Optimization of Anthralin Microemulgel Targeted Delivery for Psoriasis and Acne
Abstract
:1. Introduction
2. Results
2.1. Preparation of ME
2.1.1. Screening of Excipients
2.1.2. Construction of Pseudo-Ternary Phase Diagram
2.2. Experimental Design for ME
2.2.1. Analysis of PS
2.2.2. Analysis of ZP
2.2.3. Analysis of %T
2.2.4. Optimization of ME
2.3. Evaluation of ME
2.3.1. Particle Size Analysis, PDI, and Zeta Potential
2.3.2. Dilution Test, %T, Viscosity, and Ph
2.3.3. Thermodynamic Stability
2.4. Evaluation of Microemulsion-Based Gel
2.4.1. Physical Examination
2.4.2. PS, ZP, and PDI
2.4.3. pH and Viscosity
2.4.4. DSC of Microemulgel
2.4.5. Texture Analysis
2.4.6. In Vitro Diffusion Study
2.4.7. In Vitro Drug Release: Egg Membrane and Goat Skin
2.4.8. Stability of Microemulgel
2.5. In Vitro Activity
2.5.1. Antipsoriatic Activity
2.5.2. Antibacterial Activity
2.6. In Silico Docking
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Pre-Formulation Study of Microemulsion
4.2.1. Screening of Co-Surfactant, Surfactant, and Oil
4.2.2. Emulsification Study
4.2.3. Optimization by CCD
4.2.4. Preparation of Microemulsion
4.3. Evaluation of Microemulsion
4.3.1. Percent Transmittance Measurement:
4.3.2. PS, PDI, and ZP
4.3.3. Dilution Test, Viscosity, and pH
4.3.4. Thermodynamic Stability
4.4. Preparation of Microemulgel
4.4.1. Selection of Polymer for Preparation of Gel Phase
4.4.2. Preparation of Micro-Emulsion-Based Gel
4.5. Evaluation of Micro-Emulsion-Based Gel
4.5.1. PS, ZP, and pH
4.5.2. Texture Analysis and Viscosity
4.5.3. In Vitro Drug Release Study
In Vitro Diffusion Study: Cellophane Membrane
In Vitro Diffusion Study: Egg Membrane
In Vitro Diffusion Study: Goat Skin
4.5.4. Stability of Microemulgel
4.5.5. Antipsoriatic Activity
4.5.6. Determination of Antibacterial Activity
4.5.7. In Silico Molecular Docking
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, K.; Zhao, Y.; Cao, X. Global Burden and Future Trends in Psoriasis Epidemiology: Insights from the Global Burden of Disease Study 2019 and Predictions to 2030. Arch. Dermatol. Res. 2024, 316, 114. [Google Scholar] [CrossRef] [PubMed]
- Parisi, R.; Iskandar, I.Y.K.; Kontopantelis, E.; Augustin, M.; Griffiths, C.E.M.; Ashcroft, D.M. National, Regional, and Worldwide Epidemiology of Psoriasis: Systematic Analysis and Modelling Study. BMJ 2020, 369, m1590. [Google Scholar] [CrossRef]
- Borrego-Ruiz, A.; Borrego, J.J. Microbial Dysbiosis in the Skin Microbiome and Its Psychological Consequences. Microorganisms 2024, 12, 1908. [Google Scholar] [CrossRef]
- Laochunsuwan, A.; Taweechotipatr, M.; Udompataikul, M. In Vitro Study of Antibiotic Susceptibility of Propionibacterium Acnes Strains Isolated from Acne Vulgaris Patients. J. Med. Assoc. Thai. 2017, 100, S24–S31. [Google Scholar]
- Tomida, S.; Nguyen, L.; Chiu, B.H.; Liu, J.; Sodergren, E.; Weinstock, G.M.; Li, H. Pan-Genome and Comparative Genome Analyses of Propionibacterium Acnes Reveal Its Genomic Diversity in the Healthy and Diseased Human Skin Microbiome. mBio 2013, 4, e00003-13. [Google Scholar] [CrossRef]
