Influence of Diet and Growth Conditions on the Carbon and Nitrogen Stable Isotopic Composition of Aspergillus niger Mycelium: Insights for Fungal Chitosan Characterization
Abstract
1. Introduction
2. Results and Discussion
2.1. Isotopic Analysis of Starting Spore Strain
2.2. Estimation of the Inter-Days Repeatability
2.3. Experiment 1 Test 1: Effect of Different Diets
2.3.1. Carbon Isotopic Ratio (δ13C) Shift Between the Diet and the Mycelium Produced by the Aspergillus niger Fungus
2.3.2. Nitrogen Isotopic Ratio (δ15N) Shift Between the Diet and the Final Mycelium Produced by the Aspergillus niger Fungus
2.4. Temporal and Condition-Dependent Fractionation of Carbon and Nitrogen Isotopes in Aspergillus niger Mycelium
2.4.1. Experiment 1 Test 2: Monitoring over the Time
2.4.2. Experiment 2: Effect of pH, Temperature and Airflow on the δ15N Values
3. Materials and Methods
3.1. Description of Samples and Processes
3.1.1. Ingredients
3.1.2. Preparation of the Starting Spore
3.1.3. Experiment 1 Test 1: Effect of Different Diets
3.1.4. Experiment 1 Test 2: Monitoring over the Time
3.1.5. Experiment 2: Effect of the Variation in pH, Temperature and Presence or Absence of a Constant Airflow on δ15N Value
3.1.6. Mycelium Sample Isolation
3.2. Stable Isotope Ratio Analysis
3.3. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef]
- No, H.K.; Meyers, S.P. Preparation and Characterization of Chitin and Chitosan—A Review. J. Aquat. Food Prod. Technol. 1995, 4, 27–52. [Google Scholar] [CrossRef]
- Arbia, W.; Arbia, L.; Adour, L.; Amrane, A. Chitin Extraction from Crustacean Shells Using Biological Methods—A Review. Food Technol. Biotechnol. 2013, 51, 12–25. [Google Scholar]
- Resolution OIV-Oeno 368-2009. Available online: https://www.oiv.int/public/medias/1094/oiv-oeno-368-2009-en.pdf (accessed on 5 July 2024).
- Cai, J.; Yang, J.; Du, Y.; Fan, L.; Qiu, Y.; Li, J.; Kennedy, J.F. Enzymatic Preparation of Chitosan from the Waste Aspergillus Niger Mycelium of Citric Acid Production Plant. Carbohydr. Polym. 2006, 64, 151–157. [Google Scholar] [CrossRef]
- Faber, M.A.; Pascal, M.; El Kharbouchi, O.; Sabato, V.; Hagendorens, M.M.; Decuyper, I.I.; Bridts, C.H.; Ebo, D.G. Shellfish Allergens: Tropomyosin and beyond. Allergy 2017, 72, 842–848. [Google Scholar] [CrossRef]
- Chagas, R.; Monteiro, S.; Boavida Ferreira, R. Assessment of Potential Effects of Common Fining Agents Used for White Wine Protein Stabilization. Am. J. Enol. Vitic. 2012, 63, 574–578. [Google Scholar] [CrossRef]
- Perini, M.; Nardin, T.; Venturelli, M.; Pianezze, S.; Larcher, R. Stable Isotope Ratio Analysis as a Fast and Simple Method for Identifying the Origin of Chitosan. Food Hydrocoll. 2020, 101, 105516. [Google Scholar] [CrossRef]
- Claverie, E.; Perini, M.; Onderwater, R.C.A.; Pianezze, S.; Larcher, R.; Roosa, S.; Yada, B.; Wattiez, R. Multiple Technology Approach Based on Stable Isotope Ratio Analysis, Fourier Transform Infrared Spectrometry and Thermogravimetric Analysis to Ensure the Fungal Origin of the Chitosan. Molecules 2023, 28, 4324. [Google Scholar] [CrossRef]
