Ultrasound-Assisted Extraction: Unlocking the Antibacterial Potential of Coptis chinensis Franch. Against ESBL-Producing Enterobacterales
Abstract
1. Introduction
2. Results
2.1. The Antibiotic-Resistant Profile of ESBL-PE Strains
2.2. UAE Extracts of Coptis chinensis Franch. Exhibited the Most Potent Anti-ESBL-PE Activity
2.2.1. Bacterial Growth Inhibition
2.2.2. Determination of Minimum Inhibitory Concentration (MIC) of Herb Extracts
2.2.3. UAE Extracts of C. chinensis Contained the Highest Alkaloid Content
2.2.4. The Antibacterial Activity of C. chinensis Is Predominantly Attributed to Berberine, with Additional Contributions from Other Phytochemicals
3. Discussion
4. Materials and Methods
4.1. ESBL-PE Strains
4.2. Chinese Medicinal Herbs
4.3. Extraction of Chinese Medicinal Herbs
4.4. Determination of Inhibition Zone of Herb Extracts by Disc Diffusion Methodology
4.5. Determination of the Minimum Inhibitory Concentration (MIC) of Herb Extracts and Berberine
4.6. Detection and Quantification of Alkaloid Compounds in C. chinensis Extracts Using High-Performance Liquid Chromatography-Ultraviolet (HPLC-UV) Spectrophotometry
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ESBL-PE | Extended-Spectrum β-Lactamase-Producing-Enterobacterales |
| IZD | inhibition zone diameter |
| MALDI-TOF MS | Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry |
| MIC | minimum inhibitory concentration |
| UAE | ultrasound-assisted extraction |
References
- Janda, J.M.; Abbott, S.L. The Changing Face of the Family Enterobacteriaceae (Order: “Enterobacterales”): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes. Clin. Microbiol. Rev. 2021, 34, e00174-20. [Google Scholar] [CrossRef]
- Aidara-Kane, A.; Andremont, A.; Collignon, P. Antimicrobial resistance in the food chain and the AGISAR initiative. J. Infect. Public Health 2013, 6, 162–165. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. About ESBL-Producing Enterobacterales. 2024. Available online: https://www.cdc.gov/esbl-producing-enterobacterales/about/index.html#:~:text=ESBL%2Dproducing%20Enterobacterales%20can%20cause,or%20symptoms%2C%20known%20as%20colonization (accessed on 27 September 2024).
- Founou, L.L.; Founou, R.C.; Ntshobeni, N.; Govinden, U.; Bester, L.A.; Chenia, H.Y.; Djoko, C.F.; Essack, S.Y. Emergence and Spread of Extended Spectrum β-Lactamase Producing Enterobacteriaceae (ESBL-PE) in Pigs and Exposed Workers: A Multicentre Comparative Study between Cameroon and South Africa. Pathogens 2019, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Schwaber, M.J.; Navon-Venezia, S.; Schwartz, D.; Carmeli, Y. High levels of antimicrobial coresistance among extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2005, 49, 2137–2139. [Google Scholar] [CrossRef]
- Chandel, D.S.; Johnson, J.A.; Chaudhry, R.; Sharma, N.; Shinkre, N.; Parida, S.; Misra, P.R.; Panigrahi, P. Extended-spectrum beta-lactamase-producing Gram-negative bacteria causing neonatal sepsis in India in rural and urban settings. J. Med. Microbiol. 2011, 60 Pt 4, 500–507. [Google Scholar] [CrossRef]
- Paterson, D.L. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Med. 2006, 119 (Suppl. S1), S20–S70. [Google Scholar] [CrossRef]
- Paterson, D.L.; Ko, W.C.; Von Gottberg, A.; Casellas, J.M.; Mulazimoglu, L.; Klugman, K.P.; Bonomo, R.A.; Rice, L.B.; McCormack, J.G.; Yu, V.L. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: Implications for the clinical microbiology laboratory. J. Clin. Microbiol. 2001, 39, 2206–2212. [Google Scholar] [CrossRef]
- Walsh, T.R. Emerging carbapenemases: A global perspective. Int. J. Antimicrob. Agents 2010, 36 (Suppl. S3), S8–S14. [Google Scholar] [CrossRef] [PubMed]
- Asokan, G.V.; Ramadhan, T.; Ahmed, E.; Sanad, H. WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Med. J. 2019, 34, 184–193. [Google Scholar] [CrossRef]
