Fe-Doped Nickel Carbonate Hydroxide-Supported Ru Nanocluster Catalyst as Efficient OER Electrocatalysts
Abstract
1. Introduction
2. Results and Discussion
2.1. Physical and Electrochemical Characterization of NF-LDH and NFCH
2.2. Physical and Electrochemical Characterization of NFCH-Ru
3. Experimental Section
3.1. Materials
3.2. Preparation of NF-LDH
3.3. Preparation of NFCH
3.4. Preparation of NFCH-Rux
3.5. Physical Characterization
3.6. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Li, R.; Chen, X.; Wu, J.; Xie, Y.; Wang, X.; Ma, K.; Wang, L.; Zhang, Z.; Liao, Q.; et al. A-Site Management Prompts the Dynamic Reconstructed Active Phase of Perovskite Oxide OER Catalysts. Adv. Energy Mater. 2021, 11, 2003755. [Google Scholar] [CrossRef]
- Wei, B.; Fu, Z.; Legut, D.; Germann, T.C.; Du, S.; Zhang, H.; Francisco, J.S.; Zhang, R. Rational Design of Highly Stable and Active MXene-Based Bifunctional ORR/OER Double-Atom Catalysts. Adv. Mater. 2021, 33, 2102595. [Google Scholar] [CrossRef]
- Pan, J.; Chen, Z.; Wang, P.; Wang, P.; Yu, Q.; Zhao, W.; Wang, J.; Zhu, M.; Zheng, Y.; Li, C. The overall water splitting of CdS/Ti3+-SrTiO3 core–shell heterojunction via OER enhancement of MnOx nanoparticles. Chem. Eng. J. 2021, 424, 130357. [Google Scholar] [CrossRef]
- Zeng, F. Stability and deactivation of OER electrocatalysts: A review. J. Energy Chem. 2022, 69, 301–329. [Google Scholar] [CrossRef]
- Li, H.; Lin, Y.; Duan, J.Y.; Wen, Q.L.; Liu, Y.W.; Zhai, T.Y. Stability of electrocatalytic OER: From principle to application. Chem. Soc. Rev. 2024, 53, 10709–10740. [Google Scholar] [CrossRef]
- Wang, Y. Atomically Targeting NiFe LDH to Create Multivacancies for OER Catalysis with a Small Organic Anchor. Nano Energy 2021, 81, 105606. [Google Scholar] [CrossRef]
- Yang, X.; Wu, Z.; Xing, Z.; Yang, C.; Wang, W.; Yan, R.; Cheng, C.; Ma, T.; Zeng, Z.; Li, S.; et al. IrPd Nanoalloy-Structured Bifunctional Electrocatalyst for Efficient and pH-Universal Water Splitting. Small 2023, 19, 2208261. [Google Scholar] [CrossRef]
- Wu, A.; Xie, Y.; Ma, H.; Tian, C.; Gu, Y.; Yan, H.; Zhang, X.; Yang, G.; Fu, H. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy 2018, 44, 353–363. [Google Scholar] [CrossRef]
- Souza, A.S.; Bezerra, L.S.; Cardoso, E.S.F.; Fortunato, G.V.; Maia, G. Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER. J. Mater. Chem. A 2021, 9, 11255–11267. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Cai, P.; Wen, Z. An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation. J. Mater. Chem. A 2018, 6, 4948–4954. [Google Scholar] [CrossRef]
- Talib, S.H.; Lu, Z.; Yu, X.; Ahmad, K.; Bashir, B.; Yang, Z.; Li, J. Theoretical Inspection of M1/PMA Single-Atom Electrocatalyst: Ultra-High Performance for Water Splitting (HER/OER) and Oxygen Reduction Reactions (OER). ACS Catal. 2021, 11, 8929–8941. [Google Scholar] [CrossRef]
- Xiao, K.; Lin, R.-T.; Wei, J.-X.; Li, N.; Li, H.; Ma, T.; Liu, Z.-Q. Electrochemical disproportionation strategy to in-situ fill cation vacancies with Ru single atoms. Nano Res. 2022, 15, 4980–4985. [Google Scholar] [CrossRef]
