Characterization of Flavor Profile of Sauced Pork from Different Regions of China Based on E-Nose, E-Tongue and Gas Chromatography–Ion Mobility Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. E-Nose Analysis
2.2. E-Tongue Analysis
2.3. GC-IMS Analysis of Sauced Pork
2.4. Sensory Analysis
2.5. Correlation Analysis between E-Nose and GC-IMS
3. Materials and Methods
3.1. Samples
3.2. E-Nose Analysis
3.3. E-Tongue Analysis
3.4. GC–IMS Analysis of Volatile Compositions
3.5. Relative Odor Activity Value (ROAV)
3.6. Sensory Evaluation
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, W.; Wen, W.; Deng, Y.; Tian, Y.; Sun, H.; Sun, Q. Chinese Ethnic Meat Products: Continuity and Development. Meat Sci. 2016, 120, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, Y.; Pan, D.; Wang, Y.; Cao, J. Effects of High Pressure Treatment on Lipolysis-Oxidation and Volatiles of Marinated Pork Meat in Soy Sauce. Meat Sci. 2018, 145, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, H.; Wu, H.; Liu, S.; Su, C.; He, Z. Characterization, and Fermentation Potential of Coagulase-Negative Staphylococci with Taste-Enhancing Properties from Chinese Traditional Bacon. Food Chem. X 2023, 20, 100912. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ye, Y.; Wang, Y.; Sun, Y.; Pan, D.; Cao, J. Effect of High Pressure Treatment on Metabolite Profile of Marinated Meat in Soy Sauce. Food Chem. 2018, 240, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Nian, Y.; Da, D.; Xu, X.; Zhou, G.; Zhao, D.; Li, C. Characterization of Flavor Volatile Compounds in Sauce Spareribs by Gas Chromatography–Mass Spectrometry and Electronic Nose. LWT-Food Sci. Technol. 2020, 124, 109182. [Google Scholar] [CrossRef]
- Du, H.; Chen, Q.; Liu, Q.; Wang, Y.; Kong, B. Evaluation of Flavor Characteristics of Bacon Smoked with Different Woodchips by Hs-Spme-Gc-Ms Combined with an Electronic Tongue and Electronic Nose. Meat Sci. 2021, 182, 108626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, J.; Pei, Z.; Wei, P.; Xiang, D.; Cao, X.; Shen, X.; Li, C. Volatile Flavour Components and the Mechanisms Underlying Their Production in Golden Pompano (Trachinotus blochii) Fillets Subjected to Different Drying Methods: A Comparative Study Using an Electronic Nose, an Electronic Tongue and Sde-Gc-Ms. Food Res. Int. 2019, 123, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Martín-Gómez, A.; Arroyo-Manzanares, N.; Rodríguez-Estévez, V.; Arce, L. Use of a Non-Destructive Sampling Method for Characterization of Iberian Cured Ham Breed and Feeding Regime Using Gc-Ims. Meat Sci. 2019, 152, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Martín-Gómez, A.; Segura-Borrego, M.P.; Ríos-Reina, R.; Cardador, M.J.; Callejón, R.M.; Morales, M.L.; Rodríguez-Estévez, V.; Arce, L. Discrimination of Defective Dry-Cured Iberian Ham Determining Volatile Compounds by Non-Destructive Sampling and Gas Chromatography. LWT 2022, 154, 112785. [Google Scholar] [CrossRef]
- Nie, S.; Li, L.; Wang, Y.; Wu, Y.; Li, C.; Chen, S.; Zhao, Y.; Wang, D.; Xiang, H.; Wei, Y. Discrimination and Characterization of Volatile Organic Compound Fingerprints During Sea Bass (Lateolabrax japonicas) Fermentation by Combining Gc-Ims and Gc-Ms. Food Biosci. 2022, 50, 102048. [Google Scholar] [CrossRef]
- Liedtke, S.; Seifert, L.; Ahlmann, N.; Hariharan, C.; Franzke, J.; Vautz, W. Coupling Laser Desorption with Gas Chromatography and Ion Mobility Spectrometry for Improved Olive Oil Characterisation. Food Chem. 2018, 255, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Qi, X.; Lu, D.; Chen, B. Gas Chromatography-Ion Mobility Spectrometric Classification of Vegetable Oils Based on Digital Image Processing. J. Food Meas. Charact. 2019, 13, 1973–1979. [Google Scholar] [CrossRef]
