In Silico and RP HPLC Studies of Biologically Active 1,3,4-Thiadiazol-2-yl)-benzene-1,3-diols
Abstract
1. Introduction
2. Results and Discussion
2.1. Structure of the Studied Compounds
2.2. Log kw Parameters
2.3. Distribution Coefficient Log D(7.4)
2.4. Correlation Analysis
2.5. PCA Analysis
3. Materials and Methods
3.1. HPLC Measurements
3.2. Log D(7.4) Determination from RP-18 Measurements
3.3. Calculation Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mazak, K.; Noszal, B. Drug Delivery: A Process Governed by Species-Specific Lipophilicities. Eur. J. Pharm. Sci. 2014, 62, 96–104. [Google Scholar] [CrossRef]
- Valko, K. Biomimetic Chromatography to Accelerate Drug Discovery: Part I. LcGc N. Am. 2018, 36, 397–405. [Google Scholar]
- Arnott, J.A.; Planey, S.L. The Influence of Lipophilicity in Drug Discovery and Design. Expert. Opin. Drug Discov. 2012, 7, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Greber, K.E.; Topka Klonczynski, K.; Nicman, J.; Judzinska, B.; Jarzynska, K.; Singh, Y.R. Characterizing Organophosphate Pesticides. Int. J. Mol. Sci. 2025, 26, 1855. [Google Scholar] [CrossRef]
- Valko, K.; Teague, S.; Pidgeon, C. In Vitro Membrane Binding and Protein Binding (IAM MB/PB Technology) to Estimate in Vivo Distribution: Applications in Early Drug Discovery. ADMET DMPK 2017, 5, 14–38. [Google Scholar] [CrossRef]
- Wang, Y.T.; Xiong, J.C.; Xiao, F.; Zhang, W.; Cheng, K.Y.; Rao, J.X.; Niu, B.Y.; Tong, X.C.; Qu, N.; Zhang, R.Z.; et al. Log D 7.4 Prediction Enhanced by Transferring Knowledge from Chromatographic Retention Time, Microscopic pKa and logP. J. Cheminform. 2023, 15, 76. [Google Scholar] [CrossRef] [PubMed]
- Valkó, K.L. Lipophilicity and Biomimetic Properties Measured by HPLC to Support Drug Discovery. J. Pharm. Biomed. Anal. 2016, 130, 35–54. [Google Scholar] [CrossRef]
- Teague, S.; Valko, K. How to Identify and Eliminate Compounds with a Risk of High Clinical Dose during the Early Phase of Lead Optimisation in Drug Discovery. Eur. J. Pharm. Sci. 2017, 110, 37–50. [Google Scholar] [CrossRef]
- Tot, K.; Lazic, A.; Bozic, B.; Mandic, A.; Djakovic Sekulic, T. QSAR Characterization of New Synthesized Hydantoins with Antiproliferative Activity. Biomed. Chromatogr. 2019, 33, E4539. [Google Scholar] [CrossRef]
- Li, J.; Sun, J.; He, Z.G. Quantitative Structure-Retention Relationship Studies with Immobilized Artificial Membrane Chromatography II: Partial Least Squares Regression. J. Chromatogr. A 2007, 1140, 174–179. [Google Scholar] [CrossRef]
- Liang, C.; Lian, H.Z. Recent Advances in Lipophilicity Measurement by Reversed-Phase High-Performance Liquid Chromatography. Trac-Trend Anal. Chem. 2015, 68, 28–36. [Google Scholar] [CrossRef]
- Waters, L.J.; Shahzad, Y.; Mitchell, J.C. pH Effects in Micellar Liquid Chromatographic Analysis for Determining Partition Coefficients for a Series of Pharmaceutically Related Compounds. Curr. Pharm. Anal. 2012, 8, 272–277. [Google Scholar] [CrossRef]
- Liang, C.; Qiao, J.Q.; Lian, H.Z. Determination of Reversed-Phase High Performance Liquid Chromatography Based Octanol-Water Partition Coefficients for Neutral and Ionizable Compounds: Methodology Evaluation. J. Chromatogr. A 2017, 1528, 25–34. [Google Scholar] [CrossRef]
