Preventive and Therapeutic Effects of Baicalein, Galangin, and Isorhamnetin in Chronic Liver Diseases: A Narrative Review
Abstract
:1. Introduction
2. Baicalein
3. Galangin
4. Isorhamnetin
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3-MA | 3-Methyladenine |
ADMET | Absorption, distribution, metabolism, excretion, and toxicity |
ALD | Alcoholic liver disease |
ALT | Alanine aminotransferase |
AMPK | AMP-activated protein kinase |
Apoa4 | Apolipoprotein A4 |
AST | Aspartate aminotransferase |
Bax | Bcl-2-associated X protein |
Bcl-2 | B-cell lymphoma-2 |
BDL | Bile duct ligation |
CLD | Chronic liver disease |
CPT1A | Carnitine Palmitoyl-Transferase1A |
ERK | Extracellular signal-regulated kinase |
Fabp4 | Fatty acid-binding protein 4 |
FAS | Fatty acid synthase |
FFA | Free fatty acid |
FLD | Fatty liver disease |
GSDMD | Gasdermin D |
HFD | High-fat diet |
HO-1 | Heme oxygenase-1 |
Keap1 | Kelch-like ECH-associated protein 1 |
LC3-III | Microtubule-associated protein 1A/1B-light chain 3-III |
MAFLD | Metabolic dysfunction-associated fatty liver disease |
MMP | Matrix metalloproteinase |
mTOR | Mammalian target of rapamycin |
NAFLD | Nonalcoholic fatty liver disease |
NASH | Nonalcoholic steatohepatitis |
NF-κB | Nuclear factor kappa B |
NLRP3 | NLR family pyrin domain containing 3 |
NRF2 | Nuclear factor erythroid 2-related factor 2 |
PKC | Protein kinase C |
PPAR-α | Peroxisome proliferator-activated receptor alpha |
Smad | Small mothers against decapentaplegic |
SREBP1 | Sterol regulatory element-binding protein-1 |
TGF-β1 | Transforming growth factor beta 1 |
TIMP1 | Tissue metallopeptidase inhibitor 1 |
TNF-α | Tumor necrosis factor-alpha |
Vldlr | Very low-density lipoprotein receptor |
α-SMA | Alpha-smooth muscle actin |
References
- Devarbhavi, H.; Asrani, S.K.; Arab, J.P.; Nartey, Y.A.; Pose, E.; Kamath, P.S. Global burden of liver disease: 2023 update. J. Hepatol. 2023, 79, 516–537. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, S.; Rhodes, F.; Srivastava, A.; Trembling, P.M.; Rosenberg, W.M. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J. Gastroenterol. 2020, 26, 109–133. [Google Scholar] [CrossRef] [PubMed]
- Stojic, J.; Kukla, M.; Grgurevic, I. The Intestinal Microbiota in the Development of Chronic Liver Disease: Current Status. Diagnostics 2023, 13, 2960. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, L.; Scarlata, G.G.M.; Paravati, M.R.; Boccuto, L.; Luzza, F.; Scarpellini, E. Gut Microbiota and Liver Transplantation: Immune Mechanisms behind the Rejection. Biomedicines 2023, 11, 1792. [Google Scholar] [CrossRef]
- Ray, G. Management of liver diseases: Current perspectives. World J. Gastroenterol. 2022, 28, 5818–5826. [Google Scholar] [CrossRef]
- Del Bo, C.; Perna, S.; Allehdan, S.; Rafique, A.; Saad, S.; AlGhareeb, F.; Rondanelli, M.; Tayyem, R.F.; Marino, M.; Martini, D.; et al. Does the Mediterranean Diet Have Any Effect on Lipid Profile, Central Obesity and Liver Enzymes in Non-Alcoholic Fatty Liver Disease (NAFLD) Subjects? A Systematic Review and Meta-Analysis of Randomized Control Trials. Nutrients 2023, 15, 2250. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Soltani, S.; Jayedi, A.; Shab-Bidar, S.; Becerra-Tomás, N.; Salas-Salvadó, J. Adherence to the Mediterranean Diet in Relation to All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2019, 10, 1029–1039. [Google Scholar] [CrossRef]