- Fan, Q.; Gao, P.; Ren, S.; Qu, Y.; Kong, C.; Yang, J.; Wu, Y. Total conversion of centimeter-scale nickel foam into single atom electrocatalysts with highly selective CO2 electrocatalytic reduction in neutral electrolyte. Nano Res. 2023, 16, 2003–2010. [Google Scholar] [CrossRef]
- Fu, N.; Liang, X.; Li, Z.; Li, Y. Single-atom site catalysts based on high specific surface area supports. Phys. Chem. Chem. Phys. 2022, 24, 17417–17438. [Google Scholar] [CrossRef]
- Li, P.; Wang, M.; Duan, X.; Zheng, L.; Cheng, X.; Zhang, Y.; Kuang, Y.; Li, Y.; Ma, Q.; Feng, Z.; et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711. [Google Scholar] [CrossRef]
- Chen, R.; Hung, S.; Zhou, D.; Gao, J.; Yang, C.; Tao, H.; Yang, H.B.; Zhang, L.; Zhang, L.; Xiong, Q.; et al. Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction. Adv. Mater. 2019, 31, 1903909. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, L.; Chen, Y.; Lu, X.F.; Gao, S.; Lou, X.W. Designed Formation of Double-Shelled Ni–Fe Layered-Double-Hydroxide Nanocages for Efficient Oxygen Evolution Reaction. Adv. Mater. 2020, 32, 1906432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, B.; Derr, O.; Yao, Z.; Qin, Z.; Deng, X.; Li, J.; Lin, H. Hierarchical cobalt-based hydroxide microspheres for water oxidation. Nanoscale 2014, 6, 3376. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, W.; Chen, S.; Nie, Y.; Xiong, K.; Wei, Z. Cobalt carbonate hydroxide/C: An efficient dual electrocatalyst for oxygen reduction/evolution reactions. Chem. Commun. 2014, 50, 15529–15532. [Google Scholar] [CrossRef]
- Xie, H.; Tang, S.; Zhu, J.; Vongehr, S.; Meng, X. A high energy density asymmetric all-solid-state supercapacitor based on cobalt carbonate hydroxide nanowire covered N-doped graphene and porous graphene electrodes. J. Mater. Chem. A 2015, 3, 18505–18513. [Google Scholar] [CrossRef]
- Mahmood, N. Chlorine-doped carbonated cobalt hydroxide for supercapacitors with enormously high pseudocapacitive performance and energy density. Nano Energy 2015, 11, 267–276. [Google Scholar] [CrossRef]
- Liu, F.; Su, H.; Jin, L.; Zhang, H.; Chu, X.; Yang, W. Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors. J. Colloid Interface Sci. 2017, 505, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Jiang, W.-J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y.-Y.; Jin, S.-F.; Gao, F.; Wan, L.-J.; Hu, J.-S. Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. J. Am. Chem. Soc. 2017, 139, 8320–8328. [Google Scholar] [CrossRef]
- Karmakar, A.; Srivastava, S.K. Hierarchically hollow interconnected rings of nickel substituted cobalt carbonate hydroxide hydrate as promising oxygen evolution electrocatalyst. Int. J. Hydrogen Energy 2022, 47, 22430–22441. [Google Scholar] [CrossRef]
- Lu, Z.; Li, S.; Ning, L.; Tang, K.; Guo, Y.; You, L.; Chen, C.; Wang, G. Nickel-Iron-Layered Double Hydroxide Electrocatalyst with Nanosheets Array for High Performance of Water Splitting. Molecules 2024, 29, 2092. [Google Scholar] [CrossRef]
- Poudel, M.; Vijayapradeep, S.; Sekar, K.; Kim, J.; Yoo, D. Pyridinic-N exclusively enriched CNT-encapsulated NiFe interfacial alloy nanoparticles on knitted carbon fiber cloth as bifunctional oxygen catalysts for biaxially flexible zinc-air batteries. J. Energy Chem. 2024, 12, 10185–10195. [Google Scholar] [CrossRef]