- Zhang, Q.; Ding, Y.; Gu, S.; Zhu, S.; Zhou, X.; Ding, Y. Identification of Changes in Volatile Compounds in Dry-Cured Fish During Storage Using Hs-Gc-Ims. Food Res. Int. 2020, 137, 109339. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, G.V.; Constantin, A.; Jesus, L.; Amarachukwu, A. Potential Use of Electronic Noses, Electronic Tongues and Biosensors, as Multisensor Systems for Spoilage Examination in Foods. Trends Food Sci. Technol. 2018, 80, 71–92. [Google Scholar]
- Wenjiang, D.; Rongsuo, H.; Yuzhou, L.; Hehe, L.; Yanjun, Z.; Kexue, Z.; Zhong, C. Comparative Evaluation of the Volatile Profiles and Taste Properties of Roasted Coffee Beans as Affected by Drying Method and Detected by Electronic Nose, Electronic Tongue, and Hs-Spme-Gc-Ms. Food Chem. 2018, 272, 723–731. [Google Scholar]
- Chen, Q.; Hu, Y.; Wen, R.; Wang, Y.; Qin, L.; Kong, B. Characterisation of the Flavour Profile of Dry Fermented Sausages with Different Nacl Substitutes Using Hs-Spme-Gc-Ms Combined with Electronic Nose and Electronic Tongue. Meat Sci. 2021, 172, 108338. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Wang, Y.; Luo, R.; Shen, F.; Bai, H.; Ding, D. Formation of Flavor Volatile Compounds at Different Processing Stages of Household Stir-Frying Mutton Sao Zi in the Northwest of China. LWT 2021, 139, 110735. [Google Scholar] [CrossRef]
- Wang, T.; Zhen, D.; Tan, J.; Xie, J.; Cheng, J.; Zhao, J. Characterization of Initial Reaction Intermediates in Heated Model Systems of Glucose, Glutathione, and Aliphatic Aldehydes. Food Chem. 2020, 305, 125482. [Google Scholar] [CrossRef]
- Wei, F.; Li, Y.; Sun, D.; Chen, Q.; Fu, M.; Zhao, H.; Chen, X.; Huang, Y.; Xu, H. Odor, Tastes, Nutritional Compounds and Antioxidant Activity of Fresh-Eating Walnut During Ripening. Sci. Hortic. 2022, 293, 110744. [Google Scholar] [CrossRef]
- Nollet, L.M. Terpenes and Terpenoids Containing Food Spices, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Liu, Y.; Su, H.; Song, H.-L. Comparison of Four Extraction Methods, Spme, Dhs, Safe, Versus Sde, for the Analysis of Flavor Compounds in Natto. Food Anal. Method 2018, 11, 343–354. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, X.; Liu, S.Q. Aroma Modulation of Vegetable Oils—A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1538–1551. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yang, P.; Wang, H.; Song, H. Identification of Odor Compounds and Odor-Active Compounds of Yogurt Using Dhs, Spme, Safe, and Sbse/Gc-O-Ms. LWT 2022, 154, 112689. [Google Scholar] [CrossRef]
- Toldra, F. Lawrie’s Meat Science, 8th ed.; Woodhead Publishing: Cambridge, UK, 2017. [Google Scholar]
- Li, M.; Yang, R.; Zhang, H.; Wang, S.; Chen, D.; Lin, S. Development of a Flavor Fingerprint by Hs-Gc–Ims with Pca for Volatile Compounds of Tricholoma Matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Zhang, J.; Wang, J.; Wang, X.; Du, D. Recent Development of Hs-Gc-Ims Technology in Rapid and Non-Destructive Detection of Quality and Contamination in Agri-Food Products. TrAC Trends Anal. Chem. 2021, 144, 116–435. [Google Scholar] [CrossRef]
- Liu, H.-H.; Chien, J.-T.; Kuo, M.-I. Ultra High Pressure Homogenized Soy Flour for Tofu Making. Food Hydrocoll. 2013, 32, 278–285. [Google Scholar] [CrossRef]
- Chung, H.Y. Volatile Components in Fermented Soybean (Glycine max) Curds. J. Agric. Food Chem. 1999, 47, 2690–2696. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, J.; Qin, Z.; Wang, Y.; Zhao, P.; Gao, H. Insights into the Composition and Antibacterial Activity of Amomum Tsao-Ko Essential Oils from Different Regions Based on Gc-Ms and Gc-Ims. Foods 2022, 11, 1402. [Google Scholar] [CrossRef] [PubMed]