- Procopio, A.C.; Paravati, M.R.; Scarlata, G.G.M.; Parafati, M.; Milić, N.; Luzza, F.; Abenavoli, L. Is the Mediterranean diet a good preventive measure for NASH? Hepatoma Res. 2024, 10, 9. [Google Scholar] [CrossRef]
- Paravati, M.R.; Scarlata, G.G.M.; Milanović, M.; Milić, N.; Abenavoli, L. The anticancer activity of quercetin, luteolin, myricetin, and kaempferol in the development of hepatocellular carcinoma: A narrative review. Hepatoma Res. 2024, 10, 43. [Google Scholar] [CrossRef]
- Li, S.; Tan, H.Y.; Wang, N.; Cheung, F.; Hong, M.; Feng, Y. The Potential and Action Mechanism of Polyphenols in the Treatment of Liver Diseases. Oxid. Med. Cell Longev. 2018, 2018, 8394818. [Google Scholar] [CrossRef] [PubMed]
- Rauter, A.P.; Ennis, M.; Hellwich, K.H.; Herold, B.J.; Horton, P.; Schomburg, I. Nomenclature of flavonoids (IUPAC Recommendations 2017). Pure Appl. Chem. 2018, 90, 9. [Google Scholar] [CrossRef]
- Munjal, K.; Goel, Y.; Gauttam, V.K.; Chopra, H.; Singla, M.; Smriti Gupta, S.; Sharma, R. Molecular targets and therapeutic potential of baicalein: A review. Drug Target. Insights 2024, 18, 30–46. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.; Pu, L.; Yu, L.; Xiong, F.; Sun, L.; Yu, Q.; Cao, X.; Chen, Y.; Peng, F.; et al. Galangin: A food-derived flavonoid with therapeutic potential against a wide spectrum of diseases. Phytother. Res. 2023, 37, 5700–5723. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Guan, Y.Y.; Zhang, Z.L.; Rahman, K.; Wang, S.J.; Zhou, S.; Luan, X.; Zhang, H. Isorhamnetin: A review of pharmacological effects. Biomed. Pharmacother. 2020, 128, 110301. [Google Scholar] [CrossRef]
- Hasnat, H.; Shompa, S.A.; Islam, M.M.; Alam, S.; Richi, F.T.; Emon, N.U.; Ashrafi, S.; Ahmed, N.U.; Chowdhury, M.N.R.; Fatema, N.; et al. Flavonoids: A treasure house of prospective pharmacological potentials. Heliyon 2024, 10, e27533. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Yang, B.; Du, J.; Chen, L.; Li, Y.; Guo, F. Structures, Sources, Identification/Quantification Methods, Health Benefits, Bioaccessibility, and Products of Isorhamnetin Glycosides as Phytonutrients. Nutrients 2023, 15, 1947. [Google Scholar] [CrossRef]
- Bogoyavlenskiy, A.; Zaitseva, I.; Alexyuk, P.; Alexyuk, M.; Omirtaeva, E.; Manakbayeva, A.; Moldakhanov, Y.; Anarkulova, E.; Imangazy, A.; Berezin, V.; et al. Naturally Occurring Isorhamnetin Glycosides as Potential Agents Against Influenza Viruses: Antiviral and Molecular Docking Studies. ACS Omega 2023, 8, 48499–48514. [Google Scholar] [CrossRef]
- Park, B.B.; Choi, J.W.; Park, D.; Choi, D.; Paek, J.; Kim, H.J.; Son, S.Y.; Mushtaq, A.U.; Shin, H.; Kim, S.H.; et al. Structure-Activity Relationships of Baicalein and its Analogs as Novel TSLP Inhibitors. Sci. Rep. 2019, 9, 8762. [Google Scholar] [CrossRef]
