Quantitative Evaluation of Iron-Containing Proteins Bound to Mesoporous Silica Microspheres by Inductively Coupled Plasma Mass Spectrometry and Confocal Laser Raman Microscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Element-Based Quantification of LF Bound to Mesoporous SiO2 Microspheres by ICP-MS
2.2. Quantitative Evaluation of LF Bound to Mesoporous SiO2 Microspheres by Confocal Laser Raman Microscopy
2.3. Quantification of LF Bound to Mesoporous SiO2 Microspheres by a Bulk Analysis Technique
2.4. Comparison of the Quantification Results Obtained from the Above-Mentioned Techniques
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation
3.3. ICP-MS Quantification Method of LF Bound to Mesoporous SiO2 Microspheres
3.4. Measurement Condition of LF Bound to Mesoporous SiO2 Microspheres by Confocal Laser Raman Microscopy
3.5. Quantification of LF Bound to Mesoporous SiO2 Microspheres by a Bulk Analysis Technique
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICP-MS | Inductively coupled plasma mass spectrometry |
CLRM | Confocal laser Raman microscopy |
NPs | Nanoparticles |
BET | Brunauer–Emmett–Teller |
ToF-SIMS | Time-of-flight secondary ion mass spectrometry |
PVA | Polyvinyl alcohol |
spICP-MS | Single-particle ICP-MS |
LOD | Limit of detection |
LOQ | Limit of quantification |
References
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization Techniques for Nanoparticles: Comparison and Complementarity Upon Studying Nanoparticle Properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef]
- Chang, H.; Jang, H.D. Controlled Synthesis of Porous Particles via Aerosol Processing and Their Applications. Adv. Powder Technol. 2014, 25, 32–42. [Google Scholar] [CrossRef]
- Yan, N.; Xiao, C.; Kou, Y. Transition Metal Nanoparticle Catalysis in Green Solvents. Coord. Chem. Rev. 2010, 254, 1179–1218. [Google Scholar] [CrossRef]
- Mondloch, J.E.; Bayram, E.; Finke, R.G. A Review of the Kinetics and Mechanisms of Formation of Supported-Nanoparticle Heterogeneous Catalysts. J. Mol. Cat. A Chem. 2012, 355, 1–38. [Google Scholar] [CrossRef]
- Sápi, A.; Dobó, D.G.; Sebők, D.; Halasi, G.; Juhász, K.L.; Szamosvölgyi, Á.; Pusztai, P.; Varga, E.; Kálomista, I.; Galbács, G.; et al. Silica-Based Catalyst Supports Are Inert, Are They Not?: Striking Differences in Ethanol Decomposition Reaction Originated From Meso- and Surface-Fine-Structure Evidenced by Small-Angle X-ray Scattering. J. Phys. Chem. C 2017, 121, 5130–5136. [Google Scholar] [CrossRef]
- Kurdyukov, D.A.; Eurov, D.A.; Kirilenko, D.A.; Sokolov, V.V.; Golubev, V.G. Tailoring the Size and Microporosity of Stöber Silica Particles. Micropor. Mesopor. Mater. 2018, 258, 205–210. [Google Scholar] [CrossRef]
- Rodrigues, T.S.; da Silva, A.G.M.; Camargo, P.H.C. Nanocatalysis by Noble Metal Nanoparticles: Controlled Synthesis for the Optimization and Understanding of Activities. J. Mater. Chem. A 2019, 7, 5857–5874. [Google Scholar] [CrossRef]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, J.-W.; Lee, J.-E.; Ryu, J.-H.; Kim, J.; Chang, I.-S.; Suh, K.-D. Synthesis and Adsorption Properties of Gold Nanoparticles Within Pores of Surface-Functional Porous Polymer Microspheres. J. Polym. Sci. A Polym. Chem. 2004, 42, 5627–5635. [Google Scholar] [CrossRef]