- Wu, C.M.; Cao, J.L.; Zheng, M.H.; Ou, Y.; Zhang, L.; Zhu, X.Q.; Song, J.X. Effect and mechanism of andrographolide on the recovery of Pseudomonas aeruginosa susceptibility to several antibiotics. J. Int. Med. Res. 2008, 36, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Chen, Y.; Li, J.; Qing, H.P.; Bai, Y. Screening test for anti-Helicobacter pylori activity of traditional Chinese herbal medicines. World J. Gastroenterol. 2010, 16, 5629–5634. [Google Scholar] [CrossRef]
- Su, P.W.; Yang, C.H.; Yang, J.F.; Su, P.Y.; Chuang, L.Y. Antibacterial Activities and Antibacterial Mechanism of Polygonum cuspidatum Extracts against Nosocomial Drug-Resistant Pathogens. Molecules 2015, 20, 11119–11130. [Google Scholar] [CrossRef]
- Kwok, C.T.; Hu, Y.; Tsoi, B.; Wong, F.; Hau, P.; Tam, E.W.; Mok, D.K.; Kwan, Y.; Leung, G.P.; Lee, S.M.; et al. Medulla Tetrapanacis water extract ameliorates mastitis by suppressing bacterial internalization and inflammation via MAPKs signaling in vitro and in vivo. Food Front. 2024, 6, 500–515. [Google Scholar] [CrossRef]
- Chan, B.C.; Yu, H.; Wong, C.W.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Paris, J.M.; Morleo, B.; Litaudon, M.; Lau, C.B.; et al. Quick identification of kuraridin, a noncytotoxic anti-MRSA (methicillin-resistant Staphylococcus aureus) agent from Sophora flavescens using high-speed counter-current chromatography. J. Chromatogr. B 2012, 880, 157–162. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Han, J.; Zuo, G.Y.; Wang, G.C.; Tang, H.S. Potentiation activity of multiple antibacterial agents by Salvianolate from the Chinese medicine Danshen against methicillin-resistant Staphylococcus aureus (MRSA). J. Pharmacol. Sci. 2016, 131, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.S.; Chong, K.P. Bioactive Compounds of Ganoderma boninense Inhibited Methicillin-Resistant Staphylococcus aureus Growth by Affecting Their Cell Membrane Permeability and Integrity. Molecules 2022, 27, 838. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.J.; Ren, H.G.; Jiang, J.M.; Xu, G.; Xu, Y.; Chen, S.M.; Chen, G.; Zheng, D.; Yuan, M.; Zhang, H.; et al. Two Novel Phenylpropanoid Trimers from Ligusticum chuanxiong Hort with Inhibitory Activities on Alpha-Hemolysin Secreted by Staphylococcus aureus. Front. Chem. 2022, 10, 877469. [Google Scholar] [CrossRef]
- Su, T.; Qiu, Y.; Hua, X.; Ye, B.; Luo, H.; Liu, D.; Qu, P.; Qiu, Z. Novel Opportunity to Reverse Antibiotic Resistance: To Explore Traditional Chinese Medicine with Potential Activity Against Antibiotics-Resistance Bacteria. Front. Microbiol. 2020, 11, 610070. [Google Scholar] [CrossRef]
- Wang, S.Y.; Sun, Z.L.; Liu, T.; Gibbons, S.; Zhang, W.J.; Qing, M. Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA. Phytother. Res. 2014, 28, 1071–1076. [Google Scholar] [CrossRef]
- Li, J.; Feng, S.; Liu, X.; Jia, X.; Qiao, F.; Guo, J.; Deng, S. Effects of Traditional Chinese Medicine and Its Active Ingredients on Drug-Resistant Bacteria. Front. Pharmacol. 2022, 13, 837907. [Google Scholar] [CrossRef]
- Kim, G.; Gan, R.Y.; Zhang, D.; Farha, A.K.; Habimana, O.; Mavumengwana, V.; Li, H.B.; Wang, X.H.; Corke, H. Large-Scale Screening of 239 Traditional Chinese Medicinal Plant Extracts for Their Antibacterial Activities against Multidrug-Resistant Staphylococcus aureus and Cytotoxic Activities. Pathogens 2020, 9, 185. [Google Scholar] [CrossRef]
- Tierra, M. Planetary Herbology; Lotus Press: Twin Lakes, WI, USA, 2018. [Google Scholar]
