Titanium Dioxide Solar Photocatalytic Microbial Inactivation Assessment Utilizing Viability Tests and a Novel Triplex qPCR Assay for Nucleic Acid Degradation Determination
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Multiplex qPCR Assay Development
3.1.1. Primers and Probes
3.1.2. qPCR
3.1.3. DNA/RNA Standards, Standard Curves and Reaction Efficiency Estimation
3.2. Solar Titanium Dioxide Photocatalytic Inactivation of Microbial Mixture Suspensions
3.2.1. Microbial Strains
3.2.2. Microbial Propagation and Culture Assays
3.2.3. Solar Photocatalytic Treatment of Microbial Mixture Suspensions
3.2.4. Microbial Viability Estimation Through Culture Assays
3.2.5. Nucleic Acid Purification from Photocatalytically Treated Samples
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| qPCR | Quantitative Polymerase Chain Reaction |
| cfu | Colony-Forming Units |
| pfu | Plaque-Forming Units |
| AOP | Advanced Oxidation Process |
| ROS | Reactive Oxygen Species |
| TiO2 | Titanium Dioxide |
| HPLC | High-Performance Liquid Chromatography |
| TSB | Tryptic Soy Broth |
| SDA | Sabouraud Dextrose Agar |
| LB | Luria–Bertani |
| MSA | Mannitol Salt Agar |
| PBS | Phosphate-Buffered Saline |
| LPA | Linear Polyacrylamide |
References
- Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef]
- Dalrymple, O.K.; Stefanakos, E.; Trotz, M.A.; Goswami, D.Y. A Review of the Mechanisms and Modeling of Photocatalytic Disinfection. Appl. Catal. B Environ. 2010, 98, 27–38. [Google Scholar] [CrossRef]
- Gogniat, G.; Thyssen, M.; Denis, M.; Pulgarin, C.; Dukan, S. The Bactericidal Effect of TiO2 Photocatalysis Involves Adsorption onto Catalyst and the Loss of Membrane Integrity. FEMS Microbiol. Lett. 2006, 258, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, C.; Wang, G. Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chem. An Asian J. 2020, 15, 3239–3253. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.T.H.; Nguyen, T.B.H.; Huong, P.T. An Approach for the Treatment of Chlorpyrifos and Atrazine Pesticides Using Graphitic Carbon Nitride Photocatalyst. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2025, 60, 200–207. [Google Scholar] [CrossRef]
- Qiu, Y.; Lu, J.; Yan, Y.; Niu, J. Enhanced Visible-Light-Driven Photocatalytic Degradation of Tetracycline by 16% Er3+-Bi2WO6 Photocatalyst. J. Hazard. Mater. 2022, 422, 126920. [Google Scholar] [CrossRef]
- Mubeen, K.; Safeen, K.; Irshad, A.; Safeen, A.; Ghani, T.; Shah, W.H.; Khan, R.; Ahmad, K.S.; Casin, R.; Rashwan, M.A.; et al. ZnO/CuSe Composite-Mediated Bandgap Modulation for Enhanced Photocatalytic Performance against Methyl Blue Dye. Sci. Rep. 2023, 13, 19580. [Google Scholar] [CrossRef]
- Wysokowska, K.; Cupiał, Z.; Staszak, M.; Zgoła-Grześkowiak, A.; Koziolek, J.; Ławniczak, Ł.; Wysokowski, M.; Wyrwas, B. Photocatalytic Degradation of Non-Ionic, Anionic, and Cationic Surfactants: From Batch Experiments through Equilibrium/Kinetic Study to Ecotoxicology Analysis. Chem. Pap. 2024, 78, 761–777. [Google Scholar] [CrossRef]
