Prediction and Screening of Lead-Free Double Perovskite Photovoltaic Materials Based on Machine Learning
Abstract
:1. Introduction
2. Results and Discussion
2.1. Data Preprocessing
- (1)
- Find the minimum value, min, and the maximum value, max, of each feature in the training set.
- (2)
- For each sample, calculate the normalized result of its feature value, as shown in formula (1).
- (3)
- Map the value of each feature to the interval of [0, 1].
2.2. Feature Extraction and Selection
2.3. Establishment of the Prediction Model
2.4. Evaluation of the Prediction Model
2.5. Analysis of Model Prediction Results Using the SHAP Method
2.6. Lead-Free Double Perovskite Screening for Photovoltaic Materials
2.6.1. Sample Generation
2.6.2. Screening of Virtual Samples
2.6.3. Sample Analysis
3. Data and Methods
3.1. Data Source
3.2. Machine Learning Algorithms and Model Evaluation
3.2.1. Gradient-Boosting Regression (GBR)
3.2.2. Random Forest Regression
3.2.3. Extreme Gradient Boosting (XGBoost)
3.2.4. Lightweight Gradient-Lifting Algorithm (LightGBM)
3.2.5. Evaluation Indicators of Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding l micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Yin, J.; Xing, Y.; He, H.; Gu, H.; Xia, J.; Zhang, W.; Liang, C.; Xing, G.; Guo, R. Designing high-performance pure-red metal halide perovskite materials and light-emitting diodes for Rec. 2020 display. Nano Energy 2024, 122, 109339. [Google Scholar] [CrossRef]
- Li, X.; Hoffman, J.M.; Kanatzidis, M.G. The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 2021, 121, 2230–2291. [Google Scholar] [CrossRef]
- Xu, H.; Guo, Z.; Chen, P.; Wang, S. Toward durable all-inorganic perovskite solar cells: From lead-based to lead-free. Chem. Commun. 2024, 60, 12287–12301. [Google Scholar] [CrossRef]
- McClure, E.; Ball, M.; Windl, W.; Woodward, P.M. Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 2016, 28, 1348–1354. [Google Scholar] [CrossRef]
- Slavney, A.H.; Hu, T.; Lindenberg, A.M.; Karunadasa, H.I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138–2141. [Google Scholar] [CrossRef]
- Min, H.; Hong, S.; Song, J.; Son, B.; Noh, B.; Moon, J. SolarFlux Predictor: A Novel Deep Learning Approach for Photovoltaic Power Forecasting in South Korea. Electronics 2024, 13, 2071. [Google Scholar] [CrossRef]
- Kim, J.; Obregon, J.; Park, H.; Jung, J. Multi-step photovoltaic power forecasting using transformer and recurrent neural networks. Renew. Sustain. Energy Rev. 2024, 200, 114479. [Google Scholar] [CrossRef]
- Jiang, Y.; Wei, B.; Shang, Y.; Wu, D.; Xia, C.; Zhou, J.; Cao, X.; Kan, Y. Prediction of perfluorooctanoic acid adsorption properties of porous carbon materials based on machine learning. Sep. Purif. Technol. 2025, 363, 132089. [Google Scholar] [CrossRef]
- Jo, B.; Chen, W.; Jung, H.S. Comprehensive review of advances in machine-learning-driven optimization and characterization of perovskite materials for photovoltaic devices. J. Energy Chem. 2025, 101, 298–323. [Google Scholar] [CrossRef]
- Yin, W.; Yang, J.; Kang, J.; Yanb, Y.; Wei, S. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A 2015, 3, 8926–8942. [Google Scholar] [CrossRef]
- Lu, S.; Zhou, Q.; Ouyang, Y.; Guo, Y.; Li, Q.; Wang, J. Accelerated discovery of stable lead-free hybrid organic inorganic perovskites via machine learning. Nat. Commun. 2018, 9, 3405. [Google Scholar] [CrossRef]
- Zhan, Y.; Ren, X.; Zhao, S.; Guo, Z. Accelerating the discovery of direct bandgap perovskites for solar energy via machine learning. Mater. Today Commun. 2025, 45, 112354. [Google Scholar] [CrossRef]
- Ghosh, S.; Chowdhury, J. Predicting band gaps of ABN3 perovskites: An account from machine learning and first-principle DFT studies. RSC Adv. 2024, 14, 6385–6397. [Google Scholar] [CrossRef] [PubMed]
- Sradhasagar, S.; Khuntia, O.S.; Biswal, S.; Purohit, S.; Roy, A. Machine learning-aided discovery of bismuth-based transition metal oxide double perovskites for solar cell applications. Sol. Energy 2024, 267, 112209. [Google Scholar] [CrossRef]
- Guo, Z.; Lin, B. Machine learning stability and band gap of lead-free halide double perovskite materials for perovskite solar cells. Sol. Energy 2021, 228, 689–699. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, H.; Mao, G.; Ren, J.; Chen, Z.; Wu, C.; Gates, I.D.; Yang, W.; Ding, X.; Yao, J. Screening for lead-free inorganic double perovskites with suitable band gaps and high stability using combined machine learning and DFT calculation. Appl. Surf. Sci. 2021, 568, 150916. [Google Scholar] [CrossRef]