- Kwok, C.T.; Chow, F.W.; Cheung, K.Y.; Zhang, X.Y.; Mok, D.K.; Kwan, Y.W.; Chan, G.H.; Leung, G.P.; Cheung, K.W.; Lee, S.M.; et al. Medulla Tetrapanacis water extract alleviates inflammation and infection by regulating macrophage polarization through MAPK signaling pathway. Inflammopharmacology 2024, 32, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, Y.; Dong, H.; Liu, Z.; Li, S.; Yang, S.; Li, X. Optimization of ultrasonic extraction process of polysaccharides from Ornithogalum Caudatum Ait and evaluation of its biological activities. Ultrason. Sonochem. 2012, 19, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Li, X.; Jiao, Y.; Jiang, D.; Zhang, L.; Fan, B.; Zhang, Q. Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficus microcarpa. Carbohydr. Polym. 2014, 110, 10–17. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochemistry 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Tam, E.W.T.; Cheung, Y.C.; Lung, W.C.H.; Hui, C.C.; Lam, W.W.; Ng, S.S.M.; Chow, F.W.N. Modulating ultrasound-assisted extraction of polysaccharide-protein complexes from β-glucan-rich medicinal mushrooms for enhanced antioxidant activity. Carbohydr. Polym. Technol. Appl. 2025, 10, 100817. [Google Scholar] [CrossRef]
- Cheung, Y.C.; Siu, K.C.; Liu, Y.S.; Wu, J.Y. Molecular properties and antioxidant activities of polysaccharide–protein complexes from selected mushrooms by ultrasound-assisted extraction. Process Biochem. 2012, 47, 892–895. [Google Scholar] [CrossRef]
- Cheung, Y.C.; Wu, J.Y. Kinetic models and process parameters for ultrasound assisted extraction of water-soluble components and polysaccharides from a medicinal fungus. Biochem. Eng. J. 2013, 79, 214–220. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A.; Medeiros, A.A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 1995, 39, 1211–1233. [Google Scholar] [CrossRef]
- Almansour, A.M.; Alhadlaq, M.A.; Alzahrani, K.O.; Mukhtar, L.E.; Alharbi, A.L.; Alajel, S.M. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023, 11, 2127. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Luifu, J.; Zhao, J.; He, X.; Xie, T. Extended-spectrum β-lactamase-producing Enterobacteriaceae from ready-to-eat foods: Genetic diversity and antibiotic susceptibility. Food Sci. Nutr. 2023, 11, 5565–5572. [Google Scholar] [CrossRef]
- Pervaiz, R.; Bano, S.; Tunio, S.A.; Abro, R.; Abbasi, S. Antibiotic resistance in foodborne pathogens: Implications for the one health approach in developing nations. Microb. Pathog. 2025, 206, 107737. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med. 2016, 7, 360–366. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Mnayer, D.; Roointan, A.; Shahri, F.; Ayatollahi, S.A.; Sharifi-Rad, M.; Molaee, N.; Sharifi-Rad, M. Antibacterial activities of essential oils from Iranian medicinal plants on extended-spectrum β-lactamase-producing Escherichia coli. Cell. Mol. Biol. 2016, 62, 75–82. [Google Scholar]
- Marrelli, M. Medicinal Plants. Plants 2021, 10, 1355. [Google Scholar] [CrossRef]
- Millar, B.C.; Rao, J.R.; Moore, J.E. Fighting antimicrobial resistance (AMR): Chinese herbal medicine as a source of novel antimicrobials—An update. Lett. Appl. Microbiol. 2021, 73, 400–407. [Google Scholar] [CrossRef]
- Qadri, H.; Haseeb Shah, A.; Mudasir Ahmad, S.; Alshehri, B.; Almilaibary, A.; Ahmad Mir, M. Natural products and their semi-synthetic derivatives against antimicrobial-resistant human pathogenic bacteria and fungi. Saudi J. Biol. Sci. 2022, 29, 103376. [Google Scholar] [CrossRef] [PubMed]
- Hedayat, K.M.; Lapraz, J. The Theory of Endobiogency: Introduction to the Usage of Medicinal Plants; Elsevier, Academic Press: Amsterdam, The Netherlands, 2019; pp. 255–266. [Google Scholar]
- Li, S.; Wu, D.; Lv, G.; Zhao, J. Carbohydrates analysis in herbal glycomics. TrAC Trends Anal. Chem. 2013, 52, 155–169. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, J.; Li, S. Action mechanisms of polysaccharides in Chinese herbal decoctions. Acupunct. Herb. Med. 2025, 5, 1–22. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & Healthcare; European Pharmacopoeia Commission; Council of Europe. European Pharmacopoeia, 7th ed.; Council of Europe: Strasbourg, France, 2010. [Google Scholar]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef]