- Brück, J.; Fehrenbacher, B.; Schaller, M.; Eberle, F.C.; Schittek, B.; Schäfer, I.; Carevic, M.; Müller-Hermelink, E.; Holstein, J.; Ghoreschi, K. Anthralin Modulates the Expression Pattern of Cytokeratins and Antimicrobial Peptides by Psoriatic Keratinocytes. J. Dermatol. Sci. 2017, 87, 236–245. [Google Scholar] [CrossRef]
- Pavithran, K. Dithranol: Recent Views on Its Mechanism of Action. Indian J. Dermatol. Venereol. Leprol. 2001, 67, 104–105. [Google Scholar] [PubMed]
- Blaskovich, M.A.T.; Elliott, A.G.; Kavanagh, A.M.; Ramu, S.; Cooper, M.A. In Vitro Antimicrobial Activity of Acne Drugs Against Skin-Associated Bacteria. Sci. Rep. 2019, 9, 14658. [Google Scholar] [CrossRef] [PubMed]
- Jagdale, S.; Deore, G.; Chabukswar, A. Development of Microemulsion Based Nabumetone Transdermal Delivery for Treatment of Arthritis. Recent Pat. Drug. Deliv. Formul. 2018, 12, 130–149. [Google Scholar] [CrossRef]
- Jagdale, S.; Kothekar, P. Development of Emulgel Delivery of Mupirocin for Treatment of Skin Infection. Recent Pat. Antiinfect. Drug. Discov. 2020, 15, 137–156. [Google Scholar] [CrossRef]
- Jagdale, S.; Brahmane, S.; Chabukswar, A. Optimization of Microemulgel for Tizanidine Hydrochloride. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2019, 19, 158–179. [Google Scholar] [CrossRef] [PubMed]
- Jagdale, S.; Pawar, S. Gellified Emulsion of Ofloxacin for Transdermal Drug Delivery System. Adv. Pharm. Bull. 2017, 7, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Lotlikar, V.B.; Sharma, S.; Londhe, V.Y. Unlocking Relief: Formulation, Characterization, and in Vivo Assessment of Salicylic Acid–Loaded Microemulgel for Psoriasis Management. Naunyn. Schmiedebergs. Arch. Pharmacol. 2024, 398, 3037–3047. [Google Scholar] [CrossRef] [PubMed]
- Ashara, K.C.; Paun, J.S.; Soniwala, M.M.; Chavda, J.R.; Mendapara, V.P.; Mori, N.M. Microemulgel: An Overwhelming Approach to Improve Therapeutic Action of Drug Moiety. Saudi Pharm. J. 2016, 24, 452–457. [Google Scholar] [CrossRef]
- Pandey, S.; Rahdar, A.; Gholami, A.; Amiri, Z.; Abdouss, H.; Pourmadadi, M.; Abdouss, M.; Behzadmehr, R. Formulation of Double Microemulsion Based on PH-ResponsivePEG/PVA/Zinc Oxide as a Potential Nano-Platform for Drug Delivery: Green Synthesis, and Physico-Chemical Characterization. J. Mol. Liq. 2024, 410, 125563. [Google Scholar] [CrossRef]
- Bajza, Á.; Kocsis, D.; Berezvai, O.; Laki, A.J.; Lukács, B.; Imre, T.; Iván, K.; Szabó, P.; Erdő, F. Verification of P-Glycoprotein Function at the Dermal Barrier in Diffusion Cells and Dynamic “Skin-on-a-Chip” Microfluidic Device. Pharmaceutics 2020, 12, 804. [Google Scholar] [CrossRef]
- Skazik, C.; Wenzel, J.; Marquardt, Y.; Kim, A.; Merk, H.F.; Bickers, D.R.; Baron, J.M. P-Glycoprotein (ABCB1) Expression in Human Skin Is Mainly Restricted to Dermal Components. Exp. Dermatol. 2011, 20, 450–452. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, M.; Yuan, M.; Yang, D.; Zhao, M.; Zhang, S.; Wang, P.; Zhang, R.; Gao, X. The Pharmaceutical Excipient PEG400 Affect the Absorption of Baicalein in Caco-2 Monolayer Model by Interacting with UDP-Glucuronosyltransferases and Efflux Transport Proteins. Pharmacol. Res. Perspect. 2022, 10, e00928. [Google Scholar] [CrossRef]
