Advancements and Prospects in Cathode Materials for Aqueous Zinc-Ion Batteries: Mechanisms, Challenges and Modification Strategies
Abstract
1. Introduction
2. Cathode Material of AZIBs
2.1. Mn-Based Cathodes
2.1.1. MnO2
2.1.2. Other Mn-Based Materials/MnOx
2.2. V-Based Cathodes
2.3. Prussian Blue Analogs
2.4. Organic Materials
2.5. Other Types
3. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.-L.; Xu, C.-H.; Chen, Z.; Ni, S.B.; Shen, Z.-X. Progress in Aqueous Rechargeable Batteries. Green Energy Environ. 2018, 3, 20–41. [Google Scholar] [CrossRef]
- Li, S.-W.; Liu, Y.-C.; Zhao, X.-D.; Shen, Q.-Y.; Zhao, W.; Tan, Q.-W.; Zhang, N.; Li, P.; Jiao, L.-F.; Qu, X.-H. Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, 2007480. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Xue, L.-L.; Guo, Y.-P.; Hu, L.-T.; Cui, C.; Li, H.-Q.; Zhai, T.-Y. On-site building of a Zn2+-conductive interfacial layer via short-circuit energization for stable Zn anode. Sci. Bull. 2020, 66, 545–552. [Google Scholar] [CrossRef]
- Peng, T.; Xing, Y.-P.; Mu, L.; Wang, C.-G.; Zhao, N.; Liao, W.-B.; Li, J.-L.; Zhao, G. Recent research on aqueous zinc-ion batteries and progress in optimizing full-cell performance. Chin. Chem. Lett. 2024, 36, 110039. [Google Scholar] [CrossRef]
- Li, Q.; Han, L.-S.; Luo, Q.; Liu, X.-Y.; Yi, J. Towards Understanding the Corrosion Behavior of Zinc Metal Anode in Aqueous Systems: From Fundamentals to Strategies. Batter. Supercaps 2022, 5, e202100417. [Google Scholar] [CrossRef]
- Huang, H.; Feng, W.-T.; Niu, Z.-R.; Qin, X.-Q.; Liu, X.-F.; Shan, B.-Q.; Liu, Y. Structural, optical and photocatalytic properties of magnetic recoverable Mn0.6Zn0.4Fe2O4@Zn0.9Mn0.1O heterojunction prepared from waste Mn–Zn batteries. J. Environ. Manag. 2022, 302, 114120. [Google Scholar] [CrossRef]
- Zhang, Z.-N.; Li, S.; Wang, X.-Y.; Wen, Z.-S.; Sun, J.-C. Single-Atom Platinum Implanted on Manganese Dioxide Boosted the High-Rate Performance of Cathodes for Zinc-Ion Batteries. J. Phys. Chem. C 2021, 125, 26371–26378. [Google Scholar] [CrossRef]
- Li, C.-W.; Zhang, Q.-C.; Sun, J.; Li, T.-T.; E, S.-F.; Zhu, Z.-Z.; He, B.; Zhou, Z.-Y.; Li, Q.-L.; Yao, Y.-G. High Performance Quasi-Solid-State Flexible Aqueous Rechargeable Ag-Zn Battery Based on Metal-Organic-Framework Derived Ag Nanowires. ACS Energy Lett. 2018, 3, 2761–2768. [Google Scholar] [CrossRef]
- Liang, G.-J.; Mo, F.-N.; Wang, D.-H.; Li, X.-L.; Huang, Z.-D.; Li, H.-F.; Zhi, C.-Y. Commencing mild Ag–Zn batteries with long-term stability and ultra-flat voltage platform. Energy Storage Mater. 2020, 25, 86–92. [Google Scholar] [CrossRef]
- Kamboj, N.; Dey, R.-S. Electrochemically grown highly crystalline single-phase Ni3P superstructure accelerating ionic diffusion in rechargeable Ni–Zn battery. J. Power Sources 2021, 512, 230527. [Google Scholar] [CrossRef]
- Chen, T.-T.; Wang, F.-F.; Cao, S.; Bai, Y.; Zheng, S.-S.; Li, W.-T.; Zhang, S.-T.; Hu, S.-X.; Pang, H. In Situ Synthesis of MOF-74 Family for High Areal Energy Density of Aqueous Nickel-Zinc Batteries. Adv. Mater. 2022, 34, 2201779. [Google Scholar] [CrossRef]
- Li, J.-J.; Zou, S.-B.; Huang, J.-Z.; Wu, X.-Q.; Lu, Y.; Liu, X.-D.; Song, B.; Dong, D.-H. Mn-N-P doped carbon spheres as an efficient oxygen reduction catalyst for high performance Zn-Air batteries. Chin. Chem. Lett. 2023, 34, 107222. [Google Scholar] [CrossRef]
- Zhang, G.-Y.; Liu, X.; Yu, P.; Shen, D.; Liu, B.-W.; Pan, Q.-W.; Wang, L.; Fu, H.-G. Fe3C coupled with Fe-Nₓ supported on N-doped carbon as oxygen reduction catalyst for assembling Zn-air battery to drive water splitting. Chin. Chem. Lett. 2022, 33, 3903–3908. [Google Scholar]
- Hwang, B.; Cheong, J.-Y.; Matteini, P.; Yun, T.-G. Highly efficient phthalocyanine based aqueous Zn-ion flexible-batteries. Mater. Lett. 2022, 306, 130954. [Google Scholar] [CrossRef]
- Huang, R.; Wang, W.-W.; Zhang, C.; He, P.; Han, Y.-Y.; Chen, N.; Yan, J. A bi-component polyoxometalate-derivative cathode material showed impressive electrochemical performance for the aqueous zinc-ion batteries. Chin. Chem. Lett. 2022, 33, 3955–3960. [Google Scholar]
- Wu, P.-B.; Xu, T.-X.; Chen, Y.-P.; Yang, Q.-L.; Wang, J.; Liu, Y.-N.; Li, Y.-J. Reversible K0.54V2O5 nanorods for high-performance aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2022, 5, 1656–1661. [Google Scholar]
- Shang, Y.; Kundu, D. Aqueous Zn-ion batteries: Cathode materials and analysis. Curr. Opin. Electrochem. 2022, 33, 100954. [Google Scholar] [CrossRef]
- Kim, S.-J.; Tang, C.-R.; Singh, G.; Housel, L.-M.; Yang, S.; Takeuchi, K.-J.; Marschilok, A.-C.; Takeuchi, E.-S.; Zhu, Y.-M. New Insights into the Reaction Mechanism of Sodium Vanadate for an Aqueous Zn Ion Battery. Chem. Mater. 2020, 32, 2053–2060. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Li, J.-B.; Zhang, S.-M.; Cui, J.-Y.; Shao, M.-F. Highly reversible zinc anode enhanced by ultrathin MnO2 cathode material film for high-performance zinc-ion batteries. Adv. Mater. Interfaces 2020, 7, 2000510. [Google Scholar]
- Ding, Y.-X.; Zhu, K.-M.; Jin, H.-Q.; Gao, W.-X.; Wang, B.; Bian, S.; He, R.; Wang, J.-H.; Yang, H.; Denis, K.; et al. Synergistic molecular engineering strategies for enhancing diffusion kinetics and interfacial stability of the δ-MnO2 cathode in aqueous zinc-ion batteries. Carbon Energy 2025, 7, e70014. [Google Scholar] [CrossRef]
- Xue, T.; Fan, H.-J. From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story. J. Energy Chem. 2021, 54, 194–201. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.-H.; Huang, S.-Z.; Yang, H.-Y. Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries. Nano Energy 2021, 85, 105969. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X. Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries. Chin. Chem. Lett. 2022, 33, 1236–1244. [Google Scholar] [CrossRef]
- Mathew, V.; Sambandam, B.; Kim, S.-K.; Kim, S.-J.; Park, S.-Y.; Lee, S.-G.; Alfaruqi, M.-H.; Soundharrajan, V.; Islam, S.; Putro, D.-Y.; et al. Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Lett. 2020, 5, 2376–2400. [Google Scholar] [CrossRef]