- Hudz, N.; Makowicz, E.; Shanaida, M.; Białoń, M.; Jasicka-Misiak, I.; Yezerska, O.; Svydenko, L.; Wieczorek, P.P. Phytochemical Evaluation of Tinctures and Essential Oil Obtained from Satureja montana Herb. Molecules 2020, 25, 4763. [Google Scholar] [CrossRef] [PubMed]
- Bisht, A.; Sahu, S.C.; Kumar, A.; Maqsood, S.; Barwant, M.M.; Jaiswal, S.G. Recent advances in conventional and innovative extraction techniques for recovery of high-added value compounds for food additives and nutraceuticals. Food Phys. 2025, 2, 100047. [Google Scholar] [CrossRef]
- Song, Y.; Ding, Q.; Hao, Y.; Cui, B.; Ding, C.; Gao, F. Pharmacological Effects of Shikonin and Its Potential in Skin Repair: A Review. Molecules 2023, 28, 7950. [Google Scholar] [CrossRef]
- Wang, P.; Li, R.J.; Liu, R.H.; Jian, K.L.; Yang, M.H.; Yang, L.; Kong, L.Y.; Luo, J. Sarglaperoxides A and B, Sesquiterpene-Normonoterpene Conjugates with a Peroxide Bridge from the Seeds of Sarcandra glabra. Org. Lett. 2016, 18, 832–835. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.; Madureira, A.R.; Campos, D.; Sarmento, B.; Gomes, A.M.; Pintado, M.; Reis, F. Therapeutic and nutraceutical potential of rosmarinic acid—Cytoprotective properties and pharmacokinetic profile. Crit. Rev. Food Sci. Nutr. 2017, 57, 1799–1806. [Google Scholar] [CrossRef]
- Cho, J.; Hong, E.B.; Kim, Y.S.; Song, J.; Ju, Y.H.; Kim, H.; Lee, H.; Kim, H.; Nam, M.H. Baicalin and baicalein from Scutellaria baicalensis Georgi alleviate aberrant neuronal suppression mediated by GABA from reactive astrocytes. CNS Neurosci. Ther. 2024, 30, e14740. [Google Scholar] [CrossRef]
- Wu, J.; Qiu, Y.; Tian, M.; Wang, L.; Gao, K.; Yang, X.; Jiang, Z. Flavonoids from Scutellaria baicalensis: Promising Alternatives for Enhancing Swine Production and Health. Int. J. Mol. Sci. 2025, 26, 3703. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Zhang, M.B.; Liu, Y.C.; Kang, J.R.; Chu, Z.Y.; Yin, K.L.; Ding, L.Y.; Ding, R.; Xiao, R.X.; Yin, Y.N.; et al. Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Sci. Rep. 2016, 6, 24748. [Google Scholar] [CrossRef]
- Pan, J.; Wang, H.; Chen, Y. Prunella vulgaris L.—A Review of its Ethnopharmacology, Phytochemistry, Quality Control and Pharmacological Effects. Front. Pharmacol. 2022, 13, 903171. [Google Scholar] [CrossRef]
- Sun, J.; Xie, Y.; Chen, Z.; Fan, Y.; Liu, Y.; Gao, Q.; Li, J.; Bai, J.; Yang, Y. Antimicrobial activity and mechanism of Magnolia officinalis root extract against methicillin-resistant Staphylococcus aureus based on mannose transporter. Ind. Crops Prod. 2023, 201, 116953. [Google Scholar] [CrossRef]
- Tang, J.; Feng, Y.; Tsao, S.; Wang, N.; Curtain, R.; Wang, Y. Berberine and Coptidis rhizoma as novel antineoplastic agents: A review of traditional use and biomedical investigations. J. Ethnopharmacol. 2009, 126, 5–17. [Google Scholar] [CrossRef]
- Amin, A.H.; Subbaiah, T.V.; Abbasi, K.M. Berberine sulfate: Antimicrobial activity, bioassay, and mode of action. Can. J. Microbiol. 1969, 15, 1067–1076. [Google Scholar] [CrossRef]
- Hayashi, K.; Minoda, K.; Nagaoka, Y.; Hayashi, T.; Uesato, S. Antiviral activity of berberine and related compounds against human cytomegalovirus. Bioorganic Med. Chem. Lett. 2007, 17, 1562–1564. [Google Scholar] [CrossRef]
- Kwok, C.T.; Yu, R.C.; Hau, P.T.; Cheung, K.Y.; Ng, I.C.; Fung, J.; Wong, I.T.; Yau, M.C.; Liu, W.M.; Kong, H.K.; et al. Characteristics and pathogenicity of Vibrio alginolyticus SWS causing high mortality in mud crab (Scylla serrata) aquaculture in Hong Kong. Front. Cell Infect. Microbiol. 2024, 14, 1425104. [Google Scholar] [CrossRef]
- Clinical Laboratory Standards Institute (CLSI). M100 Performance Standards for Antimicrobial Susceptibility Testing, 35th ed.; CLSI document M100Ed35E; CLSI: Wayne, PA, USA, 2025. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- School of Chinese Medicine, Hong Kong Baptist University. Medicinal Plant Images Database. 2025. Available online: https://sys01.lib.hkbu.edu.hk/cmed/mpid/index.php (accessed on 4 October 2025).
