The Effect of the N-Oxide Oxygen Atom on the Crystalline and Photophysical Properties of [1,2,5]Oxadiazolo[3,4-d]pyridazines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. X-Ray Analysis and DFT Calculations
2.3. Photophysical Properties
3. Materials and Methods
3.1. Materials and Reagents
3.2. Analytical Instruments
3.3. Experimental Details
3.3.1. General Procedure for the Preparation of Bis-Aminated Products 3(a–c)
3.3.2. General Procedure for the Preparation of Di-Aminated Products 4
3.4. DFT Quantum Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bulavko, G.V.; Ishchenko, A.A. Organic Bulk Heterojunction Photovoltaic Structures: Design, Morphology and Properties. Russ. Chem. Rev. 2014, 83, 575–599. [Google Scholar] [CrossRef]
- Le, T.P.; Smith, B.H.; Lee, Y.; Litofsky, J.H.; Aplan, M.P.; Kuei, B.; Zhu, C.; Wang, C.; Hexemer, A.; Gomez, E.D. Enhancing Optoelectronic Properties of Conjugated Block Copolymers through Crystallization of Both Blocks. Macromolecules 2020, 53, 1967–1976. [Google Scholar] [CrossRef]
- Qin, C.; Numata, Y.; Zhang, S.; Yang, X.; Islam, A.; Zhang, K.; Chen, H.; Han, L. Novel Near-Infrared Squaraine Sensitizers for Stable and Efficient Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2014, 24, 3059–3066. [Google Scholar] [CrossRef]
- Yella, A.; Lee, H.; Tsao, H.N.; Yi, C.; Chandiran, A.K.; Nazeeruddin, M.K.; Diau, E.W.; Yeh, C.; Zakeeruddin, S.M.; Gratzel, M. Porphyrin-Sensitized Solar Cells with Cobalt(II/III)-Based Redox Electrolyte Exceed 12 Percent E ciency. Science 2011, 334, 629–634. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, F.; Zhang, J.; Tang, W.; Tang, A.; Peng, H.; Xu, Z.; Teng, F.; Wang, Y. Key issues and recent progress of high efficient organic light-emitting diodes. J. Photochem. Photobiol. C Photochem. Rev. 2013, 17, 69–104. [Google Scholar] [CrossRef]
- Korshunov, V.M.; Chmovzh, T.N.; Golovanov, I.S.; Knyazeva, E.A.; Mikhalchenko, L.V.; Saifutyarov, R.S.; Avetisov, I.C.; Woollins, J.D.; Taydakov, I.V.; Rakitin, O.A. Candle Light-Style OLEDs with Benzochalcogenadiazoles Cores. Dyes Pigment. 2021, 185, 108917. [Google Scholar] [CrossRef]
- Zhao, R.; Min, Y.; Dou, C.; Lin, B.; Ma, W.; Liu, J.; Wang, L. A Conjugated Polymer Containing a B ← N Unit for Unipolar N-Type Organic Field-Effect Transistors. ACS Appl. Polym. Mater. 2020, 2, 19–25. [Google Scholar] [CrossRef]
- Makala, M.; Barłóg, M.; Dremann, D.; Attar, S.S.; Fernández, E.G.; Al-Hashimi, M.; Jurchescu, O.D. High-performance n-type polymer field-effect transistors with exceptional stability. J. Mater. Chem. C 2024, 12, 17089–17098. [Google Scholar] [CrossRef]
- Biswas, S.; Pramanik, A.; Ahmed, T.; Sahoo, S.K.; Sarkar, P. Superiority of D–A–D over D–A Type of Organic Dyes for the Application in Dye-Sensitized Solar Cell. Chem. Phys. Lett. 2016, 649, 23–28. [Google Scholar] [CrossRef]
- Korshunov, V.M.; Chmovzh, T.N.; Freidzon, A.Y.; Minyaev, M.E.; Barkanov, A.D.; Golovanov, I.S.; Mikhalchenko, L.V.; Avetisov, I.C.; Taydakov, I.V.; Rakitin, O.A. Small D-π-A-π-D Organic Dyes for near-Infrared Emitting OLEDs with Excellent External Quantum Efficiency. Dyes Pigment. 2023, 208, 110860. [Google Scholar] [CrossRef]