- Zhang, J.; Nosaka, Y. Photocatalytic Oxidation Mechanism of Methanol and the Other Reactants in Irradiated TiO2 Aqueous Suspension Investigated by OH Radical Detection. Appl. Catal. B Environ. 2015, 166–167, 32–36. [Google Scholar] [CrossRef]
- Díez, A.M.; Licciardello, N.; Kolen’ko, Y.V. Photocatalytic Processes as a Potential Solution for Plastic Waste Management. Polym. Degrad. Stab. 2023, 215, 110459. [Google Scholar] [CrossRef]
- Mohamadpour, F.; Amani, A.M. Photocatalytic Systems: Reactions, Mechanism, and Applications. RSC Adv. 2024, 14, 20609–20645. [Google Scholar] [CrossRef]
- Paspaltsis, I.; Kotta, K.; Lagoudaki, R.; Grigoriadis, N.; Poulios, I.; Sklaviadis, T. Titanium Dioxide Photocatalytic Inactivation of Prions. J. Gen. Virol. 2006, 87, 3125–3130. [Google Scholar] [CrossRef]
- Al Zoubi, W.; Salih Al-Hamdani, A.A.; Sunghun, B.; Ko, Y.G. A Review on TiO2-Based Composites for Superior Photocatalytic Activity. Rev. Inorg. Chem. 2021, 41, 213–222. [Google Scholar] [CrossRef]
- Venieri, D.; Chatzisymeon, E.; Gonzalo, M.S.; Rosal, R.; Mantzavinos, D. Inactivation of Enterococcus Faecalis by TiO2-Mediated UV and Solar Irradiation in Water and Wastewater: Culture Techniques Never Say the Whole Truth. Photochem. Photobiol. Sci. 2011, 10, 1744–1750. [Google Scholar] [CrossRef]
- Foster, H.A.; Ditta, I.B.; Varghese, S.; Steele, A. Photocatalytic Disinfection Using Titanium Dioxide: Spectrum and Mechanism of Antimicrobial Activity. Appl. Microbiol. Biotechnol. 2011, 90, 1847–1868. [Google Scholar] [CrossRef] [PubMed]
- Laxma Reddy, P.V.; Kavitha, B.; Kumar Reddy, P.A.; Kim, K.H. TiO2-Based Photocatalytic Disinfection of Microbes in Aqueous Media: A Review. Environ. Res. 2017, 154, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Rokicka-Konieczna, P.; Morawski, A.W. Photocatalytic Bacterial Destruction and Mineralization by TiO2-Based Photocatalysts: A Mini Review. Molecules 2024, 29, 2221. [Google Scholar] [CrossRef]
- Ishiguro, H.; Nakano, R.; Yao, Y.; Kajioka, J.; Fujishima, A.; Sunada, K.; Minoshima, M.; Hashimoto, K.; Kubota, Y. Photocatalytic Inactivation of Bacteriophages by TiO2-Coated Glass Plates under Low-Intensity, Long-Wavelength UV Irradiation. Photochem. Photobiol. Sci. 2011, 10, 1825–1829. [Google Scholar] [CrossRef] [PubMed]
- Thabet, S.; Simonet, F.; Lemaire, M.; Guillard, C.; Cotton, P. Impact of Photocatalysis on Fungal Cells: Depiction of Cellular and Molecular Effects on Saccharomyces Cerevisiae. Appl. Environ. Microbiol. 2014, 80, 7527–7535. [Google Scholar] [CrossRef]
- Regmi, C.; Joshi, B.; Ray, S.K.; Gyawali, G.; Pandey, R.P. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater. Front. Chem. 2018, 6. [Google Scholar] [CrossRef]
- Kacem, M.; Bru-Adan, V.; Goetz, V.; Steyer, J.P.; Plantard, G.; Sacco, D.; Wery, N. Inactivation of Escherichia coli by TiO2-Mediated Photocatalysis Evaluated by a Culture Method and Viability-QPCR. J. Photochem. Photobiol. A Chem. 2016, 317, 81–87. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Kjellerup, B.V.; Xu, Z. Viable but Nonculturable (VBNC) State, an Underestimated and Controversial Microbial Survival Strategy. Trends Microbiol. 2023, 31, 1013–1023. [Google Scholar] [CrossRef]