- Chassagne, F.; Huang, X.; Lyles, J.T.; Quave, C.L. Validation of a 16th Century Traditional Chinese Medicine Use of Ginkgo biloba as a Topical Antimicrobial. Front. Microbiol. 2019, 10, 775. [Google Scholar] [CrossRef]
- Sheng, Z.; Wang, Y.; Wan, P.; Li, Y. Ultrasound-assisted extraction of total flavonoids from leaves of Syringa Oblata Lindl. Lat. Am. Appl. Res. 2014, 44, 131–135. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Peng, J.; Li, F.; Liu, X.; Deng, M.; Wu, H. Determination of Alkaloid Contents in Various Tissues of Coptis Chinensis Franch. by Reversed Phase-High Performance Liquid Chromatography and Ultraviolet Spectrophotometry. J. Chromatogr. Sci. 2017, 55, 556–563. [Google Scholar] [CrossRef]


| Isolate | Species | Source | Date of Collection | Food Origin |
|---|---|---|---|---|
| B1 | Escherichia coli | Pork | August 2022 | China |
| B2 | Escherichia coli | Chicken | April 2022 | Thailand |
| B3 | Escherichia coli | Beef | August 2022 | China |
| B4 | Klebsiella pneumoniae | Beef | August 2022 | China |
| B5 | Klebsiella pneumoniae | Pork | May 2022 | China |
| B6 | Klebsiella pneumoniae | Beef | June 2022 | China |
| B7 | Klebsiella pneumoniae | Beef | July 2022 | China |
| B8 | Hafnia alvei | Beef | August 2022 | USA |
| B9 | Hafnia alvei | Pork | June 2022 | Spain |
| B10 | Citrobacter freundii | Sashimi | May 2022 | Norway |
| B11 | Citrobacter freundii | Vegetable | June 2022 | Japan |
| B12 | Citrobacter braakii | Sashimi | August 2022 | Vietnam |
| B13 | Proteus hauseri | Chicken | May 2022 | China |
| B14 | Enterobacter cloacae | Vegetable | June 2022 | Japan |
| Isolate | Species | Beta-Lactamase Resistant Gene | Efflux Gene | Antibiogram | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AMP | FEP | CTX | FOX | CAZ | CRO | C | CIP | CS | CN | IPM | MEM | NA | TE | SXT | DOR | ||||
| B1 | E. coli | blaCTX-M-14, blaEC, blaSHV, blaTEM | acrF, emrD, mdtM, silA | R | SDD | R | S | R | R | R | R | I | R | S | S | S | R | R | S |
| B2 | E. coli | blaEC, blaCTX-M-1 | acrF, emrD, mdtM | R | R | R | S | S | R | S | S | R | S | S | S | S | R | S | S |
| B3 | E. coli | blaCTX-M-14, blaEC, blaTEM | acrF, emrD, mdtM, silA | R | SDD | R | S | S | R | R | I | I | S | S | S | I | R | R | S |
| B4 | K. pneumoniae | blaCTX-M-3, blaSHV, blaTEM | emrD, kdeA, oqxA10, oqxB5, silA | R | R | R | S | S | R | R | R | I | R | S | S | S | R | R | S |
| B5 | K. pneumoniae | blaCTX-M-15, blaSHV | emrD, kdeA, oqxA, oqxB, silA | R | SDD | R | S | I | R | S | R | R | S | S | S | S | S | S | S |
| B6 | K. pneumoniae | blaCTX-M-65, blaOXA-10, blaSHV, blaTEM | emrD, kdeA, arsB, oqxA10, oqxB, silA | R | SDD | R | S | S | R | R | I | I | S | S | S | S | R | R | S |
| B7 | K.pneumoniae | blaCTX-M-3, blaSHV, blaTEM | emrD, kdeA, oqxA, oqxB19, arsB, silA | R | R | R | S | S | R | R | R | R | S | S | S | S | R | R | S |
| B8 | H. alvei | blaACC | N/A | R | S | R | R | R | R | S | S | R | S | S | S | R | S | S | S |
| B9 | H. alvei | blaACC | N/A | R | S | R | S | R | R | S | S | R | S | S | S | R | S | S | S |
| B10 | C. freundii | blaCMY | arsA, arsB | R | S | R | R | R | R | S | R | R | S | S | S | S | S | S | S |
| B11 | C. freundii | blaCMY | arsA, arsB | R | SDD | R | R | R | R | S | R | I | S | I | S | R | S | S | S |
| B12 | C. braakii | blaCMY, blaCTX-M-15 | N/A | R | R | R | R | R | R | S | R | R | S | S | S | S | S | S | S |