- Korshunov, V.M.; Chmovzh, T.N.; Tsorieva, A.V.; Gruzdev, G.A.; Rakhimkulov, D.M.; Taydakov, I.V.; Rakitin, O.A. Towards Deep NIR Emissive Simple D–A–D Dyes: A Novel Acceptor Block Providing Anti-Kasha’s Rule Emission. J. Mater. Chem. C 2024, 12, 19200–19211. [Google Scholar] [CrossRef]
- Chmovzh, T.N.; Kudryashev, T.A.; Gaisin, K.S.; Rakitin, O.A. 4,7-Di(9H-Carbazol-9-Yl)-[1,2,5]Oxadiazolo [3,4-d]Pyridazine. Molbank 2022, 2022, M1428. [Google Scholar] [CrossRef]
- Chmovzh, T.N.; Knyazeva, E.A.; Lyssenko, K.A.; Popov, V.V.; Rakitin, O.A. Safe Synthesis of 4,7-Dibromo[1,2,5]Thiadiazolo[3,4-d]Pyridazine and Its SNAr Reactions. Molecules 2018, 23, 2576. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, V.M.; Chmovzh, T.N.; Chkhetiani, G.R.; Taydakov, I.V.; Rakitin, O.A. New D–A–D Luminophores of the [1,2,5]Thiadiazolo[3,4-d]Pyridazine Series. Mendeleev Commun. 2022, 32, 371–373. [Google Scholar] [CrossRef]
- Chmovzh, T.; Knyazeva, E.; Popov, V.; Rakitin, O. 4,7-Dichloro[1,2,5]Oxadiazolo[3,4-d]Pyridazine 1-Oxide. Molbank 2018, 2018, M982. [Google Scholar] [CrossRef]
- Welmaker, G.S.; Sabalski, J.E. A Process for the Preparation of 1, 2, 3, 4, 8, 9, 10, 10a-Octahydro-7bH-Cyclopenta[b][1,4]Diazepino[6,7,1-Hi]Indole. Tetrahedron Lett. 2004, 45, 4851–4854. [Google Scholar] [CrossRef]
- Saito, K.; Shibata, Y.; Yamanaka, M.; Akiyama, T. Chiral Phosphoric Acid-Catalyzed Oxidative Kinetic Resolution of Indolines Based on Transfer Hydrogenation to Imines. J. Am. Chem. Soc. 2013, 135, 11740–11743. [Google Scholar] [CrossRef]
- Catellani, M.; Del Rio, A. Catalytic Arylation of Carbon-Carbon Double Bond Followed by N- or O-Cyclization. Russ. Chem. Bull. 1998, 47, 928–931. [Google Scholar] [CrossRef]
- CrysAlisPro. Rigaku Oxford Diffraction, version 1.171.42.89a; Rigaku Technologies: Cedar Park, TX, USA, 2023.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 229–341. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.P.G.A.; Petersson, G.A.; Nakatsuji, H.J.W.C.; et al. Gaussian 16 Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef]
3d (1st Molecule) | 3d (2nd Molecule) | 4d | |||
---|---|---|---|---|---|
N1-N2 | 1.383(4) | N7-N8 | 1.379(4) | N1-N2 | 1.374(2) |
N1-C1 | 1.308(4) | N8-C32 | 1.314(4) | N1-C1 | 1.311(2) |
N2-C4 | 1.311(4) | N7-C29 | 1.307(4) | N2-C4 | 1.308(2) |
C1-C2 * | 1.462(7) | C31-C32 * | 1.428(7) | C1-C2 | 1.450(2) |
C2-C3 * | 1.417(7) | C30-C31 * | 1.402(7) | C2-C3 | 1.413(3) |
C3-C4 * | 1.410(8) | C29-C30 * | 1.435(6) | C3-C4 | 1.443(2) |
N3-C2 * | 1.342(8) | N10-C31 * | 1.342(10) | N3-C2 | 1.320(2) |
N4-C3 * | 1.309(9) | N9-C30 * | 1.327(8) | N4-C3 | 1.318(2) |
O1-N3 * | 1.466(6) | O3-N10 * | 1.483(5) | O1-N3 | 1.381(2) |
O1-N4 * | 1.380(7) | O3-N9 * | 1.370(5) | O1-N4 | 1.373(2) |
O2-N3 * | 1.213(6) | O4-N10 * | 1.209(5) | - | - |
N5-C1 | 1.390(4) | N12-C32 | 1.387(4) | N5-C1 | 1.382(2) |
N6-C4 | 1.392(4) | N11-C29 | 1.388(4) | N6-C4 | 1.383(2) |
3d | 4d | ||
---|---|---|---|
N1-N2 | 1.346 | N1-N2 | 1.342 |
N1-C1 | 1.304 | N1-C1 | 1.334 |
N2-C4 | 1.303 | N2-C4 | 1.334 |
C1-C2 | 1.423 | C1-C2 | 1.450 |