- Ding, Z.; Jiang, Y.; Liu, X. Nanoemulsions-Based Drug Delivery for Brain Tumors. In Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors; Elsevier: Amsterdam, The Netherlands, 2018; pp. 327–358. ISBN 9780128122181. [Google Scholar]
- Nikumbh, K.V.; Sevankar, S.G.; Patil, M.P. Formulation Development, in Vitro and in Vivo Evaluation of Microemulsion-Based Gel Loaded with Ketoprofen. Drug. Deliv. 2015, 22, 509–515. [Google Scholar] [CrossRef]
- Koroleva, M.; Nagovitsina, T.; Yurtov, E. Nanoemulsions Stabilized by Non-Ionic Surfactants: Stability and Degradation Mechanisms. Phys. Chem. Chem. Phys. 2018, 20, 10369–10377. [Google Scholar] [CrossRef]
- Wu, S.; Wang, G.; Lu, Z.; Li, Y.; Zhou, X.; Chen, L.; Cao, J.; Zhang, L. Effects of Glycerol Monostearate and Tween 80 on the Physical Properties and Stability of Recombined Low-Fat Dairy Cream. Dairy Sci. Technol. 2016, 96, 377–390. [Google Scholar] [CrossRef]
- Novita, M.; Suyatma, N.E.; Sugiyono; Yuliani, S. Physical Properties of Beeswax-Oleic Acid Mixture Nanoemulsions as Affected by Lipid Ratio and Concentration of Emulsifier. Food Res. 2024, 8, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Kawai, T.; Nonomura, Y. Effects of Fatty Acid Addition to Oil-in-Water Emulsions Stabilized with Sucrose Fatty Acid Ester. J. Oleo. Sci. 2018, 67, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhang, B.; Zhao, J. Dispersion Process and Effect of Oleic Acid on Properties of Cellulose Sulfate-Oleic Acid Composite Film. Materials 2015, 8, 2346–2360. [Google Scholar] [CrossRef]
- Taher, S.S.; Al-Kinani, K.K.; Hammoudi, Z.M.; Ghareeb, M. mohammed Co-Surfactant Effect of Polyethylene Glycol 400 on Microemulsion Using BCS Class II Model Drug. J. Adv. Pharm. Educ. Res. 2022, 12, 63–69. [Google Scholar] [CrossRef]
- Drzymała, J. An Estimation of the Surface Ionization Constant of Oleic Acid in Aqueous Sodium Chloride Solution. Colloid Polym. Sci. 1987, 265, 613–618. [Google Scholar] [CrossRef]
- Arifin, M.; Shafira, E.; Noviani, Y.; Desmiaty, Y.; Okta, F. Nanosuspension Formula of Curcuma Xanthorriza Rhizome Dry Extract: Impact of Tween 80-PEG 400 Ratio. Sci. Pharm. 2024, 3, 112–119. [Google Scholar] [CrossRef]
- Kaibara, K.; Iwata, E.; Eguchi, Y.; Suzuki, M.; Maeda, H. Dispersion Behavior of Oleic Acid in Aqueous Media: From Micelles to Emulsions. Colloid. Polym. Sci. 1997, 275, 777–783. [Google Scholar] [CrossRef]
- Miksusanti; Apriani, E.F.; Bihurinin, A.H.B. Optimization of Tween 80 and PEG-400 Concentration in Indonesian Virgin Coconut Oil Nanoemulsion as Antibacterial against Staphylococcus Aureus. Sains Malays. 2023, 52, 1259–1272. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Y.; Ren, H.; Wei, D. Effect of Surfactant HLB Value on Settlement Stability of Magnetorheological Fluid. Open Access Libr. J. 2018, 5, 1. [Google Scholar] [CrossRef]