- Huang, T.; Liu, Y.; Zhang, C. Pharmacokinetics and Bioavailability Enhancement of Baicalin: A Review. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 159–168. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, H.; Zhang, Y.; Huang, C. Determination of human plasma protein binding of baicalin by ultrafiltration and high-performance liquid chromatography. Biomed. Chromatogr. 2006, 20, 1116–1119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lin, G.; Kovács, B.; Jani, M.; Krajcsi, P.; Zuo, Z. Mechanistic study on the intestinal absorption and disposition of baicalein. Eur. J. Pharm. Sci. 2007, 31, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cai, W.; Zhou, Y.; Liu, Y.; Wu, X.; Li, Y.; Lu, J.; Qiao, Y. Profiling and identification of the metabolites of baicalin and study on their tissue distribution in rats by ultra-high-performance liquid chromatography with linear ion trap-Orbitrap mass spectrometer. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 985, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhang, W.; Wu, Z.; Tian, X.; Xiang, J.; Li, L.; Li, Z.; Peng, X.; Wei, S.; Ma, X.; et al. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects. Pharmacol. Res. 2021, 165, 105444. [Google Scholar] [CrossRef]
- Guo, H.X.; Liu, D.H.; Ma, Y.; Liu, J.F.; Wang, Y.; Du, Z.Y.; Wang, X.; Shen, J.K.; Peng, H.L. Long-term baicalin administration ameliorates metabolic disorders and hepatic steatosis in rats given a high-fat diet. Acta Pharmacol. Sin. 2009, 30, 1505–1512. [Google Scholar] [CrossRef]
- Shen, K.; Feng, X.; Pan, H.; Zhang, F.; Xie, H.; Zheng, S. Baicalin Ameliorates Experimental Liver Cholestasis in Mice by Modulation of Oxidative Stress, Inflammation, and NRF2 Transcription Factor. Oxid. Med. Cell Longev. 2017, 2017, 6169128. [Google Scholar] [CrossRef]
- Wu, X.; Zhi, F.; Lun, W.; Deng, Q.; Zhang, W. Baicalin inhibits PDGF-BB-induced hepatic stellate cell proliferation, apoptosis, invasion, migration and activation via the miR-3595/ACSL4 axis. Int. J. Mol. Med. 2018, 41, 1992–2002. [Google Scholar] [CrossRef]
- Sun, W.; Liu, P.; Wang, T.; Wang, X.; Zheng, W.; Li, J. Baicalein reduces hepatic fat accumulation by activating AMPK in oleic acid-induced HepG2 cells and high-fat diet-induced non-insulin-resistant mice. Food Funct. 2020, 11, 711–721. [Google Scholar] [CrossRef]
- Li, P.; Hu, J.; Zhao, H.; Feng, J.; Chai, B. Multi-Omics Reveals Inhibitory Effect of Baicalein on Non-Alcoholic Fatty Liver Disease in Mice. Front. Pharmacol. 2022, 13, 925349. [Google Scholar] [CrossRef]
- Shi, H.; Qiao, F.; Lu, W.; Huang, K.; Wen, Y.; Ye, L.; Chen, Y. Baicalin improved hepatic injury of NASH by regulating NRF2/HO-1/NRLP3 pathway. Eur. J. Pharmacol. 2022, 934, 175270. [Google Scholar] [CrossRef]
- Guan, X.; Shen, S.; Liu, J.; Song, H.; Chang, J.; Mao, X.; Song, J.; Zhang, L.; Liu, C. Protective effecs of baicalin magnesium on non-alcoholic steatohepatitis rats are based on inhibiting NLRP3/Caspase-1/IL-1β signaling pathway. BMC Complement. Med. Ther. 2023, 23, 72. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Chen, W.W.; Chen, J.Y.; Sun, Y.B.; Chang, D.; Wang, C.X.; Xie, J.D.; Lin, W.; Li, S.H.; Xu, W.; et al. Baicalin attenuated metabolic dysfunction-associated fatty liver disease by suppressing oxidative stress and inflammation via the p62-Keap1-Nrf2 signalling pathway in db/db mice. Phytother. Res. 2023. epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, J.; Hao, Z.; Sun, N.; Guo, J.; Zheng, X.; Sun, P.; Yin, W.; Fan, K.; Li, H. Baicalin ameliorates high fat diet-induced nonalcoholic fatty liver disease in mice via adenosine monophosphate-activated protein kinase-mediated regulation of SREBP1/Nrf2/NF-κB signaling pathways. Phytother. Res. 2023, 37, 2405–2418. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, P.; Mohammed, S.A.D.; Li, Z.; Jiang, X.; Wu, J.; Liu, S. Exploration of the potential mechanism of Baicalin for hepatic fibrosis based on network pharmacology, gut microbiota, and experimental validation. Front. Microbiol. 2023, 13, 1051100. [Google Scholar] [CrossRef]