- Farpón, M.G.; Henao, W.; Plessow, P.N.; Andrés, E.; Arenal, R.; Marini, C.; Agostini, G.; Studt, F.; Prieto, G. Rhodium Single-Atom Catalyst Design through Oxide Support Modulation for Selective Gas-Phase Ethylene Hydroformylation. Angew. Chem. Int. Ed. 2023, 62, e202214048. [Google Scholar] [CrossRef]
- Duan, L.; Hung, C.-T.; Wang, J.; Wang, C.; Ma, B.; Zhang, W.; Ma, Y.; Zhao, Z.; Zhao, T.; Peng, L.; et al. Synthesis of Fully Exposed Single-Atom-Layer Metal Clusters on 2D Ordered Mesoporous TiO2 Nanosheets. Angew. Chem. 2022, 134, e202211307. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, L.; Dai, J.; Wang, J.; Fang, C.; Zhan, G.; Zheng, Q.; Hou, W.; Zhang, L. Single Atom Ru Monolithic Electrode for Efficient Chlorine Evolution and Nitrate Reduction. Angew. Chem. Int. Ed. 2022, 61, e202208215. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Zou, L.; Sun, L.; Zhang, K.; Liu, Z.; Li, Y.; Li, C.; Zou, R.; Yu, J.; Xu, Q. Single-Atom Iron Catalysts on Overhang-Eave Carbon Cages for High-Performance Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2020, 59, 7384–7389. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Dai, F.; Li, J.; Dang, X.; Guo, J.; Lv, W.; Zhang, Z.; Lu, X. Tailoring the Electronic Metal–Support Interactions in Supported Atomically Dispersed Gold Catalysts for Efficient Fenton-like Reaction. Angew. Chem. Int. Ed. 2021, 60, 14370–14375. [Google Scholar] [CrossRef]
- Su, J.; Yang, Y.; Xia, G.; Chen, J.; Jiang, P.; Chen, Q. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat. Commun. 2017, 8, 14969. [Google Scholar] [CrossRef]
- Wang, S.; Fan, M.; Pan, H.; Lyu, J.; Wu, J.; Tang, H.; Zhang, H. Achieving asymmetric redox chemistry for oxygen evolution reaction through strong metal-support interactions. J. Energy Chem. 2024, 96, 526–535. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, J.; Weiser, G.; Klingenhof, M.; Koketsu, T.; Liu, S.; Pi, Y.; Henkelman, G.; Shi, X.; Li, J.; et al. Ru Single Atoms and Sulfur Anions Dual-Doped NiFe Layered Double Hydroxides for High-Current-Density Alkaline Oxygen Evolution Reaction. Adv. Energy Mater. 2025, 15, 2500554. [Google Scholar] [CrossRef]
- Sun, Y.; Xue, Z.; Liu, Q.; Jia, Y.; Li, Y.; Liu, K.; Lin, Y.; Liu, M.; Li, G.; Su, C.-Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nat. Commun. 2021, 12, 1369. [Google Scholar] [CrossRef]
- Anantharaj, S.; Kundu, S.; Noda, S. “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514. [Google Scholar] [CrossRef]
- Han, Y.; Wu, J.; Tang, L.; An, X.; Yang, X.; Li, T.; Wang, Q.; Wu, X. Self-adaption of Zn introduced Ni-Fe layered double hydroxide for efficient and durable oxygen evolution reaction electrocatalysis. Appl. Surf. Sci. 2023, 610, 155288. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, Z.; Ho, D. Mn dopant induced high-valence Ni3+ sites and oxygen vacancies for enhanced water oxidation. Mater. Chem. Front. 2020, 4, 1993–1999. [Google Scholar] [CrossRef]