- Azizan, K.A.; Baharum, S.N.; Ressom, H.W.; Noor, N.M. Gc-Ms Analysis and Pls-Da Validation of the Trimethyl Silyl-Derivatization Techniques. Am. J. Appl. Sci. 2012, 9, 1124. [Google Scholar]
- Nicolotti, L.; Mall, V.; Schieberle, P. Characterization of Key Aroma Compounds in a Commercial Rum and an Australian Red Wine by Means of a New Sensomics-Based Expert System (Sebes)—An Approach to Use Artificial Intelligence in Determining Food Odor Codes. J. Agric. Food Chem. 2019, 67, 4011–4022. [Google Scholar] [CrossRef]
- Van Gemert, L. Odour Thresholds: Compilations of Odour Threshold Values in Air, Water and Other Media, 2nd ed.; Oliemans Punter & Partners BV: Utrecht, The Netherlands, 2011. [Google Scholar]
- Bailly, S.; Jerkovic, V.; Marchand-Brynaert, J.; Collin, S. Aroma Extraction Dilution Analysis of Sauternes Wines. Key Role of Polyfunctional Thiols. J. Agric. Food Chem. 2006, 54, 7227–7234. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Chen, J.; Jing, B.; Zhang, L.; Yu, X. Characterization of Differences in Flavor in Virgin Rapeseed Oils by Using Gas Chromatography–Mass Spectrometry, Electronic Nose, and Sensory Analysis. Eur. J. Lipid Sci. Technol. 2020, 122, 1900205. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Chen, X.; Chen, D.; Deng, S. Use of Relative Odor Activity Value (Roav) to Link Aroma Profiles to Volatile Compounds: Application to Fresh and Dried Eel (Muraenesox cinereus). Int. J. Food Prop. 2020, 23, 2257–2270. [Google Scholar] [CrossRef]
- Yang, Y.; Ai, L.; Mu, Z.; Liu, H.; Yan, X.; Ni, L.; Zhang, H.; Xia, Y. Flavor Compounds with High Odor Activity Values (Oav > 1) Dominate the Aroma of Aged Chinese Rice Wine (Huangjiu) by Molecular Association. Food Chem. 2022, 383, 132370. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Huang, X.; Wang, L.; Ren, Y.; Zhang, X.; Wang, Y. Characterization of Selected Chinese Soybean Paste Based on Flavor Profiles Using Hs-Spme-Gc/Ms, E-Nose and E-Tongue Combined with Chemometrics. Food Chem. 2022, 375, 131–840. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Schwab, W.; Ho, C.-T.; Song, C.; Wan, X. Characterization of the Aroma Profiles of Oolong Tea Made from Three Tea Cultivars by Both Gc–Ms and Gc-Ims. Food Chem. 2022, 376, 131933. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Shen, S.; Huang, L.; Deng, G.; Wei, Y.; Ning, J.; Wang, Y. Revelation of Volatile Contributions in Green Teas with Different Aroma Types by Gc–Ms and Gc–Ims. Food Res. Int. 2023, 169, 112845. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhu, C.; Wu, B.; Wang, T.; Yang, L.; Guan, J.; Yi, Y.; Deng, J.; Wu, H. Effect of Different Salt Additions on the Flavor Profile of Fermented Ciba Pepper. Fermentation 2024, 10, 111. [Google Scholar] [CrossRef]
- Jiang, S.; Zhu, Y.; Peng, J.; Zhang, Y.; Zhang, W.; Liu, Y. Characterization of Stewed Beef by Sensory Evaluation and Multiple Intelligent Sensory Technologies Combined with Chemometrics Methods. Food Chem. 2023, 408, 135193. [Google Scholar] [CrossRef]
Compound | Threshold (mg/kg) | ROAV | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | Odor Description | ||
2-Ethyl-3,5-dimethylpyrazine | 0.00004 | 28.91 | 31.94 | 24.46 | 100.00 | 61.76 | 37.06 | Baked potatoes, burnt flavor |
β-pinene | 0.180 | 0.19 | 0.16 | 0.12 | 0.12 | 0.06 | 0.10 | Pine wood fragrance |
1-Methoxy-2-propanol acetate | 0.016 | 0.64 | <0.10 | 0.89 | 0.66 | 0.31 | 0.68 | - |