- Hasegawa, H.; Suzuki, E.; Maeda, S. Horizontal Plasmid Transfer by Transformation in Escherichia coli: Environmental Factors and Possible Mechanisms. Front. Microbiol. 2018, 9, 2365. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Babalola, S.O.; Onwudiwe, D.C. Photocatalytic Inactivation as a Method of Elimination of E. coli from Drinking Water. Appl. Sci. 2021, 11, 1313. [Google Scholar] [CrossRef]
- Ren, G.; Han, H.; Wang, Y.; Liu, S.; Zhao, J.; Meng, X.; Li, Z. Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials 2021, 11, 1804. [Google Scholar] [CrossRef]
- Hooshmand, S.; Kargozar, S.; Ghorbani, A.; Darroudi, M.; Keshavarz, M.; Baino, F.; Kim, H.W. Biomedical Waste Management by Using Nanophotocatalysts: The Need for New Options. Materials 2020, 13, 3511. [Google Scholar] [CrossRef]
- Moreira, N.F.F.; Narciso-da-Rocha, C.; Polo-López, M.I.; Pastrana-Martínez, L.M.; Faria, J.L.; Manaia, C.M.; Fernández-Ibáñez, P.; Nunes, O.C.; Silva, A.M.T. Solar Treatment (H2O2, TiO2-P25 and GO-TiO2 Photocatalysis, Photo-Fenton) of Organic Micropollutants, Human Pathogen Indicators, Antibiotic Resistant Bacteria and Related Genes in Urban Wastewater. Water Res. 2018, 135, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Lonnen, J.; Kilvington, S.; Kehoe, S.C.; Al-Touati, F.; McGuigan, K.G. Solar and Photocatalytic Disinfection of Protozoan, Fungal and Bacterial Microbes in Drinking Water. Water Res. 2005, 39, 877–883. [Google Scholar] [CrossRef]
- Kokkinos, P.; Venieri, D.; Mantzavinos, D. Advanced Oxidation Processes for Water and Wastewater Viral Disinfection. A Systematic Review. Food Environ. Virol. 2021, 13, 283–302. [Google Scholar] [CrossRef]
- Aranciaga Pajuelo, R.B.; Vargas López, J.P.; Castañeda Olivera, C.A.; Jave Nakayo, J.L.; Benites Alfaro, E.G.; Cabrera Carranza, C.F. Inactivation of Antibiotic Resistant Bacteria in Hospital Wastewater by TiO2/H2O2 Photocatalysis. Chem. Eng. Trans. 2021, 86, 853–858. [Google Scholar] [CrossRef]
- Ji, H.; Cai, Y.; Wang, Z.; Li, G.; An, T. Sub-Lethal Photocatalysis Promotes Horizontal Transfer of Antibiotic Resistance Genes by Conjugation and Transformability. Water Res. 2022, 221, 118808. [Google Scholar] [CrossRef]
- Venieri, D.; Chatzisymeon, E.; Politi, E.; Sofianos, S.S.; Katsaounis, A.; Mantzavinos, D. Photoelectrocatalytic Disinfection of Water and Wastewater: Performance Evaluation by QPCR and Culture Techniques. J. Water Health 2013, 11, 21–29. [Google Scholar] [CrossRef]
- Polo-López, M.I.; Castro-Alférez, M.; Nahim-Granados, S.; Malato, S.; Fernández-Ibáñez, P. Legionella Jordanis Inactivation in Water by Solar Driven Processes: EMA-QPCR versus Culture-Based Analyses for New Mechanistic Insights. Catal. Today 2017, 287, 15–21. [Google Scholar] [CrossRef]
- Guo, B.; Snow, S.D.; Starr, B.J.; Xagoraraki, I.; Tarabara, V.V. Photocatalytic Inactivation of Human Adenovirus 40: Effect of Dissolved Organic Matter and Prefiltration. Sep. Purif. Technol. 2018, 193, 193–201. [Google Scholar] [CrossRef]
- Seven, O.; Dindar, B.; Aydemir, S.; Metin, D.; Ozinel, M.A.; Icli, S. Solar Photocalytic Disinfection of a Group of Bacteria and Fungi Aqueous Suspensions with TiO2, ZnO and Sahara Desert Dust. J. Photochem. Photobiol. A Chem. 2004, 165, 103–107. [Google Scholar] [CrossRef]
