.; Stenroos, S.; Thell, A.; Ahti, T. Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). Mol. Phylogenet. Evol. 2003, 27, 58–69. [Google Scholar] [CrossRef]
- Piercey-Normore, M.D.; Ahti, T.; Goward, T. Phylogenetic and haplotype analyses of four segregates within Cladonia arbuscula s.l. Botany 2010, 88, 397–408. [Google Scholar] [CrossRef]
- Nourish, R.; Oliver, R.W.A. Chemotaxonomic Studies on British Lichens I. Cladonia Subgenus Cladina. Lichenologist 1974, 6, 73–95. [Google Scholar] [CrossRef]
- Tekiela, A.; Furmanek, Ł.; Andrusiewicz, M.; Bara, G.; Seaward, M.R.D.; Kapusta, I.; Czarnota, P. Can lichen secondary compounds impact upon the pathogenic soil fungi Fusarium oxysporum and F. avenaceum? Folia Cryptog. Estonica 2021, 58, 165–181. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Yamamoto, Y.; Yoshimura, I.; Kurokawa, T.; Huneck, S. Distribution of optical isomers of usnic and isousnic acids analyzed by high performance liquid chromatography. J. Hattori Bot. Lab. 1997, 83, 173–178. [Google Scholar]
- Stenroos, S.; Pino-Bodas, R.; Hyvönen, J.; Lumbsch, H.T.; Ahti, T. Phylogeny of the family Cladoniaceae (Lecanoromycetes, Ascomycota) based on sequences of multiple loci. Cladistics 2019, 35, 351–384. [Google Scholar] [CrossRef] [PubMed]
- Athukorala, S.N.P.; Pino-Bodas, R.; Stenroos, S.; Ahti, T.; Piercey-Normore, M.D. Phylogenetic relationships among reindeer lichens of North America. Lichenologist 2016, 48, 209–227. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Sajak, A.A.B.; Ooi, K.L.; Supriatno; Seow, E.M. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Compos. Anal. 2011, 24, 506–515. [Google Scholar] [CrossRef]
- Jin, J.-q.; Rao, Y.; Bian, X.-l.; Zeng, A.-g.; Yang, G.-d. Solubility of (+)-Usnic Acid in Water, Ethanol, Acetone, Ethyl Acetate and n-Hexane. J. Solution Chem. 2013, 42, 1018–1027. [Google Scholar] [CrossRef]
- McEvoy, M.; Nybakken, L.; Solhaug, K.A.; Gauslaa, Y. UV triggers the synthesis of the widely distributed secondary lichen compound usnic acid. Mycol. Progress. 2006, 5, 221–229. [Google Scholar] [CrossRef]
- Nuno, M. On the occurrence of isousnic acid in Cladonia species. J. Jpn. Bot. 1968, 43, 359–362. [Google Scholar]
- Xu, M.; Oppong-Danquah, E.; Wang, X.; Oddsson, S.; Abdelrahman, A.; Pedersen, S.V.; Szomek, M.; Gylfason, A.E.; Snorradottir, B.S.; Christensen, E.A.; et al. Novel methods to characterise spatial distribution and enantiomeric composition of usnic acids in four Icelandic lichens. Phytochemistry 2022, 200, 113210. [Google Scholar] [CrossRef]
- Huneck, S.; Tibell, L. Occurrence and Chemistry of Isousnic Acid from the Lichen Bunodophoron Ramuliferum. J. Hattori Bot. Lab. 2005, 98, 299–307. [Google Scholar] [CrossRef]
- Cubero, O.F.; Crespo, A.; Fatehi, J.; Bridge, P.D. DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst. Evol. 1999, 216, 243–249. [Google Scholar] [CrossRef]
- Biwersi, M.; Xu, M.; Heiðmarsson, S.; Pálsson, S.; Sorensen, J.L.; Ólafsdóttir, E.S. Mycobiont specific primers for lichenized fungal genus Cladonia (Cladoniaceae, Ascomycota). Mycokeys 2025. In print. [Google Scholar]
- Xu, M.; De Boer, H.; Olafsdottir, E.S.; Omarsdottir, S.; Heidmarsson, S. Phylogenetic diversity of the lichenized algal genus Trebouxia (Trebouxiophyceae, Chlorophyta): A new lineage and novel insights from fungal-algal association patterns of Icelandic cetrarioid lichens (Parmeliaceae, Ascomycota). Bot. J. Linn. Soc. 2020, 194, 460–468. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Collins, R.A.; Cruickshank, R.H. The seven deadly sins of DNA barcoding. Mol. Ecol. Resour. 2013, 13, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef]
- Farkas, E.; Xu, M.; Muhoro, A.M.; Szabó, K.; Lengyel, A.; Heiðmarsson, S.; Viktorsson, E.Ö.; Ólafsdóttir, E.S. The algal partnership is associated with quantitative variation of lichen specific metabolites in Cladonia foliacea from Central and Southern Europe. Symbiosis 2024, 92, 403–419. [Google Scholar] [CrossRef]
- Xu, M.; Heidmarsson, S.; Thorsteinsdottir, M.; Kreuzer, M.; Hawkins, J.; Omarsdottir, S.; Olafsdottir, E.S. Authentication of Iceland Moss (Cetraria islandica) by UPLC-QToF-MS chemical profiling and DNA barcoding. Food Chem. 2018, 245, 989–996. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ísleifsdóttir, D.; Xu, M.; Biwersi, M.; Leblanc, M.-J.; Heiðmarsson, S.; Pálsson, S.; Sorensen, J.L.; Viktorsson, E.Ö.; Ólafsdóttir, E.S. Is the Reindeer Lichen Cladonia arbuscula Really Producing Isousnic Acid? A Chemotaxonomy Query. Molecules 2026, 31, 143. https://doi.org/10.3390/molecules31010143
Ísleifsdóttir D, Xu M, Biwersi M, Leblanc M-J, Heiðmarsson S, Pálsson S, Sorensen JL, Viktorsson EÖ, Ólafsdóttir ES. Is the Reindeer Lichen Cladonia arbuscula Really Producing Isousnic Acid? A Chemotaxonomy Query. Molecules. 2026; 31(1):143. https://doi.org/10.3390/molecules31010143
Chicago/Turabian StyleÍsleifsdóttir, Dagmar, Maonian Xu, Maia Biwersi, Marie-Jeanne Leblanc, Starri Heiðmarsson, Snæbjörn Pálsson, John L. Sorensen, Elvar Örn Viktorsson, and Elín Soffía Ólafsdóttir. 2026. "Is the Reindeer Lichen Cladonia arbuscula Really Producing Isousnic Acid? A Chemotaxonomy Query" Molecules 31, no. 1: 143. https://doi.org/10.3390/molecules31010143
APA StyleÍsleifsdóttir, D., Xu, M., Biwersi, M., Leblanc, M.-J., Heiðmarsson, S., Pálsson, S., Sorensen, J. L., Viktorsson, E. Ö., & Ólafsdóttir, E. S. (2026). Is the Reindeer Lichen Cladonia arbuscula Really Producing Isousnic Acid? A Chemotaxonomy Query. Molecules, 31(1), 143. https://doi.org/10.3390/molecules31010143