- Giaginis, C.; Tsopelas, F.; Tsantili-Kakoulidou, A. The Impact of Lipophilicity in Drug Discovery: Rapid Measurements by Means of Reversed-Phase HPLC. Rational Drug Design: Methods and Protocols. Method Mol. Biol. 2018, 1824, 217–228. [Google Scholar]
- OECD. Test No. 117: Partition Coefficient (n-Octanol/Water), HPLC Method; OECD Guidelines for the Testing of Chemicals, Section 1; OECD Publishing: Paris, France, 2022; ISBN 978-92-64-06982-4. [Google Scholar] [CrossRef]
- Soares, J.X.; Santos, A.; Fernandes, C.; Pinto, M.M.M. Liquid Chromatography on the Different Methods for the Determination of Lipophilicity: An Essential Analytical Tool in Medicinal Chemistry. Chemosensors 2022, 10, 340. [Google Scholar] [CrossRef]
- Studzinski, M.; Kozyra, P.; Pitucha, M.; Senczyna, B.; Matysiak, J. Retention Behavior of Anticancer Thiosemicarbazides in Biomimetic Chromatographic Systems and In Silico Calculations. Molecules 2023, 28, 7107. [Google Scholar] [CrossRef]
- Yamagami, C.; Tachikawa, H. Hydrophobicity Parameters Determined by Reversed-Phase Liquid Chromatography. XVI: A New Hydrogen-Accepting Parameter for Monosubstituted Thiophenes and Furans for Correlating Retention Factors and Octanol-Water Partition Coefficients. Chem. Pharm. Bull. 2003, 51, 1196–1200. [Google Scholar] [CrossRef]
- Yamagami, C.; Haraguchi, M. Hydrophobicity Parameters Determined by Reversed-Phase Liquid Chromatography. XIV. Application of a New Hydrogen-Accepting Scale of Monosubstituted Pyrazines to Analysis of the Relationship between Octanol-Water Partition Coefficients and Retention Factors Measured in Different Mobile Phases. Chem. Pharm. Bull. 2000, 48, 1973–1977. [Google Scholar]
- Giaginis, C.; Tsantili-Kakoulidou, A. Current State of the Art in HPLC Methodology for Lipophilicity Assessment of Basic Drugs. A Review. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 79–96. [Google Scholar] [CrossRef]
- Andric, F.; Bajusz, D.; Rácz, A.; Segan, S.; Héberger, K. Multivariate Assessment of Lipophilicity Scales-Computational and Reversed Phase Thin-Layer Chromatographic Indices. J. Pharm. Biomed. Anal. 2016, 127, 81–93. [Google Scholar] [CrossRef]
- Gómara, B.; Lebrón-Aguilar, R.; González, M.J.; Quintanilla-López, J.E. Insight into the Retention Processes of Phthalate Metabolites on Different Liquid Chromatography Stationary Phases for the Development of Improved Separation Methods. J. Chromatogr. A 2015, 1423, 86–95. [Google Scholar] [CrossRef]
- Pastewska, M.; Żołnowska, B.; Kovačević, S.; Kapica, H.; Gromelski, M.; Stoliński, F.; Sławiński, J.; Sawicki, W.; Ciura, K. Modeling of Anticancer Sulfonamide Derivatives Lipophilicity by Chemometric and Quantitative Structure-Retention Relationships Approaches. Molecules 2022, 27, 3965. [Google Scholar] [CrossRef]
- Ong, S.; Liu, H.; Qiu, X.; Bhat, G.; Pidgeon, C. Membrane Partition Coefficients Chromatographically Measured Using Immobilized Artificial Membrane Surfaces. Anal. Chem. 1995, 67, 755–762. [Google Scholar] [CrossRef]
- Janicka, M.; Sztanke, M.; Sztanke, K. Reversed-Phase Liquid Chromatography with Octadecylsilyl, Immobilized Artificial Membrane and Cholesterol Columns in Correlation Studies with in Silico Biological Descriptors of Newly Synthesized Antiproliferative and Analgesic Active Compounds. J. Chromatogr. A 2013, 1318, 92–101. [Google Scholar] [CrossRef]