- Bai, M.-X.; Gao, J.-F.; He, Z.-H.; Hou, J.-F.; Kong, L.-B. Brookite phase vanadium dioxide (B) with nanosheet structure for superior rate capability aqueous Zn-ion batteries. J. Electroanal. Chem. 2022, 907, 116039. [Google Scholar] [CrossRef]
- Zhao, X.; Mao, L.; Cheng, Q.-H.; Liao, F.-F.; Yang, G.-Y.; Chen, L.-Y. Dual-cation preintercalated and amorphous carbon confined vanadium oxides as a superior cathode for aqueous zinc-ion batteries. Carbon 2022, 186, 160–170. [Google Scholar] [CrossRef]
- Wang, X.; Xi, B.-J.; Ma, X.-J.; Feng, Z.-Y.; Jia, Y.-X.; Feng, J.-K.; Qian, Y.-T.; Xiong, S.-L. Boosting Zinc-Ion Storage Capability by Effectively Suppressing Vanadium Dissolution Based on Robust Layered Barium Vanadate. Nano Lett. 2020, 20, 2899–2906. [Google Scholar] [CrossRef]
- Zampardi, G.; La Mantia, F. Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives. Curr. Opin. Electrochem. 2020, 21, 84–92. [Google Scholar] [CrossRef]
- Trócoli, R.; Kasiri, G.; La Mantia, F. Phase transformation of copper hexacyanoferrate (KCuFe(CN)6) during zinc insertion: Effect of co-ion intercalation. J. Power Sources 2018, 400, 167–171. [Google Scholar] [CrossRef]
- Hu, B.-B.; Li, D.-S.; Li, M.-X.; Jiang, J.-Y.; Zou, Y.; Deng, Y.; Zhou, Z.-D.; Pu, H.; Ma, G.-Q.; Li, Z. Conductive network enhanced self-assembled diphasic Prussian blue analogs for aqueous zinc-ion batteries. J. Mater. Chem. C 2025, 13, 6736–6744. [Google Scholar] [CrossRef]
- Xu, D.-Y.; Zhang, H.-Z.; Zhou, L.-J.; Gao, X.-Y.; Lu, X.-H. Structural regulation strategies towards high performance organic materials for next generation aqueous Zn-based batteries. ChemPhysMater 2022, 1, 86–101. [Google Scholar] [CrossRef]
- Sun, G.-C.; Yang, B.-Z.; Chen, X.-J.; Wei, Y.-H.; Yin, G.; Zhang, H.-P.; Liu, Q. Aqueous zinc batteries using N-containing organic cathodes with Zn2+ and H+ co-uptake. Chem. Eng. J. 2022, 431, 134253. [Google Scholar] [CrossRef]
- Xie, J.; Yu, F.; Zhao, J.-W.; Guo, W.; Zhang, H.-L.; Cui, G.-L.; Zhang, Q.-C. An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery. Energy Storage Mater. 2020, 33, 283–289. [Google Scholar] [CrossRef]
- Huang, K.-X.; Yao, Z.-G.; Sun, K.; Chen, K.-Y.; Hu, J.-L.; Yin, D.-G.; Li, C.-L. Electrolyte formulation to enable ultra-stable aqueous Zn-organic batteries. J. Power Sources 2021, 482, 228904. [Google Scholar] [CrossRef]
- Mirle, C.; Medabalmi, V.; Ramanujam, K. Electrode and Conductive Additive Compatibility Yielding Excellent Rate Capability and Long Cycle Life for Sustainable Organic Aqueous Zn-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 1218–1227. [Google Scholar] [CrossRef]
- Liu, J.-P.; Gong, N.; Peng, W.-C.; Li, Y.; Zhang, F.-B.; Fan, X.-B. Vertically aligned 1T phase MoS2 nanosheet array for high-performance rechargeable aqueous Zn-ion batteries. Chem. Eng. J. 2022, 428, 130981. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, J.; Dong, Y.-Z.; Yao, H.; Kuang, Q.; Fan, Q.-H.; Zhao, Y.-M. A new Li2Mn3O7 cathode for aqueous Zn-ion battery with high specific capacity and long cycle life based on the realization of the reversible Li+ and H+ co-extraction/insertion. Chem. Eng. J. 2022, 433, 134507. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, K.; Cen, Z.; Xu, K.-B. Rational construction of multidimensional oxygen-deficient Co3O4 nanosheet/nanowire arrays as high-performance electrodes for aqueous Zn-ion batteries and asymmetric supercapacitors. J. Alloys Compd. 2021, 879, 160439. [Google Scholar] [CrossRef]
- Tang, B.; Tian, N.-C.; Jiang, J.-Q.; Li, Y.-W.; Yang, J.-W.; Zhu, Q. Investigation of zinc storage capacity of WS2 nanosheets for rechargeable aqueous Zn-ion batteries. J. Alloys Compd. 2022, 894, 162391. [Google Scholar] [CrossRef]
- Wei, W.-F.; Cui, X.-M.; Chen, W.-X.; Lv, D.-G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721. [Google Scholar] [CrossRef]
- Cheng, P.-C.; Li, B.-H.; Tseng, F.-S.; Liang, P.-C.; Lin, C.-H.; Liu, W.-R. Synthesis, Structures and Electrochemical Properties of Lithium 1,3,5-Benzenetricarboxylate Complexes. Polymers 2019, 11, 126. [Google Scholar] [CrossRef]
- Zou, Y.-H.; Zhang, W.; Chen, N.; Chen, S.; Xu, W.-J.; Cai, R.-S.; Brown, C.-L.; Yang, D.-J.; Yao, X.-D. Generating Oxygen Vacancies in MnO Hexagonal Sheets for Ultralong Life Lithium Storage with High Capacity. ACS Nano 2019, 13, 2062–2071. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-G.; Jin, D.-D.; Liu, H.-Y.; Zhang, C.-B.; Zhou, R.; Shen, C.; Xie, K.-Y.; Wei, B.-Q. All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life. Nano Energy 2016, 22, 524–532. [Google Scholar] [CrossRef]
- Jiang, B.-Z.; Xu, C.-J.; Wu, C.-L.; Dong, L.-B.; Li, J.; Kang, F.-Y. Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life. Electrochim. Acta 2017, 229, 422–428. [Google Scholar] [CrossRef]
- Zhang, D.-D.; Cao, J.; Zhang, X.-Y.; Insin, N.; Wang, S.-M.; Han, J.-T.; Zhao, Y.-S.; Qin, J.-Q.; Huang, Y.-H. Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high-performance zinc ion battery. Adv. Funct. Mater. 2021, 31, 2009412. [Google Scholar] [CrossRef]
- Yang, B.; Cao, X.-W.; Wang, S.-H.; Wang, N.; Sun, C.-L. Manganese oxides hierarchical microspheres as cathode material for high-performance aqueous zinc-ion batteries. Electrochim. Acta 2021, 385, 138447. [Google Scholar] [CrossRef]
- Hao, J.-W.; Mou, J.; Zhang, J.-W.; Dong, L.-B.; Liu, W.-B.; Xu, C.-J.; Kang, F.-Y. Electrochemically induced spinel-layered phase transition of Mn3O4 in high-performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 2018, 259, 170–178. [Google Scholar] [CrossRef]
- Xu, Y.-H.; Zhang, G.-N.; Liu, J.-Q.; Zhang, J.-H.; Wang, X.-X.; Pu, X.-H.; Wang, J.-J.; Yan, C.; Cao, Y.-Y.; Yang, H.-J.; et al. Recent Advances on Challenges and Strategies of Manganese Dioxide Cathodes for Aqueous Zinc-Ion Batteries. Energy Environ. Mater. 2023, 6, e12575. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.-Y.; Liu, Y.-C.; Zhao, Q.; Lei, K.-X.; Chen, C.-C.; Liu, X.-S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901. [Google Scholar] [CrossRef]