- Liu, S. Facile Synthesis of Microsphere Copper Cobalt Carbonate Hydroxides Electrode for Asymmetric Supercapacitor. Electrochim. Acta 2016, 188, 898–908. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, W.; Wan, J.; Chen, J.; Wang, H.; Li, S.; Luo, T.; Hu, Y.; Yuan, C.; Cao, L.; et al. Spherical vs. planar: Steering the electronic communication between Ru nanoparticle and single atom to boost the electrocatalytic hydrogen evolution activity both in acid and alkaline. Appl. Catal. B Environ. 2022, 307, 121193. [Google Scholar] [CrossRef]
- Wei, M.; Han, Y.; Liu, Y.; Su, B.; Yang, H.; Lei, Z. Green preparation of Fe3O4 coral-like nanomaterials with outstanding magnetic and OER properties. J. Alloys Compd. 2020, 831, 154702. [Google Scholar] [CrossRef]
- Urbain, F.; Smirnov, V.; Becker, J.-P.; Lambertz, A.; Rau, U.; Finger, F. Light-induced degradation of adapted quadruple junction thin film silicon solar cells for photoelectrochemical water splitting. Sol. Energy Mater. Sol. Cells 2016, 145, 142–147. [Google Scholar] [CrossRef]
- McCrory, C.C.L.; Jung, S.; Peters, J.C.; Jaramillo, T.F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [Google Scholar] [CrossRef]
- Hu, W.; Liu, Q.; Lv, T.; Zhou, F.; Zhong, Y. Impact of interfacial CoOOH on OER catalytic activities and electrochemical behaviors of bimetallic CoxNi-LDH nanosheet catalysts. Electrochim. Acta 2021, 381, 138276. [Google Scholar] [CrossRef]
- Lee, H.; Gwon, O.; Choi, K.; Zhang, L.; Zhou, J.; Park, J.; Yoo, J.-W.; Wang, J.-Q.; Lee, J.H.; Kim, G. Enhancing Bifunctional Electrocatalytic Activities via Metal d-Band Center Lift Induced by Oxygen Vacancy on the Subsurface of Perovskites. ACS Catal. 2020, 10, 4664–4670. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, S.; Zhou, J.; Zhou, L.; Li, B.; Li, S.; Wu, X.; Chen, Y.; Li, X.; Sheng, X.; et al. Co-Adjusting d-Band Center of Fe to Accelerate Proton Coupling for Efficient Oxygen Electrocatalysis. Small 2023, 20, e2307662. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Yang, B.; Mei, Z.; Kang, Q.; Chen, G.; Liu, X.; Zhang, N. Tuning the d-Band States of Ni-Based Serpentine Materials via Fe3+ Doping for Efficient Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2022, 14, 52857–52867. [Google Scholar] [CrossRef]
- Hui, L.; Jia, D.; Yu, H.; Xue, Y.; Li, Y. Ultrathin Graphdiyne-Wrapped Iron Carbonate Hydroxide Nanosheets toward Efficient Water Splitting. ACS Appl. Mater. Interfaces 2019, 11, 2618–2625. [Google Scholar] [CrossRef]
- Deng, X.; Chen, J.; Chen, Q.; Zhou, Y.; Liu, X.; Zhang, J.; Wang, G.; Wang, R. The synergistic effect of Ir and oxygen vacancies on Enhancing the OER performance of Surface-Reconstructed FeCo LDH. Appl. Surf. Sci. 2024, 665, 160310. [Google Scholar] [CrossRef]
- Cai, M.; Lu, X.; Zou, Z.; Guo, K.; Xi, P.; Xu, C. The Energy Level Regulation of CoMo Carbonate Hydroxide for the Enhanced Oxygen Evolution Reaction Activity. ACS Sustain. Chem. Eng. 2019, 7, 6161–6169. [Google Scholar] [CrossRef]
- Zhu, W.; Zhu, G.; Hu, J.; Zhu, Y.; Chen, H.; Yao, C.; Pi, Z.; Zhu, S.; Li, E. Poorly crystallized nickel hydroxide carbonate loading with Fe3+ ions as improved electrocatalysts for oxygen evolution. Inorg. Chem. Commun. 2020, 114, 107851. [Google Scholar] [CrossRef]