- O’Leary, M.H. Carbon Isotopes in Photosynthesis. Bioscience 1988, 38, 328–336. [Google Scholar] [CrossRef]
- DeNiro, M.J.; Epstein, S. Influence of Diet on the Distribution of Carbon Isotopes in Animals. Geochim. Cosmochim. Acta 1978, 42, 495–506. [Google Scholar] [CrossRef]
- Henn, M.R.; Chapela, I.H. Differential C Isotope Discrimination by Fungi during Decomposition of C(3)- and C(4)-Derived Sucrose. Appl. Environ. Microbiol. 2000, 66, 4180–4186. [Google Scholar] [CrossRef]
- Ruess, L.; Häggblom, M.M.; Langel, R.; Scheu, S. Nitrogen Isotope Ratios and Fatty Acid Composition as Indicators of Animal Diets in Belowground Systems. Oecologia 2004, 139, 336–346. [Google Scholar] [CrossRef]
- Henn, M.R.; Chapela, I.H. Ecophysiology of C and N Isotopic Fractionation in Forest Fungi and the Roots of the Saprotrophic-Mycorrhizal Divide. Oecologia 2001, 128, 480–487. [Google Scholar] [CrossRef]
- Will, O.H., III; Tieszen, L.L.; Gerlach, T.; Kellen, M. Alteration of Carbon Isotope Ratios by Eight Ustilago Species on Defined Media. Bot. Gaz. 1989, 150, 152–157. [Google Scholar] [CrossRef]
- Rossmann, A.; Butzenlechner, M.; Schmidt, H.L. Evidence for a Nonstatistical Carbon Isotope Distribution in Natural Glucose. Plant Physiol. 1991, 96, 609–614. [Google Scholar] [CrossRef]
- Henn, M.R. Biochemical Basis and Ecological Implications of Stable Carbon and Nitrogen Isotopic Fractionation by Basidiomycete Fungi; University of California, Berkeley: Berkeley, CA, USA, 2002; p. 318. [Google Scholar]
- Boschker, H.T.S.; Middelburg, J.J. Stable Isotopes and Biomarkers in Microbial Ecology. FEMS Microbiol. Ecol. 2002, 40, 85–95. [Google Scholar] [CrossRef]
- Emmerton, K.S.; Callaghan, T.V.; Jones, H.E.; Leake, J.R.; Michelsen, A.; Read, D.J. Assimilation and Isotopic Fractionation of Nitrogen by Mycorrhizal Fungi. New Phytol. 2001, 151, 503–511. [Google Scholar] [CrossRef]
- Högberg, P.; Högberg, M.N.; Quist, M.E.; Ekblad, A.; Näsholm, T. Nitrogen Isotope Fractionation during Nitrogen Uptake by Ectomycorrhizal and Non-mycorrhizal Pinus sylvestris. New Phytol. 1999, 142, 569–576. [Google Scholar] [CrossRef]
- Brauer, V.S.; Pessoni, A.M.; Freitas, M.S.; Cavalcanti-Neto, M.P.; Ries, L.N.A.; Almeida, F. Chitin Biosynthesis in Species. J. Fungi 2023, 9, 89. [Google Scholar] [CrossRef]
- Latgé, J.-P.; Beauvais, A.; Chamilos, G. The Cell Wall of the Human Fungal Pathogen Aspergillus Fumigatus: Biosynthesis, Organization, Immune Response, and Virulence. Annu. Rev. Microbiol. 2017, 71, 99–116. [Google Scholar] [CrossRef]
- Lenardon, M.D.; Munro, C.A.; Gow, N.A.R. Chitin Synthesis and Fungal Pathogenesis. Curr. Opin. Microbiol. 2010, 13, 416–423. [Google Scholar] [CrossRef]
- Pennington, L.H. Upon Assimilation of Atmospheric Nitrogen by Fungi. Bull. Torrey Bot. Club 1911, 38, 135. [Google Scholar] [CrossRef]
- Lipman, C.B. Nitrogen Fixation by Yeasts and Other Fungi; University of California, Berkeley: Berkeley, CA, USA, 1911; p. 14. [Google Scholar]
- Jayasinghearachchi, H.S.; Seneviratne, G. Can Mushrooms Fix Atmospheric Nitrogen? J. Biosci. 2004, 29, 293–296. [Google Scholar] [CrossRef]