- Capasso, R.; Mascolo, N. Inhibitory effect of the plant flavonoid galangin on rat vas deferens in vitro. Life Sci. 2003, 72, 2993–3001. [Google Scholar] [CrossRef]
- Alghamdi, S.S.; Suliman, R.S.; Aljammaz, N.A.; Kahtani, K.M.; Aljatli, D.A.; Albadrani, G.M. Natural Products as Novel Neuroprotective Agents; Computational Predictions of the Molecular Targets, ADME Properties, and Safety Profile. Plants 2022, 11, 549. [Google Scholar] [CrossRef]
- Bancali, M.; Ahmet Başaran, A.; Başaran, N. Chapter 34—Galangin as a Plant Phenolic and Usage in Health and Disease. In Polyphenols: Prevention and Treatment of Human Disease, 2nd ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 433–438. [Google Scholar]
- Heo, M.Y.; Sohn, S.J.; Au, W.W. Anti-genotoxicity of galangin as a cancer chemopreventive agent candidate. Mutat. Res. 2001, 488, 135–150. [Google Scholar] [CrossRef]
- Toit, K.D.; Buthelezi, S.; Bodenstein, J. Anti-inflammatory and antibacterial profiles of selected compounds found in South African propolis. S. Afr. J. Sci. 2009, 105, 470–472. [Google Scholar]
- Eumkeb, G.; Sakdarat, S.; Siriwong, S. Reversing β-lactam antibiotic resistance of Staphylococcus aureus with galangin from Alpinia officinarum Hance and synergism with ceftazidime. Phytomedicine 2010, 18, 40–45. [Google Scholar] [CrossRef]
- Wang, X.; Gong, G.; Yang, W.; Li, Y.; Jiang, M.; Li, L. Antifibrotic activity of galangin, a novel function evaluated in animal liver fibrosis model. Env. Toxicol. Pharmacol. 2013, 36, 288–295. [Google Scholar] [CrossRef]
- Chien, S.T.; Shi, M.D.; Lee, Y.C.; Te, C.C.; Shih, Y.W. Galangin, a novel dietary flavonoid, attenuates metastatic feature via PKC/ERK signaling pathway in TPA-treated liver cancer HepG2 cells. Cancer Cell Int. 2015, 15, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Deng, Y.; Xiang, J.; Liu, H.; Zhang, J.; Liao, J.; Chen, K.; Liu, B.; Liu, J.; Pu, Y. Galangin Improved Non-Alcoholic Fatty Liver Disease in Mice by Promoting Autophagy. Drug Des. Devel Ther. 2020, 14, 3393–3405. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Lu, H.; Xu, H. Galangin Reverses Hepatic Fibrosis by Inducing HSCs Apoptosis via the PI3K/Akt, Bax/Bcl-2, and Wnt/β-Catenin Pathway in LX-2 Cells. Biol. Pharm. Bull. 2020, 43, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Du, Z.; Zhao, L. Galangin alleviates alcoholic liver disease by regulating the gut-liver axis. J. Funct. Foods 2024, 122, 106506. [Google Scholar] [CrossRef]
- Williams, R.J.; Spencer, J.P.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef]
- Xie, Y.; Luo, H.; Duan, J.; Hong, C.; Ma, P.; Li, G.; Zhang, T.; Wu, T.; Ji, G. Phytic acid enhances the oral absorption of isorhamnetin, quercetin, and kaempferol in total flavones of Hippophae rhamnoides L. Fitoterapia 2014, 93, 216–225. [Google Scholar] [CrossRef]
- Yang, J.H.; Kim, S.C.; Kim, K.M.; Jang, C.H.; Cho, S.S.; Kim, S.J.; Ku, S.K.; Cho, I.J.; Ki, S.H. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress. Eur. J. Pharmacol. 2016, 783, 92–102. [Google Scholar] [CrossRef]