- Ahmad, N.; Ahmad, R.; Al-Qudaihi, A.; Alaseel, S.E.; Fita, I.Z.; Khalid, M.S.; Pottoo, F.H. Preparation of a Novel Curcumin Nanoemulsion by Ultrasonication and Its Comparative Effects in Wound Healing and the Treatment of Inflammation. RSC Adv. 2019, 9, 20192–20206. [Google Scholar] [CrossRef] [PubMed]
- Winarti, C.; Hamaisa, A.; Lesmayati, S.; Misgiyarta, M.; Gusmaini, G. Emulsifier Ratio and Shock Treatment Effect on the Characteristics of Eucalyptus–Peppermint Oil-Based Mouthwash Nanoemulsion. J. Appl. Pharm. Sci. 2024, 14, 83–89. [Google Scholar] [CrossRef]
- Alshetaili, A.S. Design, Statistical Optimization, and Characterization of Esculin-Loaded Transliposome Nanogel for Topical Delivery: In-Vitro, Ex Vivo Study and Dermatokinetic Evaluation. J. King Saud Univ. Sci. 2024, 36, 103166. [Google Scholar] [CrossRef]
- Vanti, G.; Grifoni, L.; Bergonzi, M.C.; Antiga, E.; Montefusco, F.; Caproni, M.; Bilia, A.R. Development and Optimisation of Biopharmaceutical Properties of a New Microemulgel of Cannabidiol for Locally-Acting Dermatological Delivery. Int. J. Pharm. 2021, 607, 121036. [Google Scholar] [CrossRef]
- Mijaljica, D.; Townley, J.P.; Klionsky, D.J.; Spada, F.; Lai, M. The Origin, Intricate Nature, and Role of the Skin Surface PH (PHSS) in Barrier Integrity, Eczema, and Psoriasis. Cosmetics 2025, 12, 24. [Google Scholar] [CrossRef]
- Upadrashta, S.M.; Wurster, D.E. Spectroscopic Analysis of the Ionization Behavior of Anthralin. Spectrosc. Lett. 1988, 21, 147–155. [Google Scholar] [CrossRef]
- Sa e Melo, T.; Dubertret, L.; Prognon, P. Physiocochemical Properties and Stability of Anthralin in Model Systems and Human Skin. J. Investig. Dermatol. 1983, 80, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Çağlar, E.Ş.; Özdemir, Z.Ö.; Nath, E.Ö.; Barak, T.H.; Şentürk, T.B. In Vitro Evaluation of Skin Related Enzyme Inhibitory Effect and Emulgel Formulation Development Studies of Onobrychis Argyrea Subsp. Argyrea with Phytochemical Analysis. Chem. Biodivers. 2024, 21, e202400139. [Google Scholar] [CrossRef]
- Zhou, F.; Yao, H.; Ma, Z.; Hu, X. Investigating Small Molecule Compounds Targeting Psoriasis Based on CMAP Database and Molecular Dynamics Simulation. Ski. Res. Technol. 2023, 29, e13301. [Google Scholar] [CrossRef]
- Madan, S.; Akhtar, A.; Walia, R.; Hawwal, M.F.; Alam, P.; Tyagi, R.; Sahu, N.; Fantoukh, O.I.; Almarabi, I.; Saxena, S. Multi-Target Mechanism of Solanum Xanthocarpum for Treatment of Psoriasis Based on Network Pharmacology and Molecular Docking. Saudi Pharm. J. 2023, 31, 101788. [Google Scholar] [CrossRef]
- Chadha, H.; Chandra, P.; Meher, B.; Sachan, N. Molecular Docking Analysis of Psoriasis Specific Mediator IL-17 with Active Phytoconstituents from Cocos Nucifera, Carica Papaya, Ichnocarpus Frutescens. Lett. Appl. NanoBioScience 2025, 14, 18. [Google Scholar] [CrossRef]
- Ibezim, A.; Onah, E.; Dim, E.N.; Ntie-Kang, F. A Computational Multi-Targeting Approach for Drug Repositioning for Psoriasis Treatment. BMC Complement. Med. Ther. 2021, 21, 193. [Google Scholar] [CrossRef] [PubMed]