- Valko, K.; Nunhuck, S.; Bevan, C.; Abraham, M.H.; Reyncilds, D.P. Fast Gradient HPLC Method to Determine Compounds Binding to Human Serum Albumin. Relationships with Octanol/Water and Immobilized Artificial Membrane Lipophilicity. J. Pharm. Sci. 2003, 92, 2236–2248. [Google Scholar] [CrossRef]
- Ciura, K.; Fedorowicz, J.; Zuvela, P.; Lovric, M.; Kapica, H.; Baranowski, P.; Sawicki, W.; Wong, M.W.; Saczewski, J. Affinity of Antifungal Isoxazolo[3,4-b]Pyridine-3(1H)-Ones to Phospholipids in Immobilized Artificial Membrane (IAM) Chromatography. Molecules 2020, 25, 4835. [Google Scholar] [CrossRef]
- Valko, K.; Rava, S.; Bunally, S.; Anderson, S. Revisiting the Application of Immobilized Artificial Membrane (IAM) Chromatography to Estimate in Vivo Distribution Properties of Drug Discovery Compounds Based on the Model of Marketed Drugs. ADMET DMPK 2020, 8, 78–97. [Google Scholar] [CrossRef]
- Ciura, K. Modeling of Small Molecule’s Affinity to Phospholipids Using IAM-HPLC and QSRR Approach Enhanced by Similarity-Based Machine Algorithms. J. Chromatogr. A 2024, 1714, 464549. [Google Scholar] [CrossRef]
- Buszewski, B.; Jezierska, M.; Welniak, M.; Kaliszan, R. Cholesteryl-Silica Stationary Phase for Liquid Chromatography—Comparative Study of Retention Behavior and Selectivity. J. Chromatogr. A 1999, 845, 433–445. [Google Scholar] [CrossRef]
- Flieger, J.; Pizon, M.; Plech, T. Chromatographic Behavior of New Antiepileptic Active Compounds on Different Reversed-Phase Materials. J. Chromatogr. A 2014, 1338, 188–196. [Google Scholar] [CrossRef]
- Welerowicz, T.; Buszewski, B. The Effect of Stationary Phase on Lipophilicity Determination of β-Blockers Using Reverse-Phase Chromatographic Systems. Biomed. Chromatogr. 2005, 19, 725–736. [Google Scholar] [CrossRef]
- Pesek, J.J.; Matyska, M.T.; Dawson, G.B.; Wilsdorf, A.; Marc, P.; Padki, M. Cholesterol Bonded Phase as a Separation Medium in Liquid Chromatography—Evaluation of Properties and Applications. J. Chromatogr. A 2003, 986, 253–262. [Google Scholar] [CrossRef]
- Cramer, H.; Bell, D.; Shollenberger, D.L. Evaluation of Retention and Selectivity Using Biphenyl Stationary Phases. LcGc N. Am. 2017, 35, 360–365. [Google Scholar]
- Studzińska, S.; Bocian, S.; Siecińska, L.; Buszewski, B. Application of Phenyl-Based Stationary Phases for the Study of Retention and Separation of Oligonucleotides. J. Chromatogr. B 2017, 1060, 36–43. [Google Scholar] [CrossRef]
- Taniguchi, A.; Hirose, T.; Shimotsuma, M. Retention and Selectivity Differences Due to Molecular Structure of Phenyl–Type Reversed–Phase HPLC Columns. Chromatography 2025, 46, 55–61. [Google Scholar] [CrossRef]
- Matysiak, J.; Opolski, A. Synthesis and Antiproliferative Activity of N-Substituted 2-Amino-5-(2,4-Dihydroxyphenyl)-1,3,4-Thiadiazoles. Bioorganic Med. Chem. 2006, 14, 4483–4489. [Google Scholar] [CrossRef]
- Skrzypek, A.; Matysiak, J.; Karpinska, M.M.; Niewiadomy, A. Synthesis and Anticholinesterase Activities of Novel 1,3,4-Thiadiazole Based Compounds. J. Enzym. Inhib. Med. Chem. 2013, 28, 816–823. [Google Scholar] [CrossRef]