- Ganbold, M.; Owada, Y.; Ozawa, Y.; Shimamoto, Y.; Ferdousi, F.; Tominaga, K.; Zheng, Y.W.; Ohkohchi, N.; Isoda, H. Isorhamnetin Alleviates Steatosis and Fibrosis in Mice with Nonalcoholic Steatohepatitis. Sci. Rep. 2019, 9, 16210. [Google Scholar] [CrossRef]
- Liu, N.; Feng, J.; Lu, X.; Yao, Z.; Liu, Q.; Lv, Y.; Han, Y.; Deng, J.; Zhou, Y. Isorhamnetin Inhibits Liver Fibrosis by Reducing Autophagy and Inhibiting Extracellular Matrix Formation via the TGF-β1/Smad3 and TGF-β1/p38 MAPK Pathways. Mediat. Inflamm. 2019, 2019, 6175091. [Google Scholar] [CrossRef]
- La, X.; Zhang, Z.; Dong, C.; Li, H.; He, X.; Kang, Y.; Wu, C.; Li, Z. Isorhamnetin in Quinoa Whole-Grain Flavonoids Intervenes in Non-Alcoholic Fatty Liver Disease by Modulating Bile Acid Metabolism through Regulation of FXR Expression. Foods 2024, 13, 3076. [Google Scholar] [CrossRef]
- Banjarnahor, S.D.; Artanti, N. Antioxidant properties of flavonoids. Med. J. Ind. 2014, 23, 239–244. [Google Scholar] [CrossRef]
- Chowdhury, S.; Bhuiya, S.; Haque, L.; Das, S. Influence of position of hydroxyl group of flavonoids on their binding with single stranded polyriboadenylic acid: A spectroscopic evaluation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 246, 119008. [Google Scholar] [CrossRef]
- Athanasopoulou, F.; Manolakakis, M.; Vernia, S.; Kamaly, N. Nanodrug delivery systems for metabolic chronic liver diseases: Advances and perspectives. Nanomedicine 2023, 18, 67–84. [Google Scholar] [CrossRef] [PubMed]
- Miryan, M.; Darbandi, M.; Moradi, M.; Najafi, F.; Soleimani, D.; Pasdar, Y. Relationship between the Mediterranean diet and risk of hepatic fibrosis in patients with non-alcoholic fatty liver disease: A cross-sectional analysis of the RaNCD cohort. Front. Nutr. 2023, 10, 1062008. [Google Scholar] [CrossRef] [PubMed]
- Paravati, M.R.; Procopio, A.C.; Milanović, M.; Scarlata, G.G.M.; Milošević, N.; Ružić, M.; Milić, N.; Abenavoli, L. Onion Polyphenols as Multi-Target-Directed Ligands in MASLD: A Preliminary Molecular Docking Study. Nutrients 2024, 16, 1226. [Google Scholar] [CrossRef]
- Zheng, Y.; Ma, Y.; Xiong, Q.; Zhu, K.; Weng, N.; Zhu, Q. The role of artificial intelligence in the development of anticancer therapeutics from natural polyphenols: Current advances and future prospects. Pharmacol. Res. 2024, 208, 107381. [Google Scholar] [CrossRef]
- Si, W.; Zhang, Y.; Li, X.; Du, Y.; Xu, Q. Understanding the Functional Activity of Polyphenols Using Omics-Based Approaches. Nutrients 2021, 13, 3953. [Google Scholar] [CrossRef]
- Niu, C.; Zhang, J.; Okolo, P.I., 3rd. Liver cancer wars: Plant-derived polyphenols strike back. Med. Oncol. 2024, 41, 116. [Google Scholar] [CrossRef]
Authors | Study Model | Study Groups | Outcome |
---|---|---|---|
Guo et al., 2009 [25] | Male Sprague Dawley rats Human hepatoma HepG2 cells | HFD+baicalin (80 mg/kg) vs. HFD control vs. the STD group | Weight reduction was accompanied by decreased levels of cholesterol and insulin, leading to a subsequent reduction in hepatic steatosis. Baicalin increased AMPK phosphorylation and reduced lipid accumulation caused by high glucose levels. |
Shen et al., 2017 [26] | Primary stellate cells from male inbred C57BL/6 (H2b) mice | Baicalin (50 mg/kg/day) vs. BDL+baicalin vs. BDL vs. control | Baicalin administration improved fibrosis by downregulating profibrotic markers, reducing proinflammatory cytokines, and mitigating oxidative stress and cell death. |