- Krýsa, J.; Musilová, E.; Zita, J. Critical Assessment of Suitable Methods Used for Determination of Antibacterial Properties at Photocatalytic Surfaces. J. Hazard. Mater. 2011, 195, 100–106. [Google Scholar] [CrossRef]
- Matsuura, R.; Aida, Y. Purification of Living Environments Using Photocatalysts: Inactivation of Microorganisms and Decomposition of Allergens. J. Vet. Med. Sci. 2024, 86, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Yadav, B.; Tyagi, R.D. Microbiology of Hospital Wastewater. In Current Developments in Biotechnology and Bioengineering; Tyagi, R.D., Sellamuthu, B., Eds.; Elsevier: Amsterdam, Netherlands, 2020; pp. 103–148. [Google Scholar]
- Folorunso, O.C. Microbial Contamination in Urban Wastewater Systems: Emerging Health Threats and Mitigation Strategies. Int. J. Sci. Res. Arch. 2025, 14, 1449–1463. [Google Scholar] [CrossRef]
- Ren, B.; Shi, X.; Chi, Y.; Ren, T.; Jin, X.; Wang, X.C.; Jin, P. A Comprehensive Assessment of Fungi in Urban Sewer Biofilms: Community Structure, Environmental Factors, and Symbiosis Patterns. Sci. Total Environ. 2022, 806, 150728. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, M.G.; Ferreira, A.M.; Frota, O.P.; Brizzotti-Mazuchi, N.S.; Peresi, J.T.M.; Rigotti, M.A.; Macedo, C.E.; Sousa, A.F.L.D.; Andrade, D.D.; Almeida, M.T.G.D. Broad Diversity of Fungi in Hospital Water. Sci. World J. 2020, 2020, 9358542. [Google Scholar] [CrossRef]
- Berberidou, C.; Paspaltsis, I.; Pavlidou, E.; Sklaviadis, T.; Poulios, I. Heterogenous Photocatalytic Inactivation of B. stearothermophilus Endospores in Aqueous Suspensions under Artificial and Solar Irradiation. Appl. Catal. B Environ. 2012, 125, 375–382. [Google Scholar] [CrossRef]
- Ripolles-Avila, C.; Martinez-Garcia, M.; Hascoët, A.S.; Rodríguez-Jerez, J.J. Bactericidal Efficacy of UV Activated TiO2 Nanoparticles against Gram-Positive and Gram-Negative Bacteria on Suspension. CYTA J. Food 2019, 17, 408–418. [Google Scholar] [CrossRef]
- Cho, M.; Chung, H.; Choi, W.; Yoon, J. Different Inactivation Behaviors of MS-2 Phage and Escherichia coli in TiO2 Photocatalytic Disinfection. Appl. Environ. Microbiol. 2005, 71, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Singh, R.P.; Pandey, A.; Pandey, A. Photocatalytic Antibacterial Performance of TiO2 and Ag-Doped TiO2 against S. aureus. P. aeruginosa and E. coli. Beilstein J. Nanotechnol. 2013, 4, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Paspaltsis, I.; Kanata, E.; Sotiriadis, S.; Correia, S.S.; Schmitz, M.; Zerr, I.; Dafou, D.; Xanthopoulos, K.; Sklaviadis, T. A Comparison of RML Prion Inactivation Efficiency by Heterogeneous and Homogeneous Photocatalysis. Pathogens 2024, 13, 420. [Google Scholar] [CrossRef]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 2005, 44, 8269–8285. [Google Scholar] [CrossRef]
- Dufner, L.; Hofmann, P.; Dobslaw, D.; Kern, F. Degradation of Bacteria for Water Purification in a TiO2-Coated Photocatalytic Reactor Illuminated by Solar Light. Appl. Water Sci. 2025, 15, 101. [Google Scholar] [CrossRef]