- Hari, G.; Kishore, A.; Karkala, S.R.P. Treatments for Psoriasis: A Journey from Classical to Advanced Therapies. How Far Have We Reached? Eur. J. Pharmacol. 2022, 929, 175147. [Google Scholar] [CrossRef]
- Yue, C.; Feng, J.; Gao, A. A Network Pharmacology and Molecular Docking Investigation on the Mechanisms of Shanyaotianhua Decoction (STT) as a Therapy for Psoriasis. Medicine 2023, 102, E34859. [Google Scholar] [CrossRef] [PubMed]
- Rapalli, V.K.; Waghule, T.; Gorantla, S.; Dubey, S.K.; Saha, R.N.; Singhvi, G. Psoriasis: Pathological Mechanisms, Current Pharmacological Therapies, and Emerging Drug Delivery Systems. Drug Discov. Today 2020, 25, 2212–2226. [Google Scholar] [CrossRef]
- Darusman, F.; Fakih, T.M. Comprehensive In Silico Analysis of Christinin Molecular Behaviour from Ziziphus Spina-Christi Leaves on Propionibacterium Acnes. Pharm. Sci. Res. 2021, 8, 5. [Google Scholar]
- Cheon, D.; Kim, J.; Jeon, D.; Shin, H.C.; Kim, Y. Target Proteins of Phloretin for Its Anti-Inflammatory and Antibacterial Activities against Propionibacterium Acnes-Induced Skin Infection. Molecules 2019, 24, 1319. [Google Scholar] [CrossRef]
- Aloliqi, A.A. Towards Identification of Therapeutics against Multi-Infections and Cancers Causing Propionibacterium Acnes: Molecular Modeling and Dynamics Simulation Investigation. J. Mol. Liq. 2024, 415, 126373. [Google Scholar] [CrossRef]
- Lu, X.; Han, Y.; Zhang, Y.; Li, R.; Xu, J.; Yang, J.; Yao, J.; Lv, Z. An Integrated Network Pharmacology and Molecular Docking Approach to Reveal the Role of Arctigenin against Cutibacterium Acnes-Induced Skin Inflammation by Targeting the CYP19A1. Chem. Biol. Drug. Des. 2024, 104, e14598. [Google Scholar] [CrossRef]
- Grange, P.A.; Raingeaud, J.; Morelle, W.; Marcelin, A.G.; Calvez, V.; Dupin, N. Characterization of a Propionibacterium Acnes Surface Protein as a Fibrinogen-Binding Protein. Sci. Rep. 2017, 7, 6428. [Google Scholar] [CrossRef]
- Raphael, V.P.; Johnson, R.; Vidhya Thomas, K.; Kakkassery, J.T.; Ragi, K. In Vitro Antibacterial and in Silico Docking Studies of Two Schiff Bases on Staphylococcus Aureus and Its Target Proteins. Future J. Pharm. Sci. 2021, 7, 1–9. [Google Scholar] [CrossRef]
- Alyami, M.H.; Alyami, H.S.; Alshehri, A.A.; Alsharif, W.K.; Shaikh, I.A.; Algahtani, T.S. Tamoxifen Citrate Containing Topical Nanoemulgel Prepared by Ultrasonication Technique: Formulation Design and In Vitro Evaluation. Gels 2022, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Tasneem, R.; Khan, H.M.S.; Rasool, F.; Khan, K.U.R.; Umair, M.; Esatbeyoglu, T.; Korma, S.A. Development of Phytocosmeceutical Microemulgel Containing Flaxseed Extract and Its In Vitro and In Vivo Characterization. Pharmaceutics 2022, 14, 1656. [Google Scholar] [CrossRef]