- Ma, G.; Qin, M.; Tan, W.; Fan, Z.; Xin, X. Optimizing OER performance with CoFe-LDH@MnCo–CH nanoneedle arrays: Leveraging p-n junctions in electrocatalysis. Int. J. Hydrogen Energy 2024, 60, 902–908. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, S.; Lin, H.; Han, S.; Zhong, W.; Xie, Y.; Hu, J.; Yang, S. NaBH4 induces a high ratio of Ni3+/Ni2+ boosting OER activity of the NiFe LDH electrocatalyst. RSC Adv. 2020, 10, 33475–33482. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Xue, Y.; Jia, D.; Yu, H.; Zhang, C.; Li, Y. Multifunctional Single-Crystallized Carbonate Hydroxides as Highly Efficient Electrocatalyst for Full Water splitting. Adv. Energy Mater. 2018, 8, 1800175. [Google Scholar] [CrossRef]
- Hou, Z.; Fan, F.; Wang, Z.; Deng, Y.; Du, Y. Heterostructural NiSe-CoFe LDH as a highly effective and stable electrocatalyst for the oxygen evolution reaction. Dalton Trans. 2023, 52, 10064–10070. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Wen, H.; Han, Y.; Deng, S. Green Preparation of CNTs/Graphite Supported NiFe Carbonate Hydroxides for Oxygen Evolution Reaction. ChemCatChem 2022, 14, e202200453. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, L.; Chen, Z.; Gao, Y.; Wang, H.; Zhang, Y. Facile synthesis of Co–Fe layered double hydroxide nanosheets wrapped on Ni-doped nanoporous carbon nanorods for oxygen evolution reaction. J. Colloid Interface Sci. 2023, 650, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Liu, C.; Zhang, S.; Zhang, H.; Zhu, Z. Enhanced OER performance of NiFeB amorphous alloys by surface self-reconstruction. Int. J. Hydrogen Energy 2022, 47, 20718–20728. [Google Scholar] [CrossRef]
- Khan, N.A.; Ahmad, I.; Rashid, N.; Hussain, S.; Zairov, R.; Alsaiari, M.; Alkorbi, A.S.; Ullah, Z.; urRehman, H.; Nazar, M.F. Effective CuO/CuS heterostructures catalyst for OER performances. Int. J. Hydrogen Energy 2023, 48, 31142–31151. [Google Scholar] [CrossRef]
- Dai, M.; Fan, H.; Xu, G.; Wang, M.; Zhang, S.; Lu, L.; Zhang, Y. Boosting electrocatalytic oxygen evolution using ultrathin carbon protected iron–cobalt carbonate hydroxide nanoneedle arrays. J. Power Sources 2020, 450, 227639. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Q.; Huang, J.; Zeng, Z.; Wu, X.; He, J. Fe-Doped Nickel Carbonate Hydroxide-Supported Ru Nanocluster Catalyst as Efficient OER Electrocatalysts. Molecules 2025, 30, 4209. https://doi.org/10.3390/molecules30214209
Zhong Q, Huang J, Zeng Z, Wu X, He J. Fe-Doped Nickel Carbonate Hydroxide-Supported Ru Nanocluster Catalyst as Efficient OER Electrocatalysts. Molecules. 2025; 30(21):4209. https://doi.org/10.3390/molecules30214209
Chicago/Turabian StyleZhong, Qianqian, Jun Huang, Zhiyi Zeng, Xiaoqiang Wu, and Jing He. 2025. "Fe-Doped Nickel Carbonate Hydroxide-Supported Ru Nanocluster Catalyst as Efficient OER Electrocatalysts" Molecules 30, no. 21: 4209. https://doi.org/10.3390/molecules30214209
APA StyleZhong, Q., Huang, J., Zeng, Z., Wu, X., & He, J. (2025). Fe-Doped Nickel Carbonate Hydroxide-Supported Ru Nanocluster Catalyst as Efficient OER Electrocatalysts. Molecules, 30(21), 4209. https://doi.org/10.3390/molecules30214209