- Villar-Navarro, E.; Levchuk, I.; Rueda-Márquez, J.J.; Homola, T.; Moriñigo, M.Á.; Vahala, R.; Manzano, M. Inactivation of Simulated Aquaculture Stream Bacteria at Low Temperature Using Advanced UVA- and Solar-Based Oxidation Methods. Sol. Energy 2021, 227, 477–489. [Google Scholar] [CrossRef]
- Rodrigues, C.P.; Ziolli, R.L.; Guimarães, J.R. Inactivation of Escherichia coli in Water by TiO2-Assisted Disinfection Using Solar Light. J. Braz. Chem. Soc. 2007, 18, 126–134. [Google Scholar] [CrossRef]
- Fagan, R.; McCormack, D.E.; Dionysiou, D.D.; Pillai, S.C. A Review of Solar and Visible Light Active TiO2 Photocatalysis for Treating Bacteria, Cyanotoxins and Contaminants of Emerging Concern. Mater. Sci. Semicond. Process. 2016, 42, 2–14. [Google Scholar] [CrossRef]
- Venieri, D.; Gounaki, I.; Binas, V.; Zachopoulos, A.; Kiriakidis, G.; Mantzavinos, D. Inactivation of MS2 Coliphage in Sewage by Solar Photocatalysis Using Metal-Doped TiO2. Appl. Catal. B Environ. 2015, 178, 54–64. [Google Scholar] [CrossRef]
- Adán, C.; Magnet, A.; Fenoy, S.; Pablos, C.; del Águila, C.; Marugán, J. Concomitant Inactivation of Acanthamoeba Spp. and Escherichia coli Using Suspended and Immobilized TiO2. Water Res. 2018, 144, 512–521. [Google Scholar] [CrossRef]
- Kuliesiene, N.; Sakalauskaite, S.; Tuckute, S.; Urbonavicius, M.; Varnagiris, S.; Daugelavicius, R.; Lelis, M. TiO2 Application for the Photocatalytical Inactivation of S. enterica, E. coli and M. luteus Bacteria Mixtures. Environ. Clim. Technol. 2020, 24, 418–429. [Google Scholar] [CrossRef]
- Blanchon, C.; Toulza, E.; Calvayrac, C.; Eichendorff, S.; Travers, M.A.; Vidal-Dupiol, J.; Montagnani, C.; Escoubas, J.M.; Stavrakakis, C.; Plantard, G. Inactivation of Two Oyster Pathogens by Photocatalysis and Monitoring of Changes in the Microbiota of Seawater: A Case Study on Ostreid Herpes Virus 1 ΜVar and Vibrio Harveyi. Chemosphere 2024, 346, 140565. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, J.H.; Weng, C.H.; Yen, L.T.; Gaybullaev, G.; Chang, C.J.; de Luna, M.D.G.; Lin, Y.T. Inactivation of Pathogens by Visible Light Photocatalysis with Nitrogen-Doped TiO2 and Tourmaline-Nitrogen Co-Doped TiO2. Sep. Purif. Technol. 2021, 274, 118979. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, J.; Sun, P.; Ding, T.; Li, J.; Deng, Y. Formation and Resuscitation of Viable but Non-Culturable (VBNC) Yeast in the Food Industry: A Review. Int. J. Food Microbiol. 2025, 426, 110901. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3-New Capabilities and Interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Altschup, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Kositzi, M.; Poulios, I.; Malato, S.; Caceres, J.; Campos, A. Solar Photocatalytic Treatment of Synthetic Municipal Wastewater. Water Res. 2004, 38, 1147–1154. [Google Scholar] [CrossRef]
- Gaillard, C.; Strauss, F. Ethanol precipitation of DNA with linear polyacrylamide as carrier. Nucleic Acids Res. 1990, 18, 378. [Google Scholar] [CrossRef]



| Target Microorganism | Genome Size (kbp)/Target Gene Copies in Genome | Standard Curve Equation/R2 | Assay Efficiency ** | Standard Deviation of Linear Regression | Genome Copy Number Detection Limit ¶ |