1-Penten-3-ol | 0.001 | 0.26 | 2.66 | 0.14 | 0.70 | 0.33 | 0.16 | Butter fragrance |
2-Methyl-1-propanol | 0.033 | 0.33 | 0.14 | 0.13 | 0.35 | 0.16 | 0.13 | - |
2-Methylbutanal-M | 0.001 | 100.00 | 100.00 | 100.00 | 100.00 | 46.67 | 100.00 | Apple aroma, strong roasting smell |
3-Octanone | 0.0013 | 6.73 | 0.87 | 4.75 | 16.99 | 7.93 | 4.77 | Butter and grass fragrance |
Butanal-M | 0.100 | 0.61 | 0.96 | 0.45 | 0.81 | 0.38 | 0.72 | Fruit aroma |
Dimethyl disulfide | 0.008 | 2.97 | 1.50 | 3.67 | 4.34 | 2.13 | 3.10 | Garlic, onion |
Ethenyl benzene | 0.15 | 0.10 | <0.10 | <0.10 | 0.41 | <0.10 | <0.10 | Sweet, floral |
2,3-Butanedione | 0.00018 | 26.73 | 18.24 | 22.76 | 11.44 | 27.15 | 23.98 | Butter and cheese |
Heptanal | 0.001 | 22.15 | 36.70 | 45.49 | 7.96 | 73.63 | 87.15 | Apple, fat fragrance |
ethyl 3-methylbutanoate | 0.000069 | 4.94 | 2.14 | 8.84 | 6.45 | 12.84 | 7.42 | Fruit |
Attributes | A | B | C | D | E | F | |
---|---|---|---|---|---|---|---|
Odor | Fatty | 73.7 ± 2.86 a | 55.4 ± 2.58 c | 61 ± 3.06 b | 58.1 ± 3.07 bc | 64.8 ± 2.32 b | 65.1 ± 2.53 b |
Meaty fragrance | 66.1 ± 3.14 c | 79.2 ± 3.08 a | 72.2 ± 2.10 b | 73.5 ± 2.74 b | 72.7 ± 3.31 bb | 71.7 ± 4.11 b | |
Sauce fragrance | 61.5 ± 2.30 d | 82.1 ± 3.84 a | 74.1 ± 2.32 b | 74.5 ± 2.22 b | 66.2 ± 2.84 c | 68.4 ± 3.17 c | |
Appearance | Texture clarity | 81.4 ± 3.13 ab | 57.2 ± 3.39 d | 70.1 ± 2.78 c | 55.9 ± 4.31 d | 78.5 ± 3.50 b | 85.4 ± 4.20 a |
Redness and brightness | 75.5 ± 3.69 b | 48.0 ± 3.43 d | 56.7 ± 2.98 c | 49.1 ± 5.30 d | 78.1 ± 3.70 b | 84.8 ± 3.94 a | |
Taste | Sweet | 48.6 ± 3.47 e | 87.2 ± 4.21 a | 54.5 ± 3.69 d | 63.6 ± 5.27 c | 47.4 ± 5.40 e | 69.6 ± 3.86 b |
Salty | 75.3 ± 4.06 | 51.3 ± 5.81 | 79.1 ± 3.76 | 86.3 ± 3.95 | 53.8 ± 5.01 | 53.5 ± 5.44 | |
Mouthfeel | Hardness | 47.2 ± 2.35 e | 75.7 ± 3.71 a | 59.2 ± 2.66 c | 66.2 ± 2.44 b | 45.4 ± 3.41 e | 53 ± 4.64 d |
Elasticity | 59.7 ± 5.66 b | 45.4 ± 3.47 c | 47.7 ± 4.4 c | 47.8 ± 3.22 c | 57.5 ± 5.06 b | 73.4 ± 5.64 a | |
Juicy | 56.9 ± 4.63 | 40.9 ± 5.74 | 50.3 ± 3.5 | 46.5 ± 3.24 | 56.3 ± 3.74 | 67.4 ± 4.77 | |
Overall satisfaction | 2.8 ± 0.33 | 4.6 ± 0.42 | 3.1 ± 0.34 | 3.1 ± 0.27 | 2.8 ± 0.25 | 3.1 ± 0.29 |
Group | Ingredient List | Preservation Conditions |
---|---|---|
A | Pork belly with sweet noodle sauce, salt, sugar, monosodium glutamate, spices, liquor, sodium nitrite, and D-sodium erythorbate. | 0~4 °C 180 d |
B | Pork belly with salt, brewed soy sauce, sugar, monosodium glutamate, edible essence, monascorubin, sodium nitrite, and D-sodium erythorbate. | 0~4 °C 180 d |
C | Pork belly with salt, brewed soy sauce, sugar, monosodium glutamate, liquor, and sodium nitrite. | 0~4 °C 30 d |
D | Pork belly with salt, spices, sweet noodle sauce, sugar, sodium glutamate, and sodium nitrite. | 0~4 °C 180 d |
E | Pork belly with brewed soy sauce, sugar, salt, liquor, monosodium glutamate, spices, D-sodium erythorbate, and sodium nitrite. | −10 °C 365 d |
F | Pork belly with sugar, salt, brewed soy sauce, liquor, monosodium glutamate, sodium nitrite, monascorubin, and ethyl maltol. | 0~4 °C 30 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Wu, H.; Qiao, M.; Tang, W.; Dong, P.; Deng, J. Characterization of Flavor Profile of Sauced Pork from Different Regions of China Based on E-Nose, E-Tongue and Gas Chromatography–Ion Mobility Spectroscopy. Molecules 2024, 29, 1542. https://doi.org/10.3390/molecules29071542
Yuan H, Wu H, Qiao M, Tang W, Dong P, Deng J. Characterization of Flavor Profile of Sauced Pork from Different Regions of China Based on E-Nose, E-Tongue and Gas Chromatography–Ion Mobility Spectroscopy. Molecules. 2024; