Quantum Smell: Tunneling Mechanisms in Olfaction
Abstract
1. Introduction
2. Results and Discussion
3. Methodology
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buck, L.; Axel, R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 1991, 65, 175–187. [Google Scholar] [CrossRef]
- Moncrieff, R.W. What is odor? A new theory. Am. Perfum. 1949, 54, 453–454. [Google Scholar]
- Amoore, J.E. Stereochemical theory of olfaction. Nature 1963, 198, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Billesbølle, C.B.; de March, C.A.; van der Velden, W.; Ma, N.; Tewari, J.; del Torrent, C.L.; Li, L.; Faust, B.; Vaidehi, N.; Matsunami, H.; et al. Structural basis of odorant recognition by a human odorant receptor. Nature 2023, 615, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Dyson, G.M. Some aspects of the vibration theory of odor. Perfum. Essent. Oil Rec. 1928, 19, 456–459. [Google Scholar]
- Wright, R.H. Odour and molecular vibration. I. Quantum and thermodynamic considerations. J. Appl. Chem. 1954, 4, 611–615. [Google Scholar] [CrossRef]
- Turin, L. A spectroscopic mechanism for primary olfactory reception. Chem. Senses 1996, 21, 773–791. [Google Scholar] [CrossRef]
- Vosshall, L.B. Laying a controversial smell theory to rest. Proc. Natl. Acad. Sci. USA 2015, 112, 6525–6526. [Google Scholar] [CrossRef]
- Hoehn, R.D.; Nichols, D.E.; Neven, H.; Kais, S. Status of the vibrational theory of olfaction. Front. Phys. 2018, 6, 25. [Google Scholar] [CrossRef]
- Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1957, 1, 223–231. [Google Scholar] [CrossRef]
- Davis, W.B.; Wasielewski, M.R.; Ratner, M.A.; Mujica, V.; Nitzan, A. Electron transfer rates in bridged molecular systems: A phenomenological approach to relaxation. J. Phys. Chem. A 1997, 101, 6158–6164. [Google Scholar] [CrossRef]
- Segal, D.; Nitzan, A.; Davis, W.B.; Wasielewski, M.R.; Ratner, M.A. Electron transfer rates in bridged molecular systems 2. A steady-state analysis of coherent tunneling and thermal transitions. J. Phys. Chem. B 1997, 104, 3817–3829. [Google Scholar] [CrossRef]
- Nitzan, A. A relationship between electron-transfer rates and molecular conduction. J. Phys. Chem. A 2001, 105, 2677–2679. [Google Scholar] [CrossRef]
- Nitzan, A. The relationship between electron transfer rate and molecular conduction. 2. The sequential hopping case. Isr. J. Chem. 2002, 42, 163–166. [Google Scholar] [CrossRef]
- Samanta, M.P.; Tian, W.; Datta, S.; Henderson, J.I.; Kubiak, C.P. Electronic conduction through organic molecules. Phys. Rev. B 1996, 53, R7626–R7629. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R.A. On the theory of oxidation reduction reactions involving electron transfer. I. J. Chem. Phys. 1956, 24, 966–978. [Google Scholar] [CrossRef]
- McConnell, H.M. Intramolecular charge transfer in aromatic free radicals. J. Chem. Phys. 1961, 35, 508–515. [Google Scholar] [CrossRef]
- Valianti, S.; Skourtis, S.S. Observing donor-to-acceptor electron-transfer rates and the Marcus inverted parabola in molecular junctions. J. Phys. Chem. B 2019, 123, 9641–9653. [Google Scholar] [CrossRef]
- Chen, L.; Sandonas, L.M.; Traber, P.; Dianat, A.; Tverdokhleb, N.; Hurevich, M.; Yitzchaik, S.; Gutierrez, R.; Croy, A.; Cuniberti, G. MORE-Q, a dataset for molecular olfactorial receptor engineering by quantum mechanics. Sci. Data 2025, 12, 324. [Google Scholar] [CrossRef]
- Yang, J.; Qian, Z.; He, Y.; Liu, M.; Li, W.; Han, W. Mlp4green: A binary classification approach specifically for green odor. Int. J. Mol. Sci. 2024, 25, 3515. [Google Scholar] [CrossRef]
- Cheng, L.P.; Xu, L.; Mao, H.F.; Wang, G.L. Study of structural and electronic origin of ambergris odor of some compounds. J. Mol. Model. 2009, 15, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bouhadouache, F.; Allal, H.; Taier, M.; Damous, M.; Maza, S.; Bousba, S.; Boussadia, A.; Zouaoui, E. A DFT study of the adsorption of vanillin on Al(111) surfaces. Struct. Chem. 2024, 35, 1241–1253. [Google Scholar] [CrossRef]