- Wu, X.-W.; Xiang, Y.-H.; Peng, Q.-Q.; Wu, X.-G.; Li, Y.-H.; Tang, F.; Song, R.; Lu, Z.-X.; Lu, Z.-S.; Hu, K.-M. Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J. Mater. Chem. A 2017, 5, 17990–17997. [Google Scholar] [CrossRef]
- Wang, S.-T.; Zhang, S.-P.; Chen, X.-R.; Yuan, G.-H.; Wang, B.-B.; Bai, J.-T.; Wang, H.; Wang, G. Double-shell zinc manganate hollow microspheres embedded in carbon networks as cathode materials for high-performance aqueous zinc-ion batteries. J. Colloid Interface Sci. 2020, 580, 528–539. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, P.; Yuan, S.-Y.; Zhang, Y.-N.; Zhang, Y.-J.; Wang, Y.-G. Manganese-Based Oxide Cathode Materials for Aqueous Zinc-Ion Batteries: Materials, Mechanism, Challenges, and Strategies. Chem Bio Eng. 2024, 1, 113–132. [Google Scholar] [CrossRef]
- Yuan, Y.-F.; Sharpe, R.; He, K.; Li, C.-H.; Tamadoni Saray, M.; Liu, T.-C.; Yao, W.-T.; Cheng, M.; Jin, H.-L.; Wang, S.; et al. Understanding intercalation chemistry for sustainable aqueous zinc-manganese dioxide batteries. Nat. Sustain. 2022, 5, 890–898. [Google Scholar] [CrossRef]
- Sambandam, B.; Mathew, V.; Kim, S.; Lee, S.; Kim, S.; Hwang, J.-Y.; Fan, H.-J.; Kim, J. An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. Chem 2022, 8, 924–946. [Google Scholar] [CrossRef]
- Xu, C.-J.; Li, B.-H.; Du, H.-D.; Kang, F.-Y. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angew. Chem. Int. Ed. 2012, 51, 933–935. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.-Y.; Salvador, J.-R.; Wu, J.-P.; Liu, B.; Yang, W.-L.; Yang, J.; Zhang, W.-Q.; Liu, J.; Yang, J.-H. Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries. Chem. Mater. 2019, 31, 2036–2047. [Google Scholar] [CrossRef]
- Hao, J.-N.; Yuan, L.-B.; Johannessen, B.; Zhu, Y.-L.; Jiao, Y.; Ye, C.; Xie, F.-X.; Qiao, S.-Z. Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 25114–25121. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-B.; Zhang, X.-Y.; Huang, Y.-F.; Jiang, B.-Z.; Chang, Z.-W.; Xu, C.-J.; Kang, F.-Y. β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery. J. Energy Chem. 2021, 56, 365–373. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, J. Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries. Mater. Today Adv. 2020, 7, 100078. [Google Scholar] [CrossRef]
- Zhao, Q.-H.; Chen, X.; Wang, Z.-Q.; Yang, L.-Y.; Qin, R.-Z.; Yang, J.-L.; Song, Y.-L.; Ding, S.-X.; Weng, M.-Y.; Huang, W.-Y.; et al. Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small 2019, 15, 1904545. [Google Scholar] [CrossRef]
- Wan, F.; Zhang, L.-L.; Dai, X.; Wang, X.-Y.; Niu, Z.-Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018, 9, 1656. [Google Scholar] [CrossRef]
- Zhao, S.; Han, B.; Zhang, D.; Huang, Q.; Xiao, L.; Chen, L.; Levy, D.-G.; Deng, Y.; Wei, W.-F. Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J. Mater. Chem. A 2018, 6, 5733–5739. [Google Scholar] [CrossRef]
- Huang, J.-H.; Wang, Z.; Hou, M.-Y.; Dong, X.-L.; Liu, Y.; Wang, Y.-G.; Xia, Y.-Y. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9, 2906. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Mou, J.; Liu, W.-B.; Wang, X.-L.; Dong, L.-B.; Kang, F.-Y.; Xu, C.-J. Novel Insights into Energy Storage Mechanism of Aqueous Rechargeable Zn/MnO2 Batteries with Participation of Mn2+. Nano-Micro Lett. 2019, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhou, J.; Bai, C.-L.; Li, X.-K.; Fang, G.-Z.; Liang, S.-Q. Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 2020, 16, 100396. [Google Scholar] [CrossRef]
- Wang, J.-J.; Wang, J.-G.; Liu, H.-Y.; You, Z.-Y.; Li, Z.; Kang, F.-Y.; Wei, B.-Q. A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2007397. [Google Scholar] [CrossRef]
- Shi, W.; Lee, W.-S.-V.; Xue, J.-M. Recent Development of Mn-based Oxides as Zinc-Ion Battery Cathode. ChemSusChem 2021, 14, 1634–1658. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Duan, H.; Xie, S.-Y.; Dai, R.-Y.; Rong, J.-H.; Kang, F.-Y.; Dong, L.-B. Aerogel-structured MnO2 cathode assembled by defect-rich ultrathin nanosheets for zinc-ion batteries. Chem. Eng. J. 2022, 441, 136008. [Google Scholar] [CrossRef]
- Wu, B.-K.; Zhang, G.-B.; Yan, M.-Y.; Xiong, T.-F.; He, P.; He, L.; Xu, X.; Mai, L.-Q. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 2018, 14, 1703850. [Google Scholar] [CrossRef]
- Juran, T.-R.; Young, J.; Smeu, M. Density functional theory modeling of MnO2 polymorphs as cathodes for multivalent ion batteries. J. Phys. Chem. C 2018, 122, 8788–8795. [Google Scholar] [CrossRef]
- Islam, S.; Alfauzi, M.-H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Fabbo, J.-P.; Pham, D.-T.; Purno, D.-Y.; et al. Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 2017, 5, 23299–23309. [Google Scholar] [CrossRef]
- Zong, Q.-J.; Zhang, Q.-C.; Mei, X.; Li, Q.-L.; Zhou, Z.-Y.; Li, D.; Chen, M.-Y.; Shi, F.-Y.; Sun, J.; Yao, Y.-G.; et al. Facile synthesis of Na-doped MnO2 nanosheets on carbon nanotube fibers for ultrahigh-energy-density all-solid-state wearable asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 37233–37241. [Google Scholar] [CrossRef]
- Xiong, T.; Yu, Z.-G.; Wu, H.-J.; Du, Y.-H.; Xie, Q.-D.; Chen, J.-S.; Zhang, Y.-W.; Pennycook, S.-J.; Lee, W.-S.-V.; Xue, J.-M. Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 2019, 9, 1803815. [Google Scholar] [CrossRef]
- Yadav, P.; Kumari, N.; Rai, A.-K. A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries. J. Power Sources 2023, 555, 232385. [Google Scholar] [CrossRef]
- Lian, S.-T.; Sun, C.-L.; Xu, W.-N.; Huo, W.-C.; Luo, Y.-Z.; Zhao, K.-N.; Yao, G.; Xu, W.-W.; Zhang, Y.-X.; Li, Z.; et al. Built-in oriented electric field facilitating durable Zn–MnO2 battery. Nano Energy 2019, 62, 79–84. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; Liu, Y.-P.; Liu, Z.-H.; Wu, X.-G.; Wen, Y.-X.; Chen, H.-D.; Ni, X.; Liu, G.-H.; Huang, J.-J.; Peng, S.-L. MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries. J. Energy Chem. 2022, 64, 23–32. [Google Scholar] [CrossRef]