Wu et al., 2018 [27] | HSC-T6 cells | Baicalin (50, 100, and 150 µM) vs. inhibitor vs. control | Baicalin had an anti-fibrotic effect by modulating the activation, proliferation, apoptosis, invasion, and migration of HSC-T6. |
Sun, et al., 2020 [28] | HepG2 cells NAFLD mice | NAFLD mice vs. control mice HepG2 cells (baicalein 1 μM or 5 μM) vs. control cells | Baicalein activated AMPK and inhibited SREBP1 cleavage. It also improved NAFLD by modulating cholesterol levels, enhancing antioxidant activity, and addressing other biochemical abnormalities. |
Li et al., 2022 [29] | Male C57BL/6N mice | Control vs. treated with silymarin (200 mg/kg) vs. treated with high concentrations of baicalein (200 mg/kg/day) vs. treated with low concentrations of baicalein (100 mg/kg/day) | Baicalein offered protection from NAFLD in HFD mouse models, restoring the gut microbial eubiosis and the expression of key hepatocyte genes involved in lipid metabolism. |
Shi et al., 2022 [30] | 8-week-old male C57BL/6 mice HepG2 cells | Placebo control vs. normal diet vs. high dose of baicalein (200 mg/kg,day) vs. low dose of baicalein (50 mg/kg,day) | Baicalein’s in vivo and in vitro anti-inflammatory effects mitigated NASH. |
Guan et al., 2023 [31] | Male Sprague Dawley rats | The control group vs. the model group vs. the baicalin magnesium groups (50 mg/kg and 150 mg/kg) vs. the baicalin group (146.4 mg/kg) vs. the MgSO4 group (19.7 mg/kg) | Baicalin magnesium was more effective than equivalent doses of baicalin or magnesium sulfate in reducing lipid deposition, inflammation, oxidative stress, and liver damage typical of NASH. |
Liu et al., 2023 [32] | Male db/m mice and db/db mice | The control group vs. baicalin 50mg/kg vs. baicalin 100 mg/kg vs. baicalin 200 mg/kg vs. metformin | Baicalin significantly alleviated MAFLD by reducing lipid accumulation and hepatocyte apoptosis. |
Gao et al., 2023 [33] | Eight-week-old male C57BL/6J mice AML-12 mouse hepatocyte cell line | The control group vs. the HFD group vs. the HFD+baicalin group (100 mg/kg body weight/day) vs. the baicalin group (100 mg/kg body weight/day) | Baicalin protected against HFD-induced NAFLD in mice by activating the AMPK pathway. |
Liu et al., 2023 [34] | SPF-grade SD male rats | The control group vs. the CCl4 group (3 mL kg−1) vs. the baicalin group (25 mg kg−1) | Baicalin treatment significantly improved gut microbial composition and hepatic fibrosis. |
Authors | Study Model | Study Groups | Outcome |
---|---|---|---|
Wang et al., 2013 [41] | Healthy six-week-old male Sprague Dawley rats | The normal group vs. the positive control group (colchicine 0.2 mg/kg) vs. three groups treated with galangin (20, 40, and 80 mg/kg) | Galangin reduced oxidative stress and collagen accumulation. |
Chien et al., 2015 [42] | Chang liver non-cancerous cells HepG2 Hep3B AGS | Chang liver non-cancerous cells vs. HepG2 and Hep3B (0, 1, 2.5, and 5 μM) vs. AGS | Galangin inhibited the PKC/ERK pathway, reducing the activation of MMP-2/-9 and preventing cell migration and invasion. |