| B13 | P. hauseri | blaDHA, hugA | N/A | R | S | R | R | R | S | R | R | R | I | I | S | S | R | R | S |
| B14 | E. cloacae | blaACT | oqxA, oqxB | R | S | R | R | R | R | S | R | R | S | S | S | S | S | S | S |
| Herb | Extraction | Zone of Inhibition (Mean ± S.D., mm) | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ESBL-PE Strains | |||||||||||||||
| B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | B12 | B13 | B14 | ||
| L. erythrorhizon | W | - | - | - | - | - | 11.35 ± 0.37 | - | 8.12 ± 0.33 | 8.20 ± 0.15 | 8.97 ± 0.21 | 7.29 ± 0.04 | 8.54 ± 0.47 | 9.49 ± 0.09 | - |
| E | - | - | - | - | - | 8.50 ± 0.16 | - | - | - | 6.54 ± 0.25 | - | 6.93 ± 0.07 | 7.78 ± 0.16 | - | |
| UAE | - | - | - | - | - | 9.69 ± 0.34 | - | 6.76 ± 0.06 | 6.80 ± 0.09 | 7.31 ± 0.34 | - | 7.73 ± 0.13 | 8.53 ± 0.14 | - | |
| S. glabra | W | - | - | - | - | - | 10.37 ± 0.18 | - | 9.33 ± 0.04 | 8.13 ± 0.59 | 6.79 ± 0.11 | - | 7.36 ± 0.09 | 10.07 ± 0.05 | - |
| E | - | - | - | - | - | 7.79 ± 0.15 | - | - | - | - | - | - | - | - | |
| UAE | - | - | - | - | - | 8.43 ± 0.06 | - | - | - | - | - | - | 7.10 ± 0.09 | - | |
| S. baicalensis | W | - | - | - | - | - | 12.06 ± 0.03 | - | 9.74 ± 0.42 | 8.81 ± 0.05 | 8.85 ± 0.21 | - | 7.78 ± 0.10 | 7.73 ± 0.06 | - |
| E | - | - | - | - | - | 10.79 ± 0.06 | - | 9.48 ± 0.07 | 8.47 ± 0.23 | 7.59 ± 0.17 | - | 8.01 ± 0.15 | 7.06 ± 0.13 | - | |
| UAE | - | - | - | - | - | 11.37 ± 0.24 | - | 9.68 ± 0.01 | 8.63 ± 0.11 | 8.15 ± 0.11 | - | 8.43 ± 0.03 | 7.40 ± 0.16 | - | |
| C. chinensis | W | - | - | - | - | - | 12.81 ± 0.22 | - | 10.37 ± 0.20 | 10.10 ± 0.17 | 6.82 ± 0.15 | - | - | 11.09 ± 0.08 | - |
| E | 9.69 ± 0.55 | 10.54 ± 0.18 | 10.68 ± 0.27 | - | - | 11.73 ± 0.16 | - | 9.86 ± 0.18 | 10.29 ± 0.14 | - | - | - | 10.44 ± 0.21 | - | |
| UAE | 11.17 ± 0.44 | 10.68 ± 0.05 | 11.46 ± 0.21 | - | - | 13.38 ± 0.22 | - | 10.12 ± 0.11 | 10.48 ± 0.23 | 6.95 ± 0.10 | - | - | 10.98 ± 0.18 | - | |
| P. vulgaris | W | - | - | - | - | - | 8.05 ± 0.34 | - | - | - | 6.67 ± 0.33 | - | - | 7.07 ± 0.19 | - |
| E | - | - | - | - | - | 9.77 ± 0.10 | - | 8.14 ± 0.11 | - | 6.81 ± 0.05 | - | 6.84 ± 0.09 | 8.84 ± 0.08 | - | |
| UAE | - | - | - | - | - | 10.92 ± 0.08 | - | 7.95 ± 0.47 | - | 7.86 ± 0.17 | 7.22 ± 0.15 | 7.74 ± 0.32 | 9.55 ± 0.18 | - | |
| M. officinalis | W | - | - | - | - | - | 11.77 ± 0.03 | - | 9.07 ± 0.19 | 7.19 ± 0.17 | - | - | 7.04 ± 0.01 | 10.92 ± 0.06 | - |
| E | - | - | - | - | - | 7.75 ± 0.18 | - | - | - | - | - | - | 7.95 ± 0.14 | - | |
| UAE | - | - | - | - | - | 8.81 ± 0.03 | - | 6.42 ± 0.21 | - | - | - | - | 8.85 ± 0.04 | - | |
| Herb | Extraction | Minimum Inhibitory Concentration (mg/mL) | |||||
|---|---|---|---|---|---|---|---|
| ESBL-PE Isolates | |||||||
| E. coli B2 | K. pneumoniae B6 | H. alvei B8 | C. freundii B10 | C. braakii B12 | P. hauseri B13 | ||
| L. erythrorhizon | W | 12.5 | 1.5625 | 3.125 | 3.125 | 6.25 | 1.5625 |
| E | 25 | 12.5 | 6.25 | 12.5 | 12.5 | 12.5 | |
| UAE | 25 | 1.5625 | 3.125 | 3.125 | 6.25 | 3.125 | |
| S. glabra | W | 12.5 | 3.125 | 6.25 | 3.125 | 6.25 | 3.125 |
| E | 25 | 12.5 | 6.25 | 12.5 | 25 | 12.5 | |
| UAE | 25 | 3.125 | 6.25 | 6.25 | 12.5 | 3.125 | |
| S. baicalensis | W | 12.5 | 3.125 | 6.25 | 3.125 | 3.125 | 3.125 |
| E | 12.5 | 1.5625 | 3.125 | 3.125 | 3.125 | 1.5625 | |
| UAE | 12.5 | 1.5625 | 3.125 | 3.125 | 3.125 | 1.5625 | |
| C. chinensis | W | 3.125 | 1.5625 | 3.125 | 3.125 | 3.125 | 3.125 |