- Chen, T.-T.; Liu, X.-R.; Shen, X.-X.; Dai, B.-B.; Xu, Q.-J. Improving stability and reversibility of manganese dioxide cathode materials via nitrogen and sulfur doping for aqueous zinc ion batteries. J. Alloys Compd. 2023, 943, 169068. [Google Scholar] [CrossRef]
- Li, H.-M.; Zhou, X.-L.; Liu, L.-M.; Huang, D.; Zhang, W.-X.; Zhang, S. Hierarchical α-MnO2@LaxMn1−xO2-δ core–shell nanostructure cathode for high-performance aqueous Zn-ion batteries. Ionics 2024, 30, 4063–4073. [Google Scholar] [CrossRef]
- Ren, Y.-J.; Zhang, S.-W.; Yin, B.-S.; Loh, J.-R.; Ding, Y.-X.; Huang, X.-J.; Li, J.-Z.; Li, H.; Ma, T.-Y. Bootstrap the stability of highly flexible cathodes in zinc-ion batteries via the pillaring effect of molybdenum in α-MnO2. Batter. Supercaps 2023, 6, e202300132. [Google Scholar] [CrossRef]
- Tian, M.-D.; Zhu, C.-Z.; Luo, K. Hybrid organic-inorganic modification on tunnel-structured α-MnO2 for high-performance aqueous zinc-ion battery. Chinese Chem. Lett. 2024, 110702. [Google Scholar] [CrossRef]
- Tang, B.; Shan, L.; Liang, S.-Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304. [Google Scholar] [CrossRef]
- Liu, W.-W.; Li, M.; Jiang, G.-P.; Li, G.-R.; Zhu, J.-B.; Xiao, M.-L.; Zhu, Y.-F.; Gao, R.; Yu, A.-P.; Feng, M.; et al. Graphene quantum dots-based advanced electrode materials: Design, synthesis and their applications in electrochemical energy storage and electrocatalysis. Adv. Energy Mater. 2020, 10, 2001275. [Google Scholar] [CrossRef]
- Islam, S.; Alfaruqi, M.-H.; Song, J.-J.; Kim, S.-J.; Pham, D.-T.; Jo, J.-G.; Kim, S.-K.; Mathew, V.; Baboo, J.-P.; Xiu, Z.-L.; et al. Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications. J. Energy Chem. 2017, 26, 815–819. [Google Scholar] [CrossRef]
- Shi, M.-J.; Zhu, H.-T.; Chen, C.; Jiang, J.-T.; Zhao, L.-P.; Yan, C. Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries. Int. J. Miner. Metall. Mater. 2023, 30, 25–32. [Google Scholar] [CrossRef]
- Yuan, C.-L.; Zhang, Y.; Pan, Y.; Liu, X.-W.; Wang, G.-L.; Cao, D.-X. Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim. Acta 2014, 116, 404–412. [Google Scholar] [CrossRef]
- Zhang, Z.-N.; Shang, H.-J.; Zhang, X.-L.; Liu, C.; Li, S.; Wen, Z.-S.; Ji, S.-J.; Sun, J.-C. Enhancing the electrochemical performances by wet ball milling to introduce structural water into an electrolytic MnO2/graphite nanocomposite cathode for zinc-ion batteries. ACS Appl. Energy Mater. 2021, 4, 5113–5122. [Google Scholar] [CrossRef]
- Han, M.; Jia, H.-S.; Wang, Y.-B.; Li, S.-Q.; E, Y.-L.; Liu, Y.-Q.; Wang, Q.-S.; Liu, W.-Q. A Cu/MnOx composite with copper-doping-induced oxygen vacancies as a cathode for aqueous zinc-ion batteries. Chem. Eur. J. 2024, 30, e202401463. [Google Scholar] [CrossRef]
- Zhou, Z.; Tong, J.-H.; Guo, J.-L.; Guo, S.-F.; Liu, S.-H.; Qin, Z.-P.; Chang, Z.; Wang, C.; Liu, S.-L. Manganese(II) oxide-embedded dopamine-derived carbon nanospheres for durable zinc-ion batteries. Mater. Chem. Front. 2024, 8, 3616–3623. [Google Scholar] [CrossRef]
- Sun, M.; Li, D.-S.; Wang, Y.-F.; Liu, W.-L.; Ren, M.-M.; Kong, F.-G.; Wang, S.-J.; Guo, Y.-Z.; Liu, Y.-M. Mn3O4@NC composite nanorods as a cathode for rechargeable aqueous Zn-ion batteries. ChemElectroChem 2019, 6, 2510–2516. [Google Scholar] [CrossRef]
- Akmalia, R.; Hamid, F.-H.; Azura, F.-D.; Irmawati, Y.; Yan, Q.; Sumboja, A. Unraveling a high-performance self-supported flexible zinc-ion battery cathode with tailored electrospun MnOx/N-doped carbon nanofibers. ACS Appl. Energy Mater. 2024, 7, 7064–7073. [Google Scholar] [CrossRef]
- Zhang, S.-M.; Wang, X.-Q.; Li, J.-B.; Chen, Y.-W.; Wu, Y.; Bai, S.-C.; Jin, X.; Jin, B.-W.; Shao, M.-F. Hierarchical carbon nanosheet embedded MnOx cathode for high-performance aqueous zinc-ion batteries. Batter. Supercaps 2023, 6, e202200476. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Ma, Y.-D.; Yang, W.-T.; Bao, S.-J.; Chen, H.; Xu, M.-W. Spontaneously dissolved MnO: A better cathode material for rechargeable aqueous zinc-manganese batteries. Chem. Eng. J. 2023, 473, 145490. [Google Scholar] [CrossRef]
- Liu, C.-X.; Xie, X.-S.; Lu, B.-A.; Zhou, J.; Liang, S.-Q. Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Lett. 2021, 6, 1015–1033. [Google Scholar] [CrossRef]
- Ma, Y.; Xiong, D.; Meng, Y.-T.; Lu, Y.; Duan, P.-Y.; Chen, B.; Yang, Y.-H.; Chen, X.-P.; Mao, L.-Q.; Wu, X.-W.; et al. Hierarchical-porous V-MOF cathodes enabling high-performance aqueous zinc-ion hybrid batteries. Sci. China Mater. 2025, 68, 2764–2774. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, H.-M.; Liu, B.-B.; Wang, X.-Y.; Zhang, Y.-F.; Sun, J.-G.; Wang, J. Better engineering layered vanadium oxides for aqueous zinc--ion batteries: Going beyond widening the interlayer spacing. SmartMat 2024, 5, e1231. [Google Scholar] [CrossRef]
- Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y.-Y.; Qiu, M.-D.; Xu, J.-Z.; Liu, Y.-C.; Jiao, L.-F.; Cheng, F.-Y. Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 2018, 3, 1366–1372. [Google Scholar] [CrossRef]
- Qi, J.-J.; Zhang, Y.-F.; Li, M.; Xu, H.-T.; Zhang, Y.-N.; Wen, J.-J.; Zhai, H.-N.; Yang, W.-Y.; Li, C.-L.; Wang, H.-H.; et al. Facile and effective defect engineering strategy boosting ammonium vanadate nanoribbon for high performance aqueous zinc-ion batteries. J. Colloid Interface Sci. 2023, 642, 430–438. [Google Scholar] [CrossRef]
- Zhang, Y.-B.; Li, Z.-H.; Gong, L.-J.; Wang, X.-Y.; Hu, P.; Liu, J. Rational construction of Ag@MIL-88B(V)-derived hierarchical porous Ag-V2O5 heterostructures with enhanced diffusion kinetics and cycling stability for aqueous zinc-ion batteries. J. Energy Chem. 2023, 77, 561–571. [Google Scholar] [CrossRef]
- Tao, Y.-X.; Huang, D.-K.; Chen, H.; Luo, Y.-Z. Electrochemical generation of hydrated zinc vanadium oxide with boosted intercalation pseudocapacitive storage for a high-rate flexible zinc-ion battery. ACS Appl. Mater. Interfaces 2021, 13, 16576–16584. [Google Scholar] [CrossRef]
- Wan, F.; Niu, Z.-Q. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2019, 58, 16358–16367. [Google Scholar] [CrossRef]