C2-C3 | 1.410 | C2-C3 | 1.459 |
C3-C4 | 1.437 | C3-C4 | 1.451 |
N3-C2 | 1.338 | N3-C2 | 1.333 |
N4-C3 | 1.309 | N4-C3 | 1.332 |
O1-N3 | 1.419 | O1-N3 | 1.372 |
O1-N4 | 1.347 | O1-N4 | 1.371 |
O2-N3 | 1.198 | - | - |
N5-C1 | 1.379 | N5-C1 | 1.417 |
N6-C4 | 1.378 | N6-C4 | 1.417 |
Solvent | λabs(LE) nm | λabs(ICT) nm | εmax × 103 mol × L−1 × cm−1 | f | λem nm | FWHM nm | Δν cm−1 | Φ, % |
---|---|---|---|---|---|---|---|---|
3d | ||||||||
Toluene | 285 | 532 | 12.5 | 0.025 | 667 | 137 | 3800 | <0.1 |
THF | 281 | 510 | 8.2 | 0.016 | 675 | 200 | 4800 | <0.1 |
Crystalline powder * | - | - | - | - | 745 | 105 | - | <0.1 |
4d | ||||||||
Toluene | 288 | 531 | 9.4 | 0.023 | 688 | 156 | 4300 | 0.4 |
THF | 280 | 507 | 12.0 | 0.047 | 706 | 176 | 5600 | <0.1 |
Crystalline powder * | - | - | - | - | 735 | 128 | - | 1.1 |
3a | ||||||||
Toluene | 295 | 577 | 10.5 | 0.018 | 705 | 130 | 4200 | <0.1 |
THF | 294 | 559 | 21.2 | 0.012 | - | - | - | - |
4a | ||||||||
Toluene | 290 | 567 | 19.4 | 0.026 | 761 | 194 | 4550 | 2.2 |
THF | 292 | 556 | 7.5 | 0.015 | 778 | 194 | 5130 | 1.2 |
3c | ||||||||
Toluene | 291 | 587 | 8.3 | 0.013 | 705 | 137 | 2900 | <0.1 |
THF | 291 | 566 | 7.4 | 0.002 | 772 | 197 | 4700 | <0.1 |
4c | ||||||||
Toluene | 290 | 569 | 8.0 | 0.013 | 761 | 189 | 4430 | 2.8 |
THF | 288 | 556 | 3.8 | 0.012 | 774 | 186 | 5100 | 1.6 |
3b | ||||||||
Toluene | 292 | 552 | 8.1 | 0.022 | 729 | 145 | 4400 | <0.1 |
THF | 291 | 533 | 7.1 | 0.019 | - | - | - | - |
4b | ||||||||
Toluene | 291 | 557 | 6.7 | 0.023 | 767 | 190 | 4920 | 2.0 |
THF | 287 | 540 | 22.5 | 0.035 | 774 | 195 | 5600 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmovzh, T.N.; Tsorieva, A.V.; Korshunov, V.M.; Kotov, E.D.; Nasyrova, D.I.; Minyaev, M.E.; Datskevich, N.P.; Taydakov, I.V.; Elinson, M.N.; Rakitin, O.A. The Effect of the N-Oxide Oxygen Atom on the Crystalline and Photophysical Properties of [1,2,5]Oxadiazolo[3,4-d]pyridazines. Molecules 2025, 30, 2374. https://doi.org/10.3390/molecules30112374
Chmovzh TN, Tsorieva AV, Korshunov VM, Kotov ED, Nasyrova DI, Minyaev ME, Datskevich NP, Taydakov IV, Elinson MN, Rakitin OA. The Effect of the N-Oxide Oxygen Atom on the Crystalline and Photophysical Properties of [1,2,5]Oxadiazolo[3,4-d]pyridazines. Molecules. 2025; 30(11):2374. https://doi.org/10.3390/molecules30112374
Chicago/Turabian StyleChmovzh, Timofey N., Alisia V. Tsorieva, Vladislav M. Korshunov, Egor D. Kotov, Darina I. Nasyrova, Mikhail E. Minyaev, Nikolay P. Datskevich, Ilya V. Taydakov, Michail N. Elinson, and Oleg A. Rakitin. 2025. "The Effect of the N-Oxide Oxygen Atom on the Crystalline and Photophysical Properties of [1,2,5]Oxadiazolo[3,4-d]pyridazines" Molecules 30, no. 11: 2374. https://doi.org/10.3390/molecules30112374
APA StyleChmovzh, T. N., Tsorieva, A. V., Korshunov, V. M., Kotov, E. D., Nasyrova, D. I., Minyaev, M. E., Datskevich, N. P., Taydakov, I. V., Elinson, M. N., & Rakitin, O. A. (2025). The Effect of the N-Oxide Oxygen Atom on the Crystalline and Photophysical Properties of [1,2,5]Oxadiazolo[3,4-d]pyridazines. Molecules, 30(11), 2374. https://doi.org/10.3390/molecules30112374