- Ali, S.; Ul-Haq, I.; Qadeer, M.A.; Iqbal, J. Production of Citric Acid by Aspergillus Niger Using Cane Molasses in a Stirred Fermentor. Electron. J. Biotechnol. 2002, 5, 19–20. [Google Scholar] [CrossRef]
δ13C (‰, vs. V-PDB) | δ15N (‰, vs. Air) | |
---|---|---|
1 | −12.4 | −1.2 |
2 | −13.2 | −1.4 |
3 | −14.1 | −1.3 |
Mean | −13.2 | −1.3 |
St. Dev. | 0.9 | 0.1 |
Diet A | Sample | Sampling No. 1 | Sampling No. 2 | Sampling No. 3 | Sampling No. 4 |
---|---|---|---|---|---|
δ15N (‰, vs. Air) | 1 | - | −1.2 | −2.3 | −5.6 |
2 | 0.6 | −1.6 | −2.4 | −4.6 | |
δ13C (‰, vs. V-PDB) | 1 | - | −17.5 | −17.6 | −17.5 |
2 | −17.9 | −17.9 | −17.6 | −18.2 | |
Diet B | Sample | Sampling No. 1 | Sampling No. 2 | Sampling No. 3 | Sampling No. 4 |
δ15N (‰, vs. Air) | 1 | 2.3 | 7.3 | 7.4 | 10.5 |
2 | 5.7 | 8.9 | 9.3 | 10.8 | |
δ13C (‰, vs. V-PDB) | 1 | −24.0 | −24.4 | −24.4 | −24.4 |
2 | −24.2 | −24.4 | −24.4 | −24.4 |
Test | Diet | Temperature (°C) | pH | Airflow | Mean δ15N (‰, vs. Air) | St. Dev. | |
---|---|---|---|---|---|---|---|
1 | B | 25 | 5.3 | no | 10.6 | a | 0.6 |
B | 25 | 7.0 | no | 9.5 | a | 0.8 | |
B | 25 | 8.0 | no | 9.5 | a | 0.7 | |
2 | B | 15 | 5.3 | no | 6.4 | a | 1.0 |
B | 25 | 5.3 | no | 13.6 | b | 0.4 | |
B | 40 | 5.3 | no | 14.5 | b | 0.7 | |
3 | B | 25 | 5.3 | no | 13.9 | a | 1.1 |
B | 25 | 5.3 | yes | 8.9 | b | 1.1 | |
C | 25 | 5.3 | no | 16.2 | a | 0.6 | |
C | 25 | 5.3 | yes | 7.3 | b | 1.1 |
Carbon Sources | Nitrogen Sources | |
---|---|---|
Diet A | 20 g/L of D-(+) Glucose 1 (δ13C = −10.9‰) | 2.5 g/L of potassium nitrate (δ15N = 1.3‰) |
Diet B | 20 g/L of D-(+) Glucose 2 (δ13C = −23.7‰) | 2.5 g/L of ammonium chloride (δ15N = −1.8‰) |
Diet C | 20 g/L of D-(+) Glucose 1 (δ13C = −10.9‰) | 2.5 g/L of ammonium chloride (δ15N = −1.8‰) |
Diet D | 20 g/L of D-(+) Glucose 2 (δ13C = −23.7‰) | 2.5 g/L of potassium nitrate (δ15N = 1.3‰) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perini, M.; Guzzon, R.; Pianezze, S.; Violardo, F.; Larcher, R. Influence of Diet and Growth Conditions on the Carbon and Nitrogen Stable Isotopic Composition of Aspergillus niger Mycelium: Insights for Fungal Chitosan Characterization. Molecules 2025, 30, 4142. https://doi.org/10.3390/molecules30204142
Perini M, Guzzon R, Pianezze S, Violardo F, Larcher R. Influence of Diet and Growth Conditions on the Carbon and Nitrogen Stable Isotopic Composition of Aspergillus niger Mycelium: Insights for Fungal Chitosan Characterization. Molecules. 2025; 30(20):4142. https://doi.org/10.3390/molecules30204142
Chicago/Turabian StylePerini, Matteo, Raffaele Guzzon, Silvia Pianezze, Francesca Violardo, and Roberto Larcher. 2025. "Influence of Diet and Growth Conditions on the Carbon and Nitrogen Stable Isotopic Composition of Aspergillus niger Mycelium: Insights for Fungal Chitosan Characterization" Molecules 30, no. 20: 4142. https://doi.org/10.3390/molecules30204142
APA StylePerini, M., Guzzon, R., Pianezze, S., Violardo, F., & Larcher, R. (2025). Influence of Diet and Growth Conditions on the Carbon and Nitrogen Stable Isotopic Composition of Aspergillus niger Mycelium: Insights for Fungal Chitosan Characterization. Molecules, 30(20), 4142. https://doi.org/10.3390/molecules30204142