- Zhou, T.; Xie, L.-L.; Han, Q.; Yang, X.-L.; Zhu, L.-M.; Cao, X.-Y. Investigation of Na6V10O28 as a promising rechargeable aqueous zinc-ion batteries cathode. Chem. Eng. J. 2022, 445, 136789. [Google Scholar] [CrossRef]
- Qu, G.; Guo, K.; Chen, W.-J.; Du, Y.; Wang, Y.; Tian, B.-B.; Zhang, J.-N. Cs-induced phase transformation of vanadium oxide for high-performance zinc-ion batteries. Energy Environ. Mater. 2023, 6, e12502. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.-D.; Yue, Y.-L.; Wang, X.; Pakornchote, T.; Bovornratanaraks, T.; Zhang, X.-Y.; Wu, Z.-S.; Qin, J.-Q. Oxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc-ion batteries. Nano Energy 2021, 84, 105876. [Google Scholar] [CrossRef]
- Cai, Y.; Chua, R.; Kou, Z.-K.; Ren, H.; Yuan, D.; Huang, S.-Z.; Kumar, S.; Verma, V.; Amonpattaratkit, P.; Srinivasan, M. Boosting Zn-ion storage performance of bronze-type VO2 via Ni-mediated electronic structure engineering. ACS Appl. Mater. Interfaces 2020, 12, 36110–36118. [Google Scholar] [CrossRef]
- Deng, S.-Y.; Li, H.; Chen, B.-H.; Xu, Z.-J.; Jiang, Y.; Li, C.-H.; Xiao, W.; Yan, X.-M. High performance of Mn-doped VO2 cathode for aqueous zinc-ion batteries: An insight into Zn2+ storage mechanism. Chem. Eng. J. 2023, 452, 139115. [Google Scholar] [CrossRef]
- Islam, S.; Alfaruqi, M.-H.; Putro, D.-Y.; Park, S.; Kim, S.; Lee, S.; Ahmed, M.-S.; Mathew, V.; Sun, Y.-K.; Hwang, J.-Y.; et al. In situ oriented Mn-deficient ZnMn2O4@C nanoarchitecture for durable rechargeable aqueous zinc-ion batteries. Adv. Sci. 2021, 8, 2002636. [Google Scholar] [CrossRef]
- Geng, X.-D.; Ma, H.-T.; Lv, F.-J.; Yang, K.; Ma, J.-L.; Jiang, Y.; Liu, Q.-L.; Chen, D.-W.; Jiang, Y.-Q.; Zhu, N. Ultrastable organic cathode derived by pigment/rGO for aqueous zinc-ion batteries. Chem. Eng. J. 2022, 446, 137289. [Google Scholar] [CrossRef]
- Gao, F.; Mei, B.; Xu, X.-Y.; Ren, J.-H.; Zhao, D.-C.; Zhang, Z.; Wang, Z.-L.; Wu, Y.-T.; Liu, X.; Zhang, Y. Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries. Chem. Eng. J. 2022, 448, 137742. [Google Scholar] [CrossRef]
- Li, D.; Dai, Y.-Y.; Kong, L.-Y.; Gu, Y.-X.; Wang, L. Electrochemical induced Mo doping into graphene oxide supported vanadium-based materials for high performance aqueous zinc ion batteries. J. Alloys Compd. 2023, 945, 169324. [Google Scholar] [CrossRef]
- Gu, X.; Wang, J.-T.; Zhao, X.-B.; Jin, X.; Jiang, Y.-Z.; Dai, P.-C.; Wang, N.-N.; Bai, Z.-C.; Zhang, M.-D.; Wu, M.-B. Engineered nitrogen doping on VO2(B) enables fast and reversible zinc-ion storage capability for aqueous zinc-ion batteries. J. Energy Chem. 2023, 85, 30–38. [Google Scholar]
- Sinha, R.; Xie, X.-S.; Yang, Y.; Li, Y.-F.; Xue, Y.-X.; Wang, P.-Y.; Li, Z. Failure Mechanisms and Strategies for Vanadium Oxide-Based Cathode in Aqueous Zinc Batteries. Adv. Energy Mater. 2025, 15, 2404815. [Google Scholar] [CrossRef]
- Wu, X.-Y.; Wu, C.-H.; Wei, C.-X.; Hu, L.; Qian, J.-F.; Cao, Y.-L.; Ai, X.-P.; Wang, J.-L.; Yang, H.-X. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 5393–5399. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Xie, Y.-Y.; Peng, F.-W.; Yang, Y.; Feng, F.; Liao, X.-Z.; He, Y.-S.; Ma, Z.-F.; Chen, Z.-H.; Ren, Y. Electrochemical performance of NaFeFe(CN)6 prepared by solid reaction for sodium-ion batteries. J. Electrochem. Soc. 2018, 165, A3910. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Li, Y.-H.; Zhu, D.-G.; Gong, F.-L.; Fang, S.-M.; Zhang, Y.-H.; Sun, S.-M. Treatment dependent sodium-rich Prussian blue as a cathode material for sodium-ion batteries. Dalton Trans. 2022, 51, 9622–9626. [Google Scholar] [CrossRef]
- Guo, Y.-D.; Jiang, J.-C.; Xie, J.; Wang, X.; Li, J.-Z.; Wang, D.-H.; Zhou, A.-J. Enhanced performance of core–shell structured sodium manganese hexacyanoferrate achieved by self-limiting Na+–Cs+ ion exchange for sodium-ion batteries. Rare Met. 2022, 41, 3740–3751. [Google Scholar] [CrossRef]
- Li, C.; Zang, R.; Li, P.; Man, Z.; Wang, S.; Li, X.; Wu, Y.; Liu, S.; Wang, G. High crystalline Prussian white nanocubes as a promising cathode for sodium-ion batteries. Chem. Asian J. 2018, 13, 342–349. [Google Scholar] [CrossRef]
- Xu, Y.; Chang, M.; Fang, C.; Liu, Y.; Qiu, Y.-G.; Ou, M.-Y.; Peng, J.; Wei, P.; Deng, Z.; Sun, S.-X.; et al. In situ FTIR-assisted synthesis of nickel hexacyanoferrate cathodes for long-life sodium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 29985–29992. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Zhang, L.-L.; Fu, X.-Y.; Yan, B.; Yang, X.-L. Synergistic modification of Fe-based Prussian blue cathode material based on structural regulation and surface engineering. ACS Appl. Mater. Interfaces 2022, 14, 43308–43318. [Google Scholar] [CrossRef]
- Peng, J.; Gao, Y.; Zhang, H.; Liu, Z.-G.; Zhang, W.; Li, L.; Qiao, Y.; Yang, W.-S.; Wang, J.-Z.; Dou, S.-X.; et al. Ball milling solid-state synthesis of highly crystalline Prussian blue analogue Na2-xMnFe(CN)6 cathodes for all-climate sodium-ion batteries. Angew. Chem. Int. Ed. 2022, 61, e202205867. [Google Scholar] [CrossRef]
- Phadke, S.; Mysyk, R.; Anouti, M. Effect of cation Li+, Na+, K+, Rb+, Cs+ in aqueous electrolyte on the electrochemical redox of Prussian blue analogue (PBA) cathodes. J. Energy Chem. 2020, 40, 31–38. [Google Scholar] [CrossRef]
- Xu, Y.; Wan, J.; Huang, L.; Ou, M.-Y.; Fan, C.-Y.; Wei, P.; Peng, J.; Liu, Y.; Qiu, Y.-G.; Sun, X.-P.; et al. Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for Na-ion batteries. Adv. Energy Mater. 2019, 9, 1803158. [Google Scholar] [CrossRef]
- Qian, J.-F.; Wu, C.; Cao, Y.-L.; Ma, Z.-F.; Huang, Y.-H.; Ai, X.-P.; Yang, H.-X. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 2018, 8, 1702619. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.-Q.; Tang, Y.-X.; Xu, B.-B.; Liang, C.; Yan, M.; Jiang, Y.-Z. Manganese hexacyanoferrate reinforced by PEDOT coating towards high-rate and long-life sodium-ion battery cathode. J. Mater. Chem. A 2020, 8, 3222–3227. [Google Scholar] [CrossRef]
- Shu, W.-L.; Han, C.-H.; Wang, X.-P. Prussian blue analogues cathodes for nonaqueous potassium-ion batteries: Past, present, and future. Adv. Funct. Mater. 2024, 34, 2309636. [Google Scholar] [CrossRef]