- Luo, W.; Guan, J.; Yan, Z. Predicting the band gap of lead-free inorganic double perovskites using modified parallel residual network. Can. J. Chem. 2024, 102, 382–390. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, L. High-throughput calculation and machine learning of two-dimensional halide perovskite materials: Formation energy and band gap. Mater. Today Commun. 2023, 35, 105841. [Google Scholar] [CrossRef]
- Rath, S.; Priyanga, G.S.; Nagappan, N.; Thomas, T. Discovery of direct band gap perovskites for light harvesting by using machine learning. Comput. Mater. Sci. 2022, 210, 111476. [Google Scholar] [CrossRef]
- Chen, J.; Song, Y.; Li, S.; Que, Z.; Zhang, W. Machine-learning-based prediction of cubic perovskite formation energy and magnetism. Sci. Sin. Technol. 2024, 54, 247–256. [Google Scholar] [CrossRef]
- Choubisa, H.; Askerka, M.; Ryczko, K.; Voznyy, O.; Mills, K.; Tamblyn, I.; Sargent, E.H. Crystal Site Feature Embedding Enables Exploration of Large Chemical Spaces. Matter 2020, 3, 433–448. [Google Scholar] [CrossRef]
- Deringer, V.L.; Bartok, A.P.; Bernstein, N.; Wilkins, D.M.; Ceriotti, M.; Csanyi, G. Gaussian Process Regression for Materials and Molecules. Chem. Rev. 2021, 121, 10073–10141. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Liu, S. Integrative approach of machine learning and symbolic regression for stability prediction of multicomponent perovskite oxides and high-throughput screening. Comput. Mater. Sci. 2024, 236, 112889. [Google Scholar] [CrossRef]
- Morita, K.; Davies, D.W.; Butler, K.T.; Walsh, A. Modeling the dielectric constants of crystals using machine learning. J. Chem. Phys. 2020, 153, 024503. [Google Scholar] [CrossRef] [PubMed]
- Alsalloum, A.Y.; Turedi, B.; Almasabi, K.; Zheng, X.; Naphade, R.; Stranks, S.D.; Mohammed, O.F.; Bakr, O.M. 22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap. Energy Environ. Sci. 2021, 14, 2263–2268. [Google Scholar] [CrossRef]
- Zanatta, A.R. The Shockley–Queisser limit and the conversion efficiency of silicon-based solar cells. Results Opt. 2022, 9, 100320. [Google Scholar] [CrossRef]
- Bai, M.; Zheng, Y.; Shen, Y. Gradient boosting survival tree with applications in credit scoring. J. Oper. Res. Soc. 2022, 73, 39–55. [Google Scholar] [CrossRef]
- Revathy, G.; Rajendran, V.; Rashmika, B.; Kumar, P.S.; Parkavi, P.; Shynisha, J. Random Forest Regressor based superconductivity materials investigation for critical temperature prediction. Mater. Today Proc. 2022, 66, 648–652. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, S. XGBoost-based prediction of electrical properties for anode aluminium foil. Mater. Today Commun. 2024, 41, 110400. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154. [Google Scholar]
- Anand, D.V.; Xu, Q.; Wee, J.; Xia, K.; Sum, T.C. Topological feature engineering for machine learning based halide perovskite materials design. npj Comput. Mater. 2022, 8, 203. [Google Scholar] [CrossRef]
- Djeradi, S.; Dahame, T.; Fadla, M.A.; Bentria, B.; Kanoun, M.B.; Goumri-Said, S. High-Throughput Ensemble-Learning- Driven Band Gap Prediction of Double Perovskites Solar Cells Absorber. Mach. Learn. Knowl. Extr. 2024, 6, 435–447. [Google Scholar] [CrossRef]
- Ahmed, U.; Mahmood, A.; Tunio, M.A.; Hafeez, G.; Khan, A.R.; Razzaq, S. Investigating boosting techniques’ efficacy in feature selection: A comparative analysis. Energy Rep. 2024, 11, 3521–3532. [Google Scholar] [CrossRef]
Prediction Target | Regression Model | Evaluation Indicator | ||
---|---|---|---|---|
R2 | MSE | MAE | ||
Bandgap | XGBoost | 0.933 | 0.218 | 0.297 |
RF | 0.909 | 0.293 | 0.370 | |
GBR | 0.878 | 0.393 | 0.485 | |
LightGBM | 0.931 | 0.222 | 0.349 | |
Formation energy | XGBoost | 0.948 | 0.012 | 0.063 |
RF | 0.938 | 0.014 | 0.074 | |
GBR | 0.939 | 0.014 | 0.086 | |
LightGBM | 0.921 | 0.018 | 0.086 |
Prediction Target | Model | MAE | RMSE | R2 |
---|---|---|---|---|
Bandgap | XGBoost | 0.211 | 0.259 | 0.934 |
Formation Energy | XGBoost | 0.013 | 0.091 | 0.959 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, Y.; Liu, X.; Wang, X. Prediction and Screening of Lead-Free Double Perovskite Photovoltaic Materials Based on Machine Learning. Molecules 2025, 30, 2378. https://doi.org/10.3390/molecules30112378
Wang J, Wang Y, Liu X, Wang X. Prediction and Screening of Lead-Free Double Perovskite Photovoltaic Materials Based on Machine Learning. Molecules. 2025; 30(11):2378. https://doi.org/10.3390/molecules30112378
Chicago/Turabian StyleWang, Juan, Yizhe Wang, Xiaoqin Liu, and Xinzhong Wang. 2025. "Prediction and Screening of Lead-Free Double Perovskite Photovoltaic Materials Based on Machine Learning" Molecules 30, no. 11: 2378. https://doi.org/10.3390/molecules30112378
APA StyleWang, J., Wang, Y., Liu, X., & Wang, X. (2025). Prediction and Screening of Lead-Free Double Perovskite Photovoltaic Materials Based on Machine Learning. Molecules, 30(11), 2378. https://doi.org/10.3390/molecules30112378