- Rafati, A.; Boussahel, A.; Shakesheff, K.M.; Shard, A.G.; Roberts, C.J.; Chen, X.; Scurr, D.J.; Rigby-Singleton, S.; Whiteside, P.; Alexander, M.R.; et al. Chemical and Spatial Analysis of Protein Loaded PLGA Microspheres for Drug Delivery Applications. J. Control. Release 2012, 162, 321–329. [Google Scholar] [CrossRef]
- Leclercq, A.; Nonell, A.; Todolí Torró, J.L.; Bresson, C.; Vio, L.; Vercouter, T.; Chartier, F. Introduction of Organic/Hydro-organic Matrices in Inductively Coupled Plasma Optical Emission Spectrometry and Mass Spectrometry: A Tutorial Review. Part I. Theoretical Considerations. Anal. Chim. Acta 2015, 885, 33–56. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Celis, F.; Encinar, J.R. A Reflection on the Role of ICP-MS in Proteomics: Update and Future Perspective. J. Proteom. 2019, 198, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Gajda-Morszewski, P.; Poznańska, A.; Yus, C.; Arruebo, M.; Brindell, M. Encapsulation of Iron-Saturated Lactoferrin for Proteolysis Protection With Preserving Iron Coordination and Sustained Release. Nanomaterials 2023, 13, 2524. [Google Scholar] [CrossRef]
- Pryshchepa, O.; Rafińska, K.; Gołębiowski, A.; Sugajski, M.; Sagandykova, G.; Madajski, P.; Buszewski, B.; Pomastowski, P. Synthesis and Physicochemical Characterization of Bovine Lactoferrin Supersaturated Complex with Iron (III) Ions. Sci. Rep. 2022, 12, 12695. [Google Scholar] [CrossRef]
- Volden, J.; Jørgensen, C.E.; Rukke, E.O.; Egelandsdal, B. Oxidative Properties of Lactoferrins of Different Iron-Saturation in an Emulsion Consisting of Metmyoglobin and Cod Liver Oil. Food Chem. 2012, 132, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Majka, G.; Śpiewak, K.; Kurpiewska, K.; Heczko, P.; Stochel, G.; Strus, M.; Brindell, M. A High-Throughput Method for the Quantification of Iron Saturation in Lactoferrin Preparations. Anal. Bioanal. Chem. 2013, 405, 5191–5200. [Google Scholar] [CrossRef]
- Ichimura, T.; Chiu, L.D.; Fujita, K.; Kawata, S.; Watanabe, T.M.; Yanagida, T.; Fujita, H. Visualizing Cell State Transition Using Raman Spectroscopy. PLoS ONE 2014, 9, e84478. [Google Scholar] [CrossRef]
- Kopec, M.; Imiela, A.; Abramczyk, H. Monitoring Glycosylation Metabolism in Brain and Breast Cancer by Raman Imaging. Sci. Rep. 2019, 9, 166. [Google Scholar] [CrossRef]
- Okada, T.; Iwayama, T.; Ogura, T.; Murakami, S.; Ogura, T. Structural Analysis of Melanosomes in Living Mammalian Cells Using Scanning Electron-Assisted Dielectric Microscopy with Deep Neural Network. Comput. Struct. Biotechnol. J. 2023, 21, 506–518. [Google Scholar] [CrossRef]
- Mastrangelo, R.; Okada, T.; Ogura, T.; Ogura, T.; Baglioni, P. Direct Observation of the Effects of Chemical Fixation in MNT-1 Cells: A SE-ADM and Raman Study. Proc. Natl Acad. Sci. USA 2023, 120, e2308088120. [Google Scholar] [CrossRef]
- Howell, N.K.; Arteaga, G.; Nakai, S.; Li-Chan, E.C. Raman Spectral Analysis in the C-H Stretching Region of Proteins and Amino Acids for Investigation of Hydrophobic Interactions. J. Agric. Food Chem. 1999, 47, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, S.I.; Ogura, T.; Matsuura, S.I.; Fukuda, E. Particle Size Measurement and Detection of Bound Proteins of Non-porous/Mesoporous Silica Microspheres by Single-Particle Inductively Coupled Plasma Mass Spectrometry. Molecules 2024, 29, 1086. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, C.; Zhang, J. Lactoferrin and Its Detection Methods: A Review. Nutrients 2021, 13, 2492. [Google Scholar] [CrossRef]
- Dupont, D.; Arnould, C.; Rolet-Repecaud, O.; Duboz, G.; Faurie, F.; Martin, B.; Beuvier, E. Determination of bovine lactoferrin concentrations in cheese with specific monoclonal antibodies. Int. Dairy J. 2006, 16, 1081–1087. [Google Scholar] [CrossRef]
- Liu, L.; Kong, D.; Xing, C.; Zhang, X.; Kuang, H.; Xu, C. Sandwich immunoassay for lactoferrin detection in milk powder. Anal. Methods 2014, 6, 4742–4745. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J. Lipid, Protein and Poly (NIPAM) Coated Mesoporous Silica Nanoparticles for Biomedical Applications. Adv. Colloid Interface Sci. 2014, 207, 155–163. [Google Scholar] [CrossRef]
- Matsuura, S.; Ikeda, T.; Hiyoshi, N.; Chiba, M.; Yamaguchi, A. Assemblies of Two Multimeric Enzymes Using Mesoporous Silica Microspheres Toward Cascade Reaction Fields. Biochem. Eng. J. 2022, 182, 108416. [Google Scholar] [CrossRef]
- Matsuura, S.I.; Baba, T.; Ikeda, T.; Yamamoto, K.; Tsunoda, T.; Yamaguchi, A. Highly Precise and Sensitive Polymerase Chain Reaction Using Mesoporous Silica-Immobilized Enzymes. ACS Appl. Mater. Interfaces 2022, 14, 29483–29490. [Google Scholar] [CrossRef] [PubMed]
- Cava-Montesinos, P.; Cervera, M.L.; Pastor, A.; de la Guardia, M. Room Temperature Acid Sonication ICP-MS Multielemental Analysis of Milk. Anal. Chim. Acta 2005, 531, 111–123. [Google Scholar] [CrossRef]
- Bulska, E.; Wagner, B. Quantitative Aspects of Inductively Coupled Plasma Mass Spectrometry. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150369. [Google Scholar] [CrossRef]
Parameter | Setting |
---|---|
Plasma and sampling conditions | |
RF power | 1550 W |
Plasma gas flow rate | 15 L/min |
Auxiliary gas flow rate | 0.90 L/min |
Carrier (nebulizer) gas flow rate | 1.08 L/min |
Nebulizer pump | 0.10 rps |
Sampling position | 10.0 mm |
Cell gas (He) flow rate | 5.0 mL/min |
Data acquisition | |
Scanning mode | Peak hopping |
Data points | 3 points/peak |
Dwell time | 0.6 s/point |
Repetition | 10 times |
Monitored isotope | 56Fe, 89Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyashita, S.-i.; Ogura, T.; Matsuura, S.-i.; Fukuda, E. Quantitative Evaluation of Iron-Containing Proteins Bound to Mesoporous Silica Microspheres by Inductively Coupled Plasma Mass Spectrometry and Confocal Laser Raman Microscopy. Molecules 2025, 30, 1252. https://doi.org/10.3390/molecules30061252
Miyashita S-i, Ogura T, Matsuura S-i, Fukuda E. Quantitative Evaluation of Iron-Containing Proteins Bound to Mesoporous Silica Microspheres by Inductively Coupled Plasma Mass Spectrometry and Confocal Laser Raman Microscopy. Molecules. 2025; 30(6):1252. https://doi.org/10.3390/molecules30061252
Chicago/Turabian StyleMiyashita, Shin-ichi, Toshihiko Ogura, Shun-ichi Matsuura, and Eriko Fukuda. 2025. "Quantitative Evaluation of Iron-Containing Proteins Bound to Mesoporous Silica Microspheres by Inductively Coupled Plasma Mass Spectrometry and Confocal Laser Raman Microscopy" Molecules 30, no. 6: 1252. https://doi.org/10.3390/molecules30061252
APA StyleMiyashita, S.-i., Ogura, T., Matsuura, S.-i., & Fukuda, E. (2025). Quantitative Evaluation of Iron-Containing Proteins Bound to Mesoporous Silica Microspheres by Inductively Coupled Plasma Mass Spectrometry and Confocal Laser Raman Microscopy. Molecules, 30(6), 1252. https://doi.org/10.3390/molecules30061252