- Ullah, N.; Amin, A.; Farid, A.; Selim, S.; Rashid, S.A.; Aziz, M.I.; Kamran, S.H.; Khan, M.A.; Rahim Khan, N.; Mashal, S.; et al. Development and Evaluation of Essential Oil-Based Nanoemulgel Formulation for the Treatment of Oral Bacterial Infections. Gels 2023, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Hemanth, K.M.; Sunil, K.J.; Spandana, V.; Sandeep, B.P. Anticancer Activity of Terpenoid Saponin Extract of Psidium Guajava on MCF-7 Cancer Cell Line Using DAPI and MTT Assays. Afr. J. Pharm. Pharmacol. 2021, 15, 206–211. [Google Scholar] [CrossRef]
- Poomanee, W.; Chaiyana, W.; Mueller, M.; Viernstein, H.; Khunkitti, W.; Leelapornpisid, P. In-Vitro Investigation of Anti-Acne Properties of Mangifera Indica L. Kernel Extract and Its Mechanism of Action against Propionibacterium Acnes. Anaerobe 2018, 52, 64–74. [Google Scholar] [CrossRef]
- Al Jaouni, S.K.; Khan, H.M.S.; Yousuf, M.; Kamran, M.; Conte-Junior, C.A.; Selim, S.; Aadil, R.M.; Korma, S.A.; Umair, M.; Khan, K.U.R.; et al. Chemical Profiling, Formulation Development, In Vitro Evaluation and Molecular Docking of Piper Nigrum Seeds Extract Loaded Emulgel for Anti-Aging. Molecules 2022, 27, 5990. [Google Scholar] [CrossRef]
Design—Half Run CCD | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Independent Variables (IVs) | Levels | Dependent Variables (DVs) | ||||||||
−1 | 0 | +1 | ||||||||
1 | Oil | 30 | 35 | 40 | 1 | Particle Size (PS) | ||||
2 | Smix | 30 | 35 | 40 | 2 | Zeta Particle (ZP) | ||||
3 | Water | 25 | 30 | 35 | 3 | %Transmittance (%T) | ||||
Experimental Runs and Results | ||||||||||
Batch | Oil (%) | Smix (%) | Water (%) | PS (nm) | ZP (mV) | %T | ||||
F1 | 35 | 35 | 30 | 417 | −24.7 | 85 | ||||
F2 | 35 | 35 | 30 | 413 | −24.4 | 77 | ||||
F3 | 35 | 35 | 37.0711 | 410 | −24.5 | 77 | ||||
F4 | 35 | 35 | 22.9289 | 420 | −25 | 78 | ||||
F5 | 40 | 30 | 35 | 450 | −16.5 | 38.5 | ||||
F6 | 30 | 40 | 35 | 425 | −21 | 70 | ||||
F7 | 35 | 35 | 30 | 426 | −27.6 | 68.5 | ||||
F8 | 30 | 30 | 25 | 440 | −21.5 | 69 | ||||
F9 | 35 | 42.0711 | 30 | 415 | −22 | 75 | ||||
F10 | 40 | 40 | 25 | 492 | −17.9 | 43.7 | ||||
F11 | 42.0711 | 35 | 30 | 455 | −15.5 | 43 | ||||
F12 | 27.9289 | 35 | 30 | 460 | −18.2 | 57 | ||||
F13 | 35 | 27.9289 | 30 | 470 | −21.9 | 43 | ||||
F14 | 35 | 35 | 30 | 410 | −26.5 | 85 | ||||
F15 | 35 | 35 | 30 | 415 | −22.1 | 85 |
ANOVA for the Responses (PS, ZP, and %T) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | ||||||||
PS | ZP | %T | PS | ZP | %T | PS | ZP | %T | PS | ZP | %T | ||
Model | 8854.75 | 167.04 | 3749.58 | 9 | 983.86 | 18.56 | 416.62 | 31.74 | 5.20 | 9.35 | 0.0007 | 0.0421 | 0.0120 |
A-Oil | 12.50 | 3.65 | 98.00 | 1 | 12.50 | 3.65 | 98.00 | 0.4033 | 1.02 | 2.20 | 0.5533 | 0.3587 | 0.1981 |
B-Smix | 1512.50 | 0.0050 | 512.00 | 1 | 1512.50 | 0.0050 | 512.00 | 48.80 | 0.0014 | 11.49 | 0.0009 | 0.9716 | 0.0195 |
C-Water | 50.00 | 0.1250 | 0.5000 | 1 | 50.00 | 0.1250 | 0.5000 | 1.61 | 0.0350 | 0.0112 | 0.2600 | 0.8589 | 0.9197 |
AB | 229.60 | 0.1779 | 0.9701 | 1 | 229.60 | 0.1779 | 0.9701 | 7.41 | 0.0498 | 0.0218 | 0.0417 | 0.8322 | 0.8884 |
AC | 1372.40 | 0.0719 | 190.66 | 1 | 1372.40 | 0.0719 | 190.66 | 44.28 | 0.0201 | 4.28 | 0.0012 | 0.8927 | 0.0934 |