- Rydel-Ciszek, K. DFT studies of the activity and reactivity of limonene in comparison with selected monoterpenes. Molecules 2024, 29, 1579. [Google Scholar] [CrossRef] [PubMed]
- Badran, H.M.; Eid, K.M.; Baskoutas, S.; Ammar, H.Y. Mg12O12 and Be12O12 nanocages as sorbents and sensors for H2S and SO2 gases: A theoretical approach. Nanomaterials 2022, 12, 1757. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kretz, B.; Adoah, F.; Nickle, C.; Chi, X.; Yu, X.; del Barco, E.; Thompson, D.; Egger, D.A.; Nijhuis, C.A. A single atom change turns insulating saturated wires into molecular conductors. Nat. Commun. 2021, 12, 3432. [Google Scholar] [CrossRef]
- Brookes, J.C.; Horsfield, A.P.; Stoneham, A.M. The swipe card model of odorant recognition. Sensors 2012, 12, 15709–15749. [Google Scholar] [CrossRef]
- Brookes, J.C.; Hartoutsiou, F.; Horsfield, A.P.; Stoneham, A.M. Could humans recognize odor by phonon assisted tunneling? Phys. Rev. Lett. 2007, 98, 038101. [Google Scholar] [CrossRef]
- Zimmerman, P.M.; Molina, A.R.; Smereka, P. Orbitals with intermediate localization and low coupling: Spanning the gap between canonical and localized orbitals. J. Phys. Chem. 2015, 143, 014106. [Google Scholar] [CrossRef]
- Szabo, A.; Ostlund, N.S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; Dover Publications: Mineola, NY, USA, 1989. [Google Scholar]
- Adams, B.; Sinayskiy, I.; van Grondelle, R.; Petruccione, F. Quantum tunnelling in the context of SARS-CoV-2 infection. Sci. Rep. 2022, 12, 16929. [Google Scholar] [CrossRef]
- Sinayskiy, I.; Marais, A.; Petruccione, F.; Ekert, A. Decoherence-assisted transport in a dimer system. Phys. Rev. Lett. 2012, 108, 020602. [Google Scholar] [CrossRef]
- Peterlin, Z.; Li, Y.; Sun, G.; Shah, R.; Firestein, S.; Ryan, K. The importance of odorant conformation to the binding and activation of a representative olfactory receptor. Chem. Biol. 2008, 15, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, M.; Taniguchi, M. Single molecule electronics and devices. Phys. Rev. Lett. 2012, 12, 7259–7298. [Google Scholar] [CrossRef]
- Naumis, G.G.; Barraza-Lopez, S.; Oliva-Leyva, M.; Terrones, H. Electronic and optical properties of strained graphene and other strained 2D materials: A review. Rep. Prog. Phys. 2017, 80, 096501. [Google Scholar] [CrossRef]
- Szczȩśniak, D. Electron-phonon coupling in Kekulé-ordered graphene. arXiv 2025, arXiv:2506.16814. [Google Scholar]
- Cappelluti, E.; Profeta, G. Hopping-resolved electron-phonon coupling in bilayer graphene. Phys. Rev. B 2012, 85, 205436. [Google Scholar] [CrossRef]
- Atahan-Evrenk, S. A quantitative structure-property study of reorganization energy for known p-type organic semiconductors. RSC Adv. 2018, 8, 40330–40337. [Google Scholar]
- Hsu, C.P. Reorganization energies and spectral densities for electron transfer problems in charge transport materials. Phys. Chem. Chem. Phys. 2020, 22, 21630–21641. [Google Scholar] [CrossRef]
- Hsu, C.P.; Hammarström, L.; Newton, M.D. 65 years of electron transfer. J. Chem. Phys. 2022, 157, 020401. [Google Scholar] [CrossRef]
- Shluger, A.L.; Grutter, P. Reorganization takes energy. Nat. Nanotechnol. 2018, 13, 360–361. [Google Scholar] [CrossRef] [PubMed]
- Matyushov, D.V. Reorganization energy of electron transfer. Phys. Chem. Chem. Phys. 2023, 25, 7589–7610. [Google Scholar] [CrossRef] [PubMed]
- Dolan, E.A.; Yelle, R.B.; Beck, B.W.; Fischer, J.T.; Ichiye, T. Protein control of electron transfer rates via polarization: Molecular dynamics studies of rubredoxin. Biophys. J. 2004, 86, 2030–2036. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; DiMagno, T.J.; Chan, C.K.; Wang, Z.; Du, M.; Hanson, D.K.; Schiffer, M.; Norris, J.R.; Fleming, G.R.; Popov, M.S. Primary charge separation in mutant reaction centers of rhodobacter capsulatus. J. Phys. Chem. 1993, 97, 13180–13191. [Google Scholar] [CrossRef]