- Matysiak, J.; Malinski, Z. 2-(2,4-Dihydroxyphenyl)-1,3,4-Thiadiazole Analogues: Antifungal Activity in Vitro against Species. Russ. J. Bioorganic Chem. 2007, 33, 594–601. [Google Scholar] [CrossRef]
- Ciura, K.; Fedorowicz, J.; Andric, F.; Greber, K.E.; Gurgielewicz, A.; Sawicki, W.; Saczewski, J. Lipophilicity Determination of Quaternary (Fluoro)Quinolones by Chromatographic and Theoretical Approaches. Int. J. Mol. Sci. 2019, 20, 5288. [Google Scholar] [CrossRef]
- Matysiak, J.; Niewiadomy, A.; Senczyna, B.; Zabinska, A.; Rozylo, J.K. Relationships between LC Retention, Octanol-Water Partition Coefficient, and Fungistatic Properties of 2-(2,4-Dihydroxyphenyl)Benzothiazoles. J. AOAC Int. 2004, 87, 579–586. [Google Scholar] [CrossRef]
- Snyder, L.R.; Dolan, J.W. Systematic Approaches to HPLC Method Development for Reversed-Phase Separation. Chem. Anal-Wars 1998, 43, 495–512. [Google Scholar]
- Mojzych, M.; Bernat, Z.; Karczmarzyk, Z.; Matysiak, J.; Fruzinski, A. Synthesis, Structural Characterization, and Biological Activity of New Pyrazolo[4,3-e][1,2,4]triazine Acyclonucleosides. Molecules 2020, 25, 221. [Google Scholar] [CrossRef]
- Andres, A.; Roses, M.; Rafols, C.; Bosch, E.; Espinosa, S.; Segarra, V.; Huerta, J.M. Setup and Validation of Shake-Flask Procedures for the Determination of Partition Coefficients (log D) from Low Drug Amounts. Eur. J. Pharm. Sci. 2015, 76, 181–191. [Google Scholar] [CrossRef]
- Bhal, S.K.; Kassam, K.; Peirson, I.G.; Pearl, G.M. The Rule of Five Revisited: Applying Log D in Place of log P in Drug-Likeness Filters. Mol. Pharm. 2007, 4, 556–560. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Yang, Z.J.; Dong, J.; Wang, L.L.; Zhang, L.X.; Ding, J.J.; Ding, X.Q.; Lu, A.P.; Hou, T.J.; Cao, D.S. Structural Analysis and Identification of Colloidal Aggregators in Drug Discovery. J. Chem. Inf. Model. 2019, 59, 3714–3726. [Google Scholar] [CrossRef]
- Marvin, version 19.9; ChemAxon Ltd.: Budapest, Hungary, 2019.
- MedChem Designer(TM), version 5.5.0.11; Simulations Plus, Inc.: Lancaster, CA, USA, 2021.
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Lipinski, C.A. Chris Lipinski Discusses Life and Chemistry after the Rule of Five. Drug Discov. Today 2003, 8, 12–16. [Google Scholar] [CrossRef]
- Kerns, E.H.; Di, L. Drug-like Properties: Concept, Structure Design and Methods, from ADME to Toxicity Optimization; Academic Press (an imprint of Elsevier): Burlington, MA, USA, 2008; pp. 40–47. [Google Scholar]
- Statistica, version 7.1; StatSoft, Inc.: Tulsa, OK, USA, 2005.
- JASP, version 0.17.2.1; JASP Team: Amsterdam, The Netherlands, 2023.
Compound No. | Molecular form (M) [%] | Anion AI [%] | Anion AII [%] | Anion AIII [%] |
---|---|---|---|---|
1 | 81.95 | 14.55 | 3.36 | 0.13 |
2 | 81.95 | 14.56 | 3.37 | 0.13 |
3 | 81.4 | 14.99 | 3.47 | 0.14 |
4 | 81.65 | 14.79 | 3.42 | 0.13 |
5 | 81.65 | 14.79 | 3.42 | 0.13 |
6 | 81.95 | 14.56 | 3.36 | 0.13 |
7 | 77.08 | 13.69 | 9.20 1 | - |
8 | 80.44 | 14.29 | 4.27 1 | - |
9 | 60.73 | 34.27 | 4.46 | 0.55 |
10 | 32.55 | 46.26 2 | 15.92 3 | 5.27 |
11 | 84.27 | 12.71 | 2.92 | 0.1 |
12 | 84.27 | 12.71 | 2.92 | 0.1 |
13 | 36.54 | 44.06 2 | 15.13 3 | 4.26 |
14 | 92.38 | 5.79 | 1.8 | 0.03 |
15 | 84.27 | 12.71 | 2.92 | 0.1 |
16 | 84.26 | 12.72 | 2.92 | 0.1 |
17 | 37.44 | 43.55 2 | 14.95 3 | 4.06 |
18 | 79.98 | 16.12 | 3.74 | 0.16 |