|---|---|---|---|---|---|
| MS2 # | 3569/ 1 | Y = −3.303X + 40.55 (R2 = 0.9974) | 100.8 | 0.3551 | 1 (0.4) |
| Candida albicans # | 16,000/ 21–176 ¥ | Y = −3.821X + 33.69 (R2 = 0.9972) | 82.7 | 0.2951 | 1 (0.56) |
| Escherichia coli # | ~5000/ 7 ** | Y = −3.308X + 33.86 (R2 = 0.996) | 100.6 | 0.4394 | 1 (0.08) |
| Staphylococcus aureus (ATCC 6538) $ | 2,800,485/ 5 | Y = −3.539X + 38.30 (R2 = 0.9994) | 91.675 | 0.1811 | 2 (1.47) |
| Geobacillus stearothermophilus (ATCC 7953) $ | 2,787,229/ 10 | Y = −3.476X + 40.04 (R2 = 0.9988) | 93.949 | 0.2432 | 2 (1.70) |
| Target | Target Gene | Oligo Name | Sequence (5′—>3′) | Binding Site | Length (bp) |
|---|---|---|---|---|---|
| Bacterial gDNA | 16S rRNA | Bact91F | RCCGCAAGGYTRAAACTCAA | 880–899 1 901–920 2 806–825 3 | 20 |
| Bact91R | GGTAAGGTTCTTCGCGTTGC | 951–970 1 974–993 2 877–896 3 | 20 | ||
| Bact91probe | 5-FAM/CGC ACA AGC/ZEN/GGT GGA GCA T/IBFQ | 917–935 1 940–938 2 843–861 3 | 19 | ||
| Fungal gDNA | 18S rRNA | 18S C.al 110F | TAGTTGAACCTTGGGCTTGG | 522–541 | 20 |
| 18S C.al 110R | CAAAGTAAAAGTCCTGGTTCGC | 610–631 | 22 | ||
| 18S C.al 110probe | ATTO550N/CTGGACCCAGCCGAGCCTTT/IBRQ | 569–588 | 20 | ||
| MS2 cDNA | Capsid protein | MS2 86F | AATCAGGCAACGGCTCTCTA | 1287–1306 | 20 |
| MS2 86R | TTGTCGACGAGAACGAACTG | 1353–1372 | 20 | ||
| MS2 86pr | Cy5/AGA GCC CTC AAC CGG AGT TTG AAG/IBRQ | 1309–1333 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paspaltsis, I.; Kanata, E.; Sotiriadis, S.; Berberidou, C.; Tsoumachidou, S.; Arsenakis, A.; Xanthopoulos, K.; Dafou, D.; Poulios, I.; Sklaviadis, T. Titanium Dioxide Solar Photocatalytic Microbial Inactivation Assessment Utilizing Viability Tests and a Novel Triplex qPCR Assay for Nucleic Acid Degradation Determination. Molecules 2025, 30, 4333. https://doi.org/10.3390/molecules30224333
Paspaltsis I, Kanata E, Sotiriadis S, Berberidou C, Tsoumachidou S, Arsenakis A, Xanthopoulos K, Dafou D, Poulios I, Sklaviadis T. Titanium Dioxide Solar Photocatalytic Microbial Inactivation Assessment Utilizing Viability Tests and a Novel Triplex qPCR Assay for Nucleic Acid Degradation Determination. Molecules. 2025; 30(22):4333. https://doi.org/10.3390/molecules30224333
Chicago/Turabian StylePaspaltsis, Ioannis, Eirini Kanata, Sotirios Sotiriadis, Chrysanthi Berberidou, Sophia Tsoumachidou, Athanasios Arsenakis, Konstantinos Xanthopoulos, Dimitra Dafou, Ioannis Poulios, and Theodoros Sklaviadis. 2025. "Titanium Dioxide Solar Photocatalytic Microbial Inactivation Assessment Utilizing Viability Tests and a Novel Triplex qPCR Assay for Nucleic Acid Degradation Determination" Molecules 30, no. 22: 4333. https://doi.org/10.3390/molecules30224333
APA StylePaspaltsis, I., Kanata, E., Sotiriadis, S., Berberidou, C., Tsoumachidou, S., Arsenakis, A., Xanthopoulos, K., Dafou, D., Poulios, I., & Sklaviadis, T. (2025). Titanium Dioxide Solar Photocatalytic Microbial Inactivation Assessment Utilizing Viability Tests and a Novel Triplex qPCR Assay for Nucleic Acid Degradation Determination. Molecules, 30(22), 4333. https://doi.org/10.3390/molecules30224333