Zhang et al., 2020 [43] | C57BL/6J mice | The group treated preemptively with galangin (100 mg/kg/day) and HFD vs. the group treated with galangin (100 mg/kg/day) after an HFD vs. the group treated with galangin (100 mg/kg/day) and 3-MA (30 mg/kg, intraperitoneally, three times per week) | Galangin improved several laboratory parameters and hepatic steatosis. |
Xiong et al., 2020 [44] | LX-2 cell line | The control group vs. the experimental group treated with galangin (6, 8, and 10 µg/mL) | Galangin inhibited the proliferation of collagen I and α-SMA, along with inducing their apoptosis and reducing their expression. It also suppressed key processes of liver fibrosis. |
Duan et al., 2024 [45] | Male C57BL/6J mice | The normal control group vs. the ethanol group vs. the positive control (bifendate pills 150 mg/kg,) group vs. the galangin 30, 90, 150 mg/kg group | Galangin improved gut microbiota imbalance and reduced oxidative stress and inflammation in the liver. |
Authors | Study Model | Study Groups | Outcome |
---|---|---|---|
Yang et al., 2016 [48] | LX2 and HSCs ICR mice | LX-2 cells and HSCs treated with isorhamnetin (25–100 μM) ICR mice treated with sorhamnetin (10 or 30 mg/kg, 5 days/week) | Isorhamnetin significantly reduced inflammation and collagen deposition. |
Ganbold et al., 2019 [49] | C57BL/6J male mice | The control group vs. the NASH group vs. the NASH+isoramnetin 50 mg/kg group | Isorhamnetin inhibited lipogenesis, suppressed oxidative stress and the activation of HSCs, and reduced biomarkers of liver damage, apoptotic cells, and systemic inflammation. |
Liu et al., 2019 [50] | CCl4-induced mice model BDL mice model | The control group vs. the model group vs. the isorhamnetin group 10 mg/kg vs. the isorhamnetin group 30 mg/kg | Isorhamnetin improved the liver’s structure by reducing necrosis, inflammation, and collagen deposition. It also inhibited HSC activation, blocked autophagy, and attenuated macrophage recruitment. |
La et al., 2024 [51] | HepG2 and BEL-7402 cells Male C57BL/6N mice | Standard diet without treatment vs. the HFD group vs. HFD+isorhamnetin (5 mg/kg/day) vs. HFD+simvastatin (5 mg/kg/day) | Isorhamnetin improved liver morphology and modulated bile acid metabolism. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarlata, G.G.M.; Lopez, I.; Gambardella, M.L.; Milanović, M.; Milić, N.; Abenavoli, L. Preventive and Therapeutic Effects of Baicalein, Galangin, and Isorhamnetin in Chronic Liver Diseases: A Narrative Review. Molecules 2025, 30, 1253. https://doi.org/10.3390/molecules30061253
Scarlata GGM, Lopez I, Gambardella ML, Milanović M, Milić N, Abenavoli L. Preventive and Therapeutic Effects of Baicalein, Galangin, and Isorhamnetin in Chronic Liver Diseases: A Narrative Review. Molecules. 2025; 30(6):1253. https://doi.org/10.3390/molecules30061253
Chicago/Turabian StyleScarlata, Giuseppe Guido Maria, Ivo Lopez, Maria Luisa Gambardella, Maja Milanović, Nataša Milić, and Ludovico Abenavoli. 2025. "Preventive and Therapeutic Effects of Baicalein, Galangin, and Isorhamnetin in Chronic Liver Diseases: A Narrative Review" Molecules 30, no. 6: 1253. https://doi.org/10.3390/molecules30061253
APA StyleScarlata, G. G. M., Lopez, I., Gambardella, M. L., Milanović, M., Milić, N., & Abenavoli, L. (2025). Preventive and Therapeutic Effects of Baicalein, Galangin, and Isorhamnetin in Chronic Liver Diseases: A Narrative Review. Molecules, 30(6), 1253. https://doi.org/10.3390/molecules30061253