BC | 883.49 | 2.29 | 171.13 | 1 | 883.49 | 2.29 | 171.13 | 28.50 | 0.6418 | 3.84 | 0.0031 | 0.4594 | 0.1073 |
A2 | 3486.52 | 130.32 | 1623.17 | 1 | 3486.52 | 130.32 | 1623.17 | 112.48 | 36.50 | 36.44 | 0.0001 | 0.0018 | 0.0018 |
B2 | 1460.45 | 18.78 | 772.29 | 1 | 1460.45 | 18.78 | 772.29 | 47.12 | 5.26 | 17.34 | 0.0010 | 0.0704 | 0.0088 |
C2 | 0.0007 | 0.1979 | 4.40 | 1 | 0.0007 | 0.1979 | 4.40 | 0.0000 | 0.0554 | 0.0989 | 0.9965 | 0.8232 | 0.7659 |
Residual | 154.98 | 17.85 | 222.73 | 5 | 31.00 | 3.57 | 44.55 | ||||||
Lack of Fit | 8.18 | 0.0006 | 6.53 | 1 | 8.18 | 0.0006 | 6.53 | 0.2229 | 0.0001 | 0.1209 | 0.6614 | 0.9914 | 0.7456 |
Pure Error | 146.80 | 17.85 | 216.20 | 4 | 36.70 | 4.46 | 54.05 | ||||||
Cor Total | 9009.73 | 184.90 | 3972.32 | 14 | |||||||||
Fit Statistics | |||||||||||||
PS | ZP | %T | PS | ZP | %T | ||||||||
Std. Dev. | 5.57 | 1.89 | 6.67 | R2 | 0.9828 | 0.9034 | 0.9439 | ||||||
Mean | 434.53 | −21.95 | 66.31 | Adjusted R2 | 0.9518 | 0.7296 | 0.8430 | ||||||
C.V. % | 1.28 | 8.61 | 10.06 | Predicted R2 | 0.8773 | 0.8542 | 0.7402 | ||||||
Adeq Precision | 17.6557 | 6.2031 | 7.7193 |
Sr. No. | Conc (µg/mL) | Absorbance (OD) | Cell Viability % | Inhibition % | IC50 (µg/mL) | |||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | Mean | |||||
Reference Standard—5-flurouracil (5-FU) | ||||||||
5-FU | 25 | 0.48 | 0.376 | 0.34 | 0.398 | 33.90 | 66.10 | 54.14 |
50 | 0.333 | 0.325 | 0.396 | 0.351 | 29.87 | 70.13 | ||
100 | 0.292 | 0.241 | 0.208 | 0.247 | 21.00 | 79.00 | ||
Experimental Drug—Anthralin | ||||||||
Anthralin | 25 | 0.615 | 0.623 | 0.6 | 0.6126 | 52.097 | 47.902 | 36.18 |
50 | 0.548 | 0.547 | 0.564 | 0.553 | 47.023 | 52.976 | ||
100 | 0.475 | 0.466 | 0.458 | 0.4663 | 39.654 | 60.345 |
Sr. No. | Concentration (μg/mL) | Zone of Inhibition (mm) (Propionibacterium) | |
---|---|---|---|
(Clindamycin) Standard | (Anthralin Microemulgel) | ||
1 | 25 | 11.33 ± 1.15 | 8.66 ± 1.52 |
2 | 50 | 13.66 ± 1.15 | 10.66 ± 1.52 |
3 | 100 | 20.66 ± 1.15 | 13.66 ± 1.15 |
Protein Name | PDB ID | Binding Energy (Kcal/mol) | Interacting Ligand at Binding Site | |
---|---|---|---|---|
Bonding Type | Binding Amino Acid | |||
1. Docking with Psoriasis proteins | ||||
Tumor Necrosis Factor Receptor | 1EXT | 18.87 | H-bond | ASP B: 93 ASN A: 110 SER B: 94 |
Pi-alkyl | ARG B:77 | |||
Human Interleukin-23 | 8CR8 | −102.71 | H-bond | ALA A:202 GLU A:204 |
Pi-lone pair | CYS A:199 | |||
Alkyl | CYS B:73 ILE A:229 | |||
p52 | 8G8S | 14.86 | Pi-anion | GLU A:456 |
Alkyl | LEU A:454 VAL A:417 ALA A:451 | |||
Pi-Pi T-shaped | HIS A: 418 | |||
Van der waals | HIS A:418 LYS A:459 | |||
p50 | 7LEQ | 11.08 | H-Bond | GLU E:354 LYS E:353 |
Pi-H Bond | ARG E:315 | |||
NF-Kappa-B1 | 8TQD | −970.66 | H-bond | ASP A:120 |
Pi-sigma | ILE A:122 | |||
Alkyl | LEU A:113 LEU A:99 LEU A:108 ARG A:156 | |||
Interleukin-16 | 5FB8 | 19.54 | H-bond | ARG A:171 TYR A:202 |
Alkyl and Pi-cation | LYS A:132 | |||
PDE4a | 3I8V | 20.31 | H-Bond | HIS B:416 |
Pi-Anion | ASP B:413 | |||
PDE5A1 | 3B2R | 19.82 | H-Bond | LEU B:746 LYS B:752 |