- Xue, Y.-T.; Chen, Y.; Shen, X.-P.; Zhong, A.; Ji, Z.-Y.; Cheng, J.; Kong, L.-R.; Yuan, A.-H. Decoration of nickel hexacyanoferrate nanocubes onto reduced graphene oxide sheets as high-performance cathode material for rechargeable aqueous zinc-ion batteries. J. Colloid Interface Sci. 2022, 609, 297–306. [Google Scholar] [CrossRef]
- Lu, K.; Song, B.; Zhang, Y.-X.; Mai, H.-Y.; Zhang, J.-T. Encapsulation of zinc hexacyanoferrate nanocubes with manganese oxide nanosheets for high-performance rechargeable zinc-ion batteries. J. Mater. Chem. A 2017, 5, 23628–23633. [Google Scholar] [CrossRef]
- Liu, W.-W.; Zhang, J.; Bai, Z.-Y.; Jiang, G.-P.; Li, M.; Feng, K.; Yang, L.; Ding, Y.-L.; Yu, T.-W.; Chen, Z.-W.; et al. Controllable urchin-like NiCo2S4 microsphere synergized with sulfur-doped graphene as bifunctional catalyst for superior rechargeable Zn-air battery. Adv. Funct. Mater. 2018, 28, 1706675. [Google Scholar] [CrossRef]
- Zeng, Y.-X.; Lu, X.-F.; Zhang, S.-L.; Luan, D.-Y.; Li, S.; Lou, X.-W.-D. Construction of Co–Mn Prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 2021, 60, 22189–22194. [Google Scholar] [CrossRef]
- Deng, W.-J.; Li, Z.-G.; Ye, Y.-K.; Zhou, Z.-Q.; Li, Y.-B.; Zhang, M.; Yuan, X.-R.; Hu, J.; Zhao, W.-G.; Huang, Z.-Y.; et al. Zn2+ Induced Phase Transformation of K2MnFe(CN)6 Boosts Highly Stable Zinc-Ion Storage. Adv. Energy Mater. 2021, 11, 2003639. [Google Scholar] [CrossRef]
- Hu, B.-B.; Li, D.-S.; Li, M.-X.; Jiang, J.-Y.; Zhao, Y.-Y.; Du, T.-L.; Zhou, Z.-D.; Pu, H.; Ma, G.-Q.; Li, Z. Dual active sites along with hydrophobic structure modulation of vanadium hexacyanoferrate for aqueous Zn-ion batteries. Inorg. Chem. 2025, 64, 6042–6052. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.-J.; Wang, Z.-H.; Zhang, Q.; Hu, Z.-H.; Feng, Y.-L.; Li, Y.-Q.; Chen, K.-Y.; Qin, N.; Liu, J.; et al. Co/Mn ratio-regulated hexacyanoferrates as a long-life and high-rate cathode for aqueous Zn-ion batteries. J. Alloys Compd. 2024, 976, 173158. [Google Scholar] [CrossRef]
- Zhang, W.-D.; Zou, Y.-Z.; Zhao, H.; Chen, M.; Zhou, L.; Xie, X.-R.; Yan, X.-D.; Pang, H.; Gu, Z.-G. Double-shelled open hollow metal-organic frameworks for efficient aqueous Zn-ion batteries. Small 2024, 20, 2307809. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-L.; Chen, R.-Y.; Liu, B.-B.; Yan, J.-F.; Wang, G.; Zhao, W.; Zhang, H.; You, L.-H. Synthesis of ultrasmall vanadium ferricyanide nanocrystallines with the aidance of graphene self-assembled fibers towards reinforced zinc storage performance. Chem. Eng. J. 2024, 489, 151112. [Google Scholar] [CrossRef]
- Cao, J.-Y.; Xue, Y.-T.; Ji, Z.-Y.; Pu, J.-R.; Shen, X.-P.; Kong, L.-R.; Yuan, A.-H. CoNi hexacyanoferrate nanoparticles anchored on carbon nanotubes as superior cathode materials for rechargeable aqueous zinc-ion batteries. J. Energy Storage 2024, 86, 111413. [Google Scholar] [CrossRef]
- Xue, Y.-T.; Shen, X.-P.; Zhou, H.; Cao, J.-Y.; Pu, J.-R.; Ji, Z.-Y.; Kong, L.-R.; Yuan, A.-H. Vanadium hexacyanoferrate nanoparticles connected by cross-linked carbon nanotubes conductive networks for aqueous zinc-ion batteries. Chem. Eng. J. 2022, 448, 137657. [Google Scholar] [CrossRef]
- Reddy, P.-B.; Prasad, R.-P.; Mallikarjuna, K.; Sekhar, C.-M.; Lee, Y.-W.; Suh, Y.-S.; Park, S.-H. Mn–Co Prussian blue analogue cubic frames for efficient aqueous Zn ion batteries. Microporous Mesoporous Mater 2023, 362, 112793. [Google Scholar] [CrossRef]
- Luo, C.; Ji, X.; Hou, S.-Y.; Eidson, N.; Fan, X.-L.; Liang, Y.-J.; Deng, T.; Jiang, J.-J.; Wang, C.-S. Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries. Adv. Mater. 2018, 30, 1706498. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, H.-C.; Fan, K.; Zhang, G.-Q.; Tang, M.; Gao, Y.-B.; Zhang, C.-Y.; Guan, L.-N.; Mao, M.-L.; Liu, H.; et al. A recyclable and scalable high-capacity organic battery. Angew. Chem. Int. Ed. 2023, 62, e202302539. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.-L. Designing high performance organic batteries. Acc. Chem. Res. 2020, 53, 2636–2647. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Cui, H.-L.; Li, R.; Yue, C.-C.; Pan, H.-C.; Tang, Z.-J.; Wang, X.-K.; Lin, Y.-L.; Li, H.-F.; Han, C.-P.; et al. Bistate-type ion storage of azo polymer for aqueous zinc ion battery. Energy Storage Mater. 2024, 65, 103102. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.-Y.; Zhu, Q.; Fan, K.; Cao, Y.-Q.; Zhang, G.-Q.; Zhang, C.-Y.; Gao, Y.-B.; Zou, J.-C.; Zhai, T.-Y.; et al. Two-dimensional organic supramolecule via hydrogen bonding and π–π stacking for ultrahigh capacity and long-life aqueous zinc-organic batteries. Angew. Chem. Int. Ed. 2022, 61, e202116289. [Google Scholar] [CrossRef]
- Gao, Y.-J.; Li, G.-F.; Wang, F.; Chu, J.; Yu, P.; Wang, B.-S.; Zhan, H.; Song, Z.-P. A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater. 2021, 40, 31–40. [Google Scholar] [CrossRef]
- Wang, W.-X.; Kale, V.-S.; Cao, Z.; Lei, Y.-J.; Kandambeth, S.; Zou, G.-D.; Zhu, Y.-P.; Abouhamad, E.; Shekhah, O.; Cavallo, L.; et al. Molecular Engineering of Covalent Organic Framework Cathodes for Enhanced Zinc-Ion Batteries. Adv. Mater. 2021, 33, 2103617. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Wang, X.-L.; Tang, J.; Tang, W.-H. A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries. J. Mater. Chem. A 2022, 10, 13868–13875. [Google Scholar] [CrossRef]
- Liu, L.; Lin, Z.; Zhu, J.; Wang, K.; Wu, W.-L.; Qiu, T.; Sun, X.-L. A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries. Energy Environ. Sci. 2023, 16, 89–96. [Google Scholar]
- Alt, H.; Binder, H.; Köhling, A.; Sandstede, G. Investigation into the use of quinone compounds for battery cathodes. Electrochim. Acta 1972, 17, 873–887. [Google Scholar] [CrossRef]
- Yan, L.-J.; Zhao, C.-X.; Sha, Y.; Li, Z.-H.; Liu, T.-F.; Ling, M.; Zhou, S.-D.; Liang, C.-D. Electrochemical redox behavior of organic quinone compounds in aqueous metal ion electrolytes. Nano Energy 2020, 73, 104766. [Google Scholar] [CrossRef]