| E | 1.5625 | 6.25 | 3.125 | 3.125 | 1.5625 | 3.125 | |
| UAE | 1.5625 | 3.125 | 3.125 | 3.125 | 1.5625 | 3.125 | |
| P. vulgaris | W | 25 | 3.125 | 3.125 | 3.125 | 3.125 | 3.125 |
| E | >25 | 3.125 | 6.25 | 6.25 | 12.5 | 3.125 | |
| UAE | 25 | 3.125 | 6.25 | 3.125 | 3.125 | 3.125 | |
| M. officinalis | W | 25 | 1.5625 | 3.125 | 3.125 | 3.125 | 1.5625 |
| E | 25 | 1.5625 | 3.125 | 3.125 | 3.125 | 1.5625 | |
| UAE | 25 | 0.78125 | 3.125 | 3.125 | 3.125 | 1.5625 | |
| Alkaloid Compounds | Extracts of C. chinensis | ||
|---|---|---|---|
| W (%) | E (%) | UAE (%) | |
| Berberine | 17.9 | 13.4 | 23.5 |
| Palmatine | 7.6 | 5.3 | 9.0 |
| Coptisine | 3.7 | 2.4 | 5.0 |
| Epiberberine | 8.6 | 5.5 | 10.9 |
| Jatrorrhizine | 2.3 | 1.6 | 2.8 |
| Columbamine | 1.4 | 1.1 | 1.7 |
| Groenlandicine | 0.9 | 0.6 | 1.2 |
| Total | 42.4 | 29.9 | 54.1 |
| ESBL-PE Strains | Berberine (mg/mL) | C. chinensis with UAE Extract (mg/mL) * | Equivalent Berberine Concentration in C. chinensis with UAE Extract (mg/mL) |
|---|---|---|---|
| E. coli B2 | 0.75 | 1.5625 | 0.368 |
| K. pneumoniae B6 | 3.00 | 3.125 | 0.735 |
| H. alvei B8 | 0.75 | 3.125 | 0.735 |
| C. freundii B10 | 3.00 | 3.125 | 0.735 |
| C. braakii B12 | 0.75 | 1.5625 | 0.368 |
| P. hauseri B13 | 1.50 | 3.125 | 0.735 |
| Scientific Name and Part of Plant Used | Place of Origin | Pharmacology [62] | Phytoconstituents [62] |
|---|---|---|---|
| Scleromitrion diffusum (willd) R.J.Wang (Leaves) | Jiangxi | Anti-tumor and anti-inflammatory | Asperuloside, organic acids and their esters, anthraquinones, triterpenes |
| Houttuynia cordata Thunb. (Whole plant) | Guangdong | Anti-viral, antibacterial, immunity-strengthening, etc. | Volatile oil and flavonoids |
| Lithospermum erythrorhizon Siebold & Zucc. (Root) | Xinjiang | Anti-inflammatory, anti-pathogenic microorganism, pain-killing, etc. | Shikonin, acetylshikonin, deoxyshikonin |
| Wurfbainia villosa (Lour.) Škorničk. & A.D.Poulsen (Fruit) | Guangdong | Anti-platelet aggregation, anti-ulcer and pain-relieving | Bornyl acetate, camphor, and limonene |
| Scrophularia ningpoensis Hemsl. (Root) | Hubei | Preserving effects on the cardiovascular system, CNS-inhibiting, etc. | Iridoids compounds, ningpogenin, ningpogosides A and B |
| Portulaca oleracea L. (Whole plant) | Jiangsu | Antibacterial, uterus-contracting, blood-fat-lowering, etc. | Noradrenaline, dopa, dopamine, betanidin, oxalic acid, triterpene |
| Grona styracifolia (Osbeck) H.Ohashi & K.Ohashi. (Whole plant) | Sichuan | Anti-inflammatory, pain-killing, etc | Alkaloid, flavone flycosides, phenols, tannin |
| Lonicera japonica Thunb. (Flower bud) | Henan | Antimicrobial, anti-inflammatory, antifebrile, blood-fat-lowering, etc. | Chlorogenic acid, ginnol, isochlorogenic acid, β-sitosterol, linalool, etc. |
| Gardenia jasminoides J.Ellis (Fruit) | Hubei | Hepatic-protective, anti-inflammatory | Flavonoid genipin, pectin, and tannin |
| Atractylodes macrocephala Koidz. (Rhizoma) | Zhejiang | Gastric-ulcer-preventing, intestines-movement-influencing, anti-bacteria, etc. | Atratylone, eudesmol, palmitic acid, hinesol, humulene, sesquiterpene lactones, polyynealcohols |
| Atractylodes lancea (Thunb.) DC. (Rhizoma) | Zhejiang | Gastric-secretion-restraining, influential on the liver, blood sugar and stomach and intestinal movement, etc. | Volatile oil, atraclyloin, atractylon, chamigrene, caryophyllene, elemene, atractylodin, furaldehyde, tryptophane, etc. |