- Tan, M.L.; Dolan, E.A.; Ichiye, T. Understanding intramolecular electron transfer in ferredoxin: A molecular dynamics study. J. Phys. Chem. B 2004, 108, 20435–20441. [Google Scholar] [CrossRef]
- Parson, W.W.; Chu, Z.T.; Warshel, A. Reorganization energy of the initial electron-transfer step in photosynthetic bacterial reaction centers. Biophys. J. 1998, 74, 182–191. [Google Scholar] [CrossRef]
- Solov’yov, I.A.; Chang, P.Y.; Schulten, K. Vibrationally assisted electron transfer mechanism of olfaction: Myth or reality? Phys. Chem. Chem. Phys. 2012, 14, 13861–13871. [Google Scholar] [CrossRef]
- Hoehn, R.D.; Nichols, D.E.; Neven, H.; Kais, S. Neuroreceptor activation by vibration-assisted tunneling. Sci. Rep. 2015, 9, 9990. [Google Scholar] [CrossRef] [PubMed]
- Liza, N.; Blair, E.P. An explicit electron-vibron model for olfactory inelastic electron transfer spectroscopy. J. Appl. Phys. 2019, 125, 144701. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Cui, Y.; Li, X.W.; Sun, Y.; Wang, Z.W. Multiphonon processes of the inelastic electron transfer in olfaction. Phys. Chem. Chem. Phys. 2022, 4, 5048–5051. [Google Scholar] [CrossRef]
- Tomfohr, J.K.; Sankey, O.F. Complex band structure, decay lengths, and Fermi level alignment in simple molecular electronic systemsy. Phys. Rev. B 2002, 65, 245105. [Google Scholar] [CrossRef]
- Wang, H.; Lewis, J.P.; Sankey, O.F. Band-gap tunneling states in DNA. Phys. Rev. Lett. 2004, 93, 01640. [Google Scholar] [CrossRef]
- Salomon, A.; Cahen, D.; Lindsay, S.; Tomfohr, J.; Engelkes, V.B.; Frisbie, C.D. Comparison of electronic transport measurements on organic molecules. Adv. Mater. 2003, 15, 1881–1890. [Google Scholar] [CrossRef]
- Reuter, M.G. A unified perspective of complex band structure: Interpretations, formulations, and applications. J. Phys. Condens. Matter 2017, 29, 053001. [Google Scholar] [CrossRef]
- Szczȩśniak, D.; Kais, S. Gap states and valley-spin filtering in transition metal dichalcogenide monolayers. Phys. Rev. B 2020, 101, 115423. [Google Scholar] [CrossRef]
- Langlais, V.J.; Schlittler, R.R.; Tang, H.; Gourdon, A.; Joachim, C.; Gimzewski, J.K. Spatially resolved tunneling along a molecular wire. Phys. Rev. Lett. 1999, 83, 2809–2812. [Google Scholar] [CrossRef]
- Szczȩśniak, D.; Ennaoui, A.; Ahzi, S. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects. J. Phys. Condens. Matter 2016, 28, 355301. [Google Scholar] [CrossRef]
- Kane, E.O. Theory of tunneling. J. Appl. Phys. 1961, 32, 83–91. [Google Scholar] [CrossRef]
- Tersoff, J. Schottky barrier heights and the continuum of gap states. Phys. Rev. Lett. 1984, 52, 465–468. [Google Scholar] [CrossRef]
- Szczȩśniak, D.; Hoehn, R.; Kais, S. Canonical Schottky barrier heights of transition metal dichalcogenide monolayers in contact with a metal. Phys. Rev. B 2018, 97, 195315. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczȩśniak, D.; Drzazga-Szczȩśniak, E.A.; Kaczmarek, A.Z.; Kais, S. Quantum Smell: Tunneling Mechanisms in Olfaction. Molecules 2025, 30, 4663. https://doi.org/10.3390/molecules30244663
Szczȩśniak D, Drzazga-Szczȩśniak EA, Kaczmarek AZ, Kais S. Quantum Smell: Tunneling Mechanisms in Olfaction. Molecules. 2025; 30(24):4663. https://doi.org/10.3390/molecules30244663
Chicago/Turabian StyleSzczȩśniak, Dominik, Ewa A. Drzazga-Szczȩśniak, Adam Z. Kaczmarek, and Sabre Kais. 2025. "Quantum Smell: Tunneling Mechanisms in Olfaction" Molecules 30, no. 24: 4663. https://doi.org/10.3390/molecules30244663
APA StyleSzczȩśniak, D., Drzazga-Szczȩśniak, E. A., Kaczmarek, A. Z., & Kais, S. (2025). Quantum Smell: Tunneling Mechanisms in Olfaction. Molecules, 30(24), 4663. https://doi.org/10.3390/molecules30244663