- Zhao, Q.; Huang, W.-W.; Luo, Z.-Q.; Liu, L.-J.; Lu, Y.; Li, Y.-X.; Li, L.; Hu, J.-Y.; Ma, H.; Chen, J. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 2018, 4, eaao1761. [Google Scholar] [CrossRef]
- Gupta, R.; Ramanujam, K. A highly conjugated tetrakis-lawsone organic cathode material for enhancing the capacity utilization in the zinc-ion batteries. J. Chem. Sci. 2024, 136, 19. [Google Scholar] [CrossRef]
- Shi, Y.-J.; Wang, P.-C.; Gao, H.-G.; Jin, W.; Chen, Y.-L.; Huang, Y.-C.; Wu, T.-R.; Wu, D.-Y.; Xu, J.; Cao, J.-Y. π-Conjugated N-heterocyclic compound with redox-active quinone and pyrazine moieties as a high-capacity organic cathode for aqueous zinc-ion batteries. Chem. Eng. J. 2023, 461, 141850. [Google Scholar] [CrossRef]
- Peng, H.-J.; Huang, S.-H.; Montes-García, V.; Pakulski, D.; Guo, H.-P.; Richard, F.; Zhuang, X.-D.; Samorì, P.; Ciesielski, A. Supramolecular engineering of cathode materials for aqueous zinc-ion energy storage devices: Novel benzothiadiazole functionalized two-dimensional olefin-linked COFs. Angew. Chem. Int. Ed. 2023, 62, e202216136. [Google Scholar] [CrossRef]
- Park, J.-H.; Houser, A.-M.; Zhang, S.-Y. A High-Voltage n-type Organic Cathode Materials Enabled by Tetraalkylammonium Complexing Agents for Aqueous Zinc-Ion Batteries. Adv. Mater. 2024, 36, 2409946. [Google Scholar] [CrossRef] [PubMed]
- Hua, K.; Ma, Q.-W.; Liu, Y.-Y.; Xiong, P.; Wang, R.; Yuan, L.-B.; Hao, J.-N.; Zhang, L.-H.; Zhang, C.-F. High-Performance Bipolar Small-Molecule Organic Cathode for Wide-Temperature-Range Aqueous Zinc-Ion Batteries. ACS Nano 2025, 19, 14249–14261. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, X.; Bando, Y. Toward highly durable aqueous zinc ion batteries: A review of MOFs/MOF-derived cathode materials. Inorg. Chem. Front. 2025, 12, 3959–3980. [Google Scholar] [CrossRef]
- Zhang, T.-Y.; Shi, X.-H.; Li, Y.; Sangaraju, S.; Wang, F.-J.; Yang, L.; Ran, F. Carboxylic bacterial cellulose fiber-based hydrogel electrolyte with imidazole-type ionic liquid for dendrite-free zinc metal batteries. Mater. Rep. Energy 2024, 4, 100272. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Q.-Y.; Hu, X.-M.; Wei, W.-F.; Ji, X.-B.; Kuang, G.-C.; Zhou, L.-J.; Chen, L.-B.; Chen, Y.-J. Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chin. Chem. Lett. 2024, 35, 109143. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Zhang, L.; Jia, X.-Y.; Song, W.; Liu, Y.-C. Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures. Nano-Micro Lett. 2024, 16, 75. [Google Scholar] [CrossRef]
- Deng, S.-Z.; Yuan, Z.-S.; Tie, Z.-W.; Wang, C.-D.; Song, L.; Niu, Z.-Q. Electrochemically Induced Metal–Organic-Framework-Derived Amorphous V2O5 for Superior Rate Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 22002–22006. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Li, Q.; Su, Y.-C.; Sun, Y.-Y.; Cao, S.; Gao, S.-J.; Yue, H.-T.; Chen, H.-C.; Pang, H. Host-Guest Synergistic Regulation in Functionalized Metal-Organic Frameworks for Efficient Aqueous Zinc-Ion Batteries. Adv. Sci. 2025, e202511198. [Google Scholar] [CrossRef]
- Pu, X.-C.; Jiang, B.-Z.; Wang, X.-L.; Liu, W.-B.; Dong, L.-B.; Kang, F.-Y.; Xu, C.-J. High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 2020, 12, 152. [Google Scholar] [CrossRef]
- Mao, M.; Wu, X.-X.; Hu, Y.; Yuan, Q.-H.; He, Y.-B.; Kang, F.-Y. Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. J. Energy Chem. 2021, 52, 277–283. [Google Scholar]
- Wang, J.-W.; Yuan, Y.-F.; Zhang, D.; Zhu, M.; Mo, C.-L.; Guo, S.-Y. Constructing metal-organic framework-derived Mn2O3 multishelled hollow nanospheres for high-performance cathode of aqueous zinc-ion batteries. Nanotechnology 2021, 32, 435401. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.-J.; Chen, J.-H.; Pan, C.-L.; Pan, Y.-S.; Hu, J.-S. MOF-derived Mn3O4@C hierarchical nanospheres as cathodes for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2022, 5, 14144–14154. [Google Scholar]
- Yang, C.-T.; Feng, K.-Y.; Chen, J.-C.; Liu, Z.; Yu, Y.-J. A Cu-based electronically conducting metal–organic framework with π–d conjugation for cathode and anode modification in aqueous zinc-ion batteries. Chem. Eng. J. 2025, 520, 165857. [Google Scholar] [CrossRef]
- Wu, A.-D.; Wang, T.-H.; Zhang, L.; Chen, C.; Li, Q.-M.; Qu, X.-H.; Liu, Y.-C. Recent advances and perspectives in MXene-based cathodes for aqueous zinc-ion batteries. Int. J. Miner. Metall. Mater. 2024, 31, 1752–1765. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, X.-M.; Zhu, C.-Y.; Liu, P.-C.; Yang, S.-Z.; Xin, H.-L.; Cai, R.; Yao, L.-B.; Nie, M.; Lei, S.-Y.; et al. In situ visualization of structural evolution and fissure breathing in (de)lithiated H2V3O8 nanorods. ACS Energy Lett. 2019, 4, 2081–2090. [Google Scholar] [CrossRef]
- Liang, P.-H.; Xu, T.-F.; Zhu, K.-J.; Rao, Y.; Zheng, H.-J.; Wu, M.; Chen, J.-T.; Liu, J.-S.; Yan, K.; Wang, J.; et al. Heterogeneous interface-boosted zinc storage of H2V3O8 nanowire/Ti3C2Tₓ MXene composite toward high-rate and long cycle lifespan aqueous zinc-ion batteries. Energy Storage Mater. 2022, 50, 63–74. [Google Scholar] [CrossRef]
- Shi, Z.-L.; Ru, Q.; Pan, Z.-K.; Zheng, M.-H.; Ling, F.-C.-C.; Wei, L. Flexible free-standing VO2/MXene conductive films as cathodes for quasi-solid-state zinc-ion batteries. ChemElectroChem 2021, 8, 1091–1097. [Google Scholar] [CrossRef]
- Shi, M.-J.; Wang, B.; Chen, C.; Lang, J.-W.; Yan, C.; Yan, X.-H. 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries. J. Mater. Chem. A 2020, 8, 24635–24644. [Google Scholar] [CrossRef]
Materials | Electrolyte | Specific Capacity (mAh/g) | Cycle Performance (% or mAh/g) | Ref. | |
---|---|---|---|---|---|
Mn | MnO2/rGO | 2.0 M ZnSO4 + 0.1 M MnSO4 | 1 A/g, 216 mAh/g | 99.98%, 1.0 A/g (600 cycles) | [66] |
α-MnO2 (AUM) | 2.0 M (ZnSO4) + 0.1 M (MnSO4) | 1 A/g, 180.0 mAh/g | 94.6%, 1.0 A/g (1000 cycles) | [69] | |
β-MnO2 nanorods | 1.0 M (ZnSO4) + MnSO4 | 0.2 A/g, 180 mAh/g | 75%, 0.2 A/g (200 cycles) | [71] | |
Oᵈ-MnO2 | 1.0 M (ZnSO4) + 0.2 mol/L M (MnSO4) | 5 A/g, 265 mAh/g | 84%, 5 A/g (2000 cycles) | [73] | |