| Sarcandra glabra (Thunb.) Nakai (Whole plant) | Guangdong | Anti-tumors, antibacterial, antivirotic, etc. | Coumarin, flavonoid glycosides, essential oils, tannin |
| Scutellaria baicalensis Georgi (Root) | Hebei | Antibacterial, anti-inflammatory, heart-brain-protecting, hepatic-protective, immunity-regulating and anti-tumor and antiallergic | Baicalensis and baicalein |
| Forsythia suspensa (Thunb.) Vahl (Fruit) | Hebei | Antimicrobial, anti-inflammatory, etc. | Lignans, flavonoids, benzene ethane derivatives |
| Glycyrrhiza uralensis Fisch. (Root) | Inner Mongolia | Anti-viral, antibacterial, anti-ulcer, atitussive, anti-inflammatory, phlegm-removing, anti-tumor, etc. | Triterpenoid saponins |
| Chrysanthemum morifolium Ramat. (Flower) | Hangzhou | antibacterial and cardiovascular-system-affecting | Borneol, chrysanthenone, camphor, acacetin-7-rhamnoglucoside, indican, thymol, apigenin, luteolin, cosmosiin, volatile oils |
| Coptis chinensis Franch. (Root) | Sichuan | Antimicrobial, antiprotozoal, beneficial to cyclic system and nervous system, anti-arrhythmia, anti-ulcer, beneficial to the gallbladder, anti-tumor and anti-inflammatory | Berberine, epiberberine, coptisine, berberrubine, palmatine, jatrorrhizine, worenine, magnoflorine, ferulic acid, obakunone, obakulactone |
| Prunella vulgaris L. (Fruit spike) | Henan | Anti-hypertension, hyperglycemic, antibacterial, anti-viral, etc. | Saponin, ursolic acid, tartaric acid, prunellin |
| Magnolia officinalis Rehder & E.H.Wilson (Bark) | Sichuan | Anti-ulcerative, anti-pathogenic microorganism and anti-tumors, anti-patelet, etc. | Lignan, monoterpene lignin, norlignan, honokiol, camphor |
| Sophora flavescens Aiton (Root) | Henan | Anti-inflammatory, anti-pathogenic microorganism, etc. | Alkaloids, flavonoids |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, C.C.; Lee, F.W.F.; Lung, W.C.H.; Fan, K.C.; Wong, I.T.F.; Siu, G.K.H.; Chow, Y.L.; Chan, P.L.; Ng, S.-M.; Shi, L.; et al. Ultrasound-Assisted Extraction: Unlocking the Antibacterial Potential of Coptis chinensis Franch. Against ESBL-Producing Enterobacterales. Molecules 2025, 30, 4331. https://doi.org/10.3390/molecules30224331
Hui CC, Lee FWF, Lung WCH, Fan KC, Wong ITF, Siu GKH, Chow YL, Chan PL, Ng S-M, Shi L, et al. Ultrasound-Assisted Extraction: Unlocking the Antibacterial Potential of Coptis chinensis Franch. Against ESBL-Producing Enterobacterales. Molecules. 2025; 30(22):4331. https://doi.org/10.3390/molecules30224331
Chicago/Turabian StyleHui, Ching Ching, Fred Wang Fat Lee, Wesley Chin Ho Lung, Kai Chung Fan, Ivan Tak Fai Wong, Gilman Kit Hang Siu, Yeuk Lung Chow, Ping Lung Chan, Siu-Mui Ng, Ling Shi, and et al. 2025. "Ultrasound-Assisted Extraction: Unlocking the Antibacterial Potential of Coptis chinensis Franch. Against ESBL-Producing Enterobacterales" Molecules 30, no. 22: 4331. https://doi.org/10.3390/molecules30224331
APA StyleHui, C. C., Lee, F. W. F., Lung, W. C. H., Fan, K. C., Wong, I. T. F., Siu, G. K. H., Chow, Y. L., Chan, P. L., Ng, S.-M., Shi, L., Seto, S. W., Chow, F. W. N., & Tam, E. W. T. (2025). Ultrasound-Assisted Extraction: Unlocking the Antibacterial Potential of Coptis chinensis Franch. Against ESBL-Producing Enterobacterales. Molecules, 30(22), 4331. https://doi.org/10.3390/molecules30224331