Pi-Anion | GLU B:747 | |||
DYRK2 | 6HDR | −788.57 | Pi-sigma | LEU A:358 |
Pi-Pi T-shaped | PHE A:382 | |||
Alkyl | LEU A:322 LEU A:373 VAL A:383 PRO A:368 ILE A:362 ALA A:359 ARG A:390 | |||
LCK | 2PL0 | 19.95 | H-bond | THR A:316 |
Pi-Pi stacked | PHE A:383 TYR A:318 | |||
Alkyl | VAL A:259 ALA A:273 LYS A:318 ALA A:271 | |||
IL-17A | 5HI4 | 11.12 | H-bond | ALA C:168 |
Pi-alkyl | PRO C:167 | |||
EGFR kinase | 8A27 | −8.99 | Pi-alkyl | CYS A:797 VAL A:726 LEU A:844 ALA A:743 |
C-H bond | GLY A:796 | |||
Vitamin D nuclear receptor ligand binding domain | 2HBH | 22.26 | H-Bond | LEU A:258 |
Pi-Pi T-shaped | HIS A: 333 | |||
Pi-alkyl | VAL A:328 ILE A:299 | |||
TNF-alpha | 2AZ5 | 6.34 | Alkyl | LEU A:57 ILE A:155 |
Pi-Pi stack | TYR A:59 | |||
Interleukin 12 | 6WDP | −107.23 | H-Bond | CYS A:52 ARG A:51 |
Pi-Sigma | TYR A:139 | |||
Pi-alkyl | LEU A:131 ARG A:213 TYR A:139 | |||
Van der waal | ARG A:51 TYR A:53 | |||
Structure of Interleukin-23 | 3DUH | 17.36 | H-bond | GLU A:170 GLY A:149 ARG A:117 |
Structure of importin a3 bound to p50 NLS | 7LFC | −19.3 | H-bond | SER A:436 LYS A:440 GLU A:479 |
Pi-alkyl | LEU A: 476 | |||
Pi-anion/Pi-cation | ASP A:433 LYS A:475 | |||
2. Docking with P. acne proteins | ||||
JNK1 | 3V3V-ANT | 24.60 | Pi-alkyl | ILE A:32 VAL A:158 LEU A:168 VAL A:40 |
3V3V-CLN | −22.73 | H-Bond | ASN A:114 MET A:111 | |
Alkyl | VAL A:40 LEU A:168 ALA A:53 | |||
C-H Bond | ILE A:32 SER A:155 | |||
JAK2-JH2 | 7F7W-ANT | 19.99 | H-Bond | LYS A:607 |
Pi-Pi T-shaped | TRP A:659 | |||
Alkyl | TYR B:790 ARG B:769 | |||
7F7W-CLN | 0.355 | H-bond | GLU U:652 HIS A:608 | |
Pi alkyl | TRP A:659 | |||
C-H Bond | HIS B:794 GLN B:771 | |||
KAS III from Propionibacterium acnes | 6A9N-ANT | 11.89 | H-bond | GLY B:222 |
Alkyl | ALA B:259 VAL B:225 MET B:220 LEU B:166 | |||
Pi-cation | ARG B:46 | |||
6A9N-CLN | −37.36 | H-bond | ARG B:46 ARG B:223 SER B:162 | |
Alkyl | ILE B:263 VAL B:225 MET B:220 HIS B:257 ALA B:122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakarkar, S.; Jagdale, S.; Dargude, S.; Chabukswar, A.; Urooj, S.; Bilal, A.; Mengash, H.A. Optimization of Anthralin Microemulgel Targeted Delivery for Psoriasis and Acne. Molecules 2025, 30, 2629. https://doi.org/10.3390/molecules30122629
Sakarkar S, Jagdale S, Dargude S, Chabukswar A, Urooj S, Bilal A, Mengash HA. Optimization of Anthralin Microemulgel Targeted Delivery for Psoriasis and Acne. Molecules. 2025; 30(12):2629. https://doi.org/10.3390/molecules30122629
Chicago/Turabian StyleSakarkar, Samiksha, Swati Jagdale, Shrikant Dargude, Anuruddha Chabukswar, Shabana Urooj, Anusha Bilal, and Hanan Abdullah Mengash. 2025. "Optimization of Anthralin Microemulgel Targeted Delivery for Psoriasis and Acne" Molecules 30, no. 12: 2629. https://doi.org/10.3390/molecules30122629
APA StyleSakarkar, S., Jagdale, S., Dargude, S., Chabukswar, A., Urooj, S., Bilal, A., & Mengash, H. A. (2025). Optimization of Anthralin Microemulgel Targeted Delivery for Psoriasis and Acne. Molecules, 30(12), 2629. https://doi.org/10.3390/molecules30122629