Ti-MnO2 NWs | 3.0 M (Zn(CF3SO3)2) + 0.1 M (Mn(CF3SO3)2) | 0.1 A/g, 259 mAh/g | 86.9%, 0.1 A/g (200 cycles) | [75] | |
ε-MnO2 (MnO2@N) | 2 M (ZnSO4) + 0.5 M (MnSO4) | 5 A/g, 62.5 mAh/g | 83%, 5 A/g (1000 cycles) | [76] | |
β-MnO2 (YMO) | 3 M (ZnSO4) + 0.1 M (MnSO4) | 0.1 A/g, 409.3 mAh/g | 95.1%, 1 A/g (2000 cycles) | [77] | |
α-MnO2@LaxMn1−xO2−δ (α-MnO2@LMO) | 2 M (ZnSO4) + 0.1 M (MnSO4) | 0.5 A/g, 200 mAh/g | 90%, 1 A/g (1500 cycles) | [78] | |
CC@MMO | 1 M (Zn(CF3SO3)2) + 0.1 M (MnSO4) | 0.1 A/g, 170.2 mAh/g | 80%, 0.5 A/g (1392 cycles) | [79] | |
PVP-Al-MnO2 | 3 M (Zn (ClO4)2) + 0.1 M (MnSO4) | 0.3 A/g, 306.8 mAh/g | 93.1%, 1.0 A/g (2000 cycles) | [80] | |
GQDs@ZnₓMnO2 | 1 M (ZnSO4) | 0.3 A/g, 403.6 mAh/g | 88.1%, 1.0 A/g (500 cycles) | [84] | |
WBEC | 3 M (ZnSO4) + 0.1 M (MnSO4) | 0.1 A/g, 312 mAh/g | 80.1%, 1.0 A/g (1000 cycles) | [86] | |
Cu/MnOₓ | 2 M (ZnSO4) | 0.2 A/g, 304.4 mAh/g | 76.6%, 0.5 A/g (1000 cycles) | [87] | |
MnO/C-PDA | 2 M (ZnSO4) + 0.2 M (MnSO4) | 0.1 A/g, 295.4 mAh/g | 88.9%, 1.0 A/g (500 cycles) | [88] | |
MnO@CNF-1 | 0.3 M (MnSO4) + 2.0 M (ZnSO4) | 0.1 A/g, 392 mAh/g | 110%, 2.0 A/g (1800 cycles) | [90] | |
V | d-(NH4)2V10O25·8H2O | 3 M (Zn (CF3SO3)2) | 0.3 A/g, 512 mAh/g | 90%, 5 A/g (1000 cycles) | [97] |
Ag-V2O5 | 3 M (Zn (CF3SO3)2) | 0.1 A/g, 426 mAh/g | 89.7%, 5 A/g (2000 cycles) | [98] | |
ZnVOH/CC | 2 M (ZnSO4) | 0.5 A/g, 200 mAh/g | 100%, 20 A/g (5000 cycles) | [99] | |
Na6V10O28 | 2 M (ZnSO4) | 0.1 A/g, 320 mAh/g | 90%, 2 A/g (1000 cycles) | [101] | |
Cs0.5V2O5 | 3 M (Zn (CF3SO3)2) | 0.1 A/g, 380 mAh/g | 90%, 5 A/g (2000 cycles) | [102] | |
(NH4)2V10O25·8H2O | 3 M (Zn (CF3SO3)2) | 0.1 A/g, 408 mAh/g | 94.1%, 5 A/g (4000 cycles) | [103] | |
Ni0.011V0.989O2 | 3 M (Zn (CF3SO4)2) | 0.1 A/g, 295.9 mAh/g | 88.9%, 10 A/g (2000 cycles) | [104] | |
Zn0.25V2O5·nH2O | 3 M (Zn (CF3SO3)2) | 0.1 A/g, 209.6 mAh/g | 80.7%, 5 A/g (10,000 cycles) | [105] | |
Mn-d-ZMO@C | 2 M (ZnSO4) + 0.2 M (MnSO4) | 0.1 A/g, 194 mAh/g | 84%, 3 A/g (2000 cycles) | [106] | |
PBA | Na1.88Fe[Fe(CN)6]0.840.16·3.11H2O | 1 M NaClO4/PC-FEC | 0.1 C, 140 mAh/g | 83%, 0.5 C (100 cycles) | [112] |
FeCu–PB@CuO | 1 M NaClO4/PC-FEC | 0.1 A/g, 123.5 mAh/g | 75.4%, 1.0 A/g (1000 cycles) | [118] | |
Na2−xMnFe (CN)6 (MnHCF-S-170) | 1 mol/L NaClO EC/DEC (1:1, v/v) | 10 mA/g, 164 mAh/g | 57.1%, 0.1 A/g (500 cycles) | [119] | |
MnHCF | 1 mol/L NaPF6EC/DEC (1:1, v/v) | 0.1 C, 121.9 mAh/g | 65%, 0.2 C (100 cycles) | [122] | |
MnHCF@PEDOT-20 | 1 mol/L NaPF6EC/DEC (1:1, v/v) | 15 mA/g, 147.9 mAh/g | 78.2%, 10 C (1000 cycles) | [123] | |
K1.94Mn [Fe (CN)6]0.994·0.08H2O | 3 M (KFSI) (TEP)/EC/DEC (1:1, v/v) | 0.1 C, 140–155 mAh/g | 80%, 5 C (5800 cycles) | [124] | |
NiHCF/RGO | 2 M (ZnSO4) | 5 mA/g, 94.5 mAh/g | 80.3%, 4 C (1000 cycles) | [125] | |
CoMn-PBA HSs | 2 M (ZnSO4) | 0.05 A/g, 128.6 mAh/g | 76.4%, 1 A/g (1000 cycles) | [128] | |
MnCoHCF-4 | 1 M (Zn(CF3SO3)2) + 2 M (LiTFSI) | 1 C, 101.3 mAh/g | 71.4%, 5 C (3000 cycles) | [131] | |
DHPBA-Fe (II) | 1 M (ZnSO4) | 1 A/g, 92.5 mAh/g | 99.2%, 2 A/g (1000 cycles) | [132] | |
GSAF@KVO-HCF | 2 M (ZnSO4) | 0.1 A/g, 162 mAh/g | 86.6%, 1 A/g (1000 cycles) | [133] | |
VHCF/CNTs | 2 mol/L (ZnSO4) | 50 mA/g, 97.8 mAh/g | 53.9%, 3200 mA/g (1000 cycles) | [135] | |
Mn-Co-PBA@CF | 3 mol/L (Zn (OTf)2) | 0.1 A/g, 138 mAh/g | 92.8%, 0.5 A/g (1000 cycles) | [136] | |
Organic materials | AOPs | 1 M (Zn (OTF)2) | 0.5 A/g, 170 mAh/g | 89%, 2 A/g (1000 cycles) | [140] |
HATNQ | 3 M (ZnSO4) | 0.2 A/g, 482.5 mAh/g | 99.99%, 5 A/g (11,000 cycles) | [141] | |
HAQ-COF | 2 M (ZnSO4) | 0.1 A/g, 344 mAh/g | 85%, 5 A/g (10,000 cycles) | [143] | |
TTPQ | 2 M (ZnSO4) | 0.3 A/g, 404 mAh/g | 94%, 0.5 A/g (250 cycles) | [144] | |
TDT | 1 M (ZnSO4) | 0.2 A/g, 369 mAh/g | 75.6%, 0.2 A/g (200 cycles) | [145] | |
BPD | 2 M (ZnSO4) | 0.05 A/g, 429 mAh/g | 73%, 5 A/g (10,000 cycles) | [150] | |
COF-TMT-BT | 2 M (Zn (CF3SO3)2) | 0.1 A/g, 283.5 mAh/g | 65.9%, 0.1 A/g (2000 cycles) | [151] | |
TBA2Cp (CN)6 | 1 mol/L (Zn (OTf)2) + 30 mM (TBAOTf) | 0.05 C, 78.5 mAh/g | 85%, 10 C (1000 cycles) | [152] | |
DOP | 2 mol/L (Zn (ClO4)2) | 0.05 A/g, 360 mAh/g | 93.3%, 0.2 A/g (500 cycles) | [153] | |
Br@P-16 | 3 mol/L (Zn (CF3SO3)2) | 0.2 A/g, 151.9 mAh/g | 62.9%, 3.0 A/g (2500 cycles) | [158] | |
Other types | a-V2O5@C | 2 M (Zn (CF3SO3)2) | 0.3 A/g, 620.2 mAh/g | 91.4%, 40 A/g (20,000 cycles) | [159] |
α-Mn2O3 | 2 M (ZnSO4) + 0.2 M (MnSO4) | 0.05 A/g, 225 mAh/g | 53.3%, 2 A/g (1700 cycles) | [161] | |
Mn2O3 MHS | 2 M (ZnSO4) + 0.1 M (MnSO4) | 0.1 A/g, 453 mAh/g | 98.7%, 1 A/g (500 cycles) | [162] | |
DDA-Cu | 3.5 M Zn(CF3SO3)2 | 0.2 A/g, 249.6 mAh/g | —, 2 A/g (100 cycles) | [164] | |
H2V3O8/MXene | 3 M (Zn (CF3SO3)2) | 0.1 A/g, 428 mAh/g | 76.9%, 10 A/g (9000 cycles) | [167] | |
VO2/MXene-5:3 | 2 M (Zn (CF3SO3)2) | 0.2 A/g, 228.5 mAh/g | 80%, 2 A/g (700 cycles) | [168] | |
3D Ti3C2Tₓ@MnO2 | 2 M (ZnSO4) + 0.1 M (MnSO4) | 100 mA/g, 301.2 mAh/g | 90.6%, 500 mA/g (2000 cycles) | [169] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Y.; Jia, M.; Yuan, Q.; Yang, B. Advancements and Prospects in Cathode Materials for Aqueous Zinc-Ion Batteries: Mechanisms, Challenges and Modification Strategies. Molecules 2025, 30, 4143. https://doi.org/10.3390/molecules30204143
Gong Y, Jia M, Yuan Q, Yang B. Advancements and Prospects in Cathode Materials for Aqueous Zinc-Ion Batteries: Mechanisms, Challenges and Modification Strategies. Molecules. 2025; 30(20):4143. https://doi.org/10.3390/molecules30204143
Chicago/Turabian StyleGong, Yuewen, Miao Jia, Qiong Yuan, and Biao Yang. 2025. "Advancements and Prospects in Cathode Materials for Aqueous Zinc-Ion Batteries: Mechanisms, Challenges and Modification Strategies" Molecules 30, no. 20: 4143. https://doi.org/10.3390/molecules30204143
APA StyleGong, Y., Jia, M., Yuan, Q., & Yang, B. (2025). Advancements and Prospects in Cathode Materials for Aqueous Zinc-Ion Batteries: Mechanisms, Challenges and Modification Strategies. Molecules, 30(20), 4143. https://doi.org/10.3390/molecules30204143