Parameter | RP-18 | IAM | RP-8 | Chol | BPh |
---|---|---|---|---|---|
Mean | 3 | 2.94 | 4.406 | 3.77 | 4.116 |
Std. Deviation | 0.57 | 0.338 | 0.695 | 0.509 | 0.612 |
RSD [%] | 19 | 11.497 | 15.774 | 13.501 | 14.869 |
Minimum | 1.907 | 2.478 | 2.98 | 3.01 | 2.965 |
Maximum | 4.296 | 3.67 | 5.517 | 4.751 | 5.075 |
System | C-18 | IAM | C-8 | Chol | BPh |
---|---|---|---|---|---|
R | −0.968 | 0.905 | 0.937 | 0.908 | −0.885 |
No. | log kw C-18 | S | R2 | log D(7.4) | Δ 1 | E [%] 2 |
---|---|---|---|---|---|---|
1. | 2.537 | −3.494 | 0.981 | 2.506 | −0.032 | −1.267 |
2. | 3 | −3.87 | 0.987 | 3.131 | 0.157 | 4.970 |
3. | 3.002 | −3.885 | 0.983 | 3.133 | 0.158 | 4.991 |
4. | 2.67 | −3.651 | 0.990 | 2.685 | 0.022 | 0.833 |
5. | 3.678 | −4.438 | 0.993 | 4.046 | 0.433 | 10.535 |
6. | 3.69 | −4.696 | 0.997 | 4.062 | 0.438 | 10.611 |
7. | 1.907 | −3.171 | 0.941 | 1.656 | −0.288 | −17.820 |
8. | 2.545 | −3.785 | 0.98 | 2.517 | −0.028 | −1.132 |
9. | 2.512 | −3.432 | 0.974 | 2.472 | −0.042 | −1.698 |
10. | 3.734 | −4.65 | 0.98 | 4.121 | 0.456 | 10.882 |
11. | 2.477 | −3.66 | 0.977 | 2.425 | −0.056 | −2.321 |
12. | 2.986 | −4.168 | 0.99 | 3.112 | 0.151 | 4.819 |
13. | 3.005 | −4.173 | 0.997 | 3.138 | 0.159 | 5.023 |
14. | 4.296 | −5.335 | 0.997 | 4.880 | 0.685 | 13.751 |
15. | 3.238 | −4.185 | 0.975 | 3.452 | 0.254 | 7.270 |
16. | 3.059 | −3.931 | 0.987 | 3.210 | 0.181 | 5.584 |
17 | 2.78 | −3.931 | 0.987 | 2.834 | 0.067 | 2.362 |
18. | 2.879 | −3.883 | 0.948 | 2.967 | 0.108 | 3.602 |
Descriptor | log kw C-18 | log kw IAM | log kw C-8 | log kw Chol | log kw BPh |
---|---|---|---|---|---|
log kw C-18 | 1 | - | - | - | - |
log kw C-8 | 0.918 (18) 3 | - | 1 | - | |
log kw IAM | 0.929 (8) 3 | 1 | 0.871 | - | |
log kw Chol | 0.920 (18) 3 | 0.938 | 0.94 | 1 | - |
log kw BPh | 0.844 | 0.797 | 0.943 (2) 3 | 0.867 (2,6) 3 | 1 |
log P Axon 1 | 0.848 (8) 3 | 0.866 (10) 3 | 0.914 | 0.859 (2,6) | 0.867 (2,6) 3 |
log P Cons 1 | 0.883 (18) 3 | 0.855 (10) 3 | 0.9 | 0.909 | 0.859 (2,6) 3 |
Mlog P 2 | 0.65 | 0.435 | 0.555 | 0.435 | 0.625 |
S+log P 2 | 0.788 | 0.663 | 0.719 | 0.817 (15,18) 3 | 0.772 |
S+log D 2 | 0.841 (4) 3 | 0.699 | 0.848 (5,18) 3 | 0.699 | 0.761 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Studziński, M.; Barańska, K.; Paw, B.; Senczyna, B.; Paszko, T.; Matysiak, J. In Silico and RP HPLC Studies of Biologically Active 1,3,4-Thiadiazol-2-yl)-benzene-1,3-diols. Molecules 2025, 30, 3913. https://doi.org/10.3390/molecules30193913
Studziński M, Barańska K, Paw B, Senczyna B, Paszko T, Matysiak J. In Silico and RP HPLC Studies of Biologically Active 1,3,4-Thiadiazol-2-yl)-benzene-1,3-diols. Molecules. 2025; 30(19):3913. https://doi.org/10.3390/molecules30193913
Chicago/Turabian StyleStudziński, Marek, Katarzyna Barańska, Beata Paw, Bogusław Senczyna, Tadeusz Paszko, and Joanna Matysiak. 2025. "In Silico and RP HPLC Studies of Biologically Active 1,3,4-Thiadiazol-2-yl)-benzene-1,3-diols" Molecules 30, no. 19: 3913. https://doi.org/10.3390/molecules30193913
APA StyleStudziński, M., Barańska, K., Paw, B., Senczyna, B., Paszko, T., & Matysiak, J. (2025). In Silico and RP HPLC Studies of Biologically Active 1,3,4-Thiadiazol-2-yl)-benzene-1,3-diols. Molecules, 30(19), 3913. https://doi.org/10.3390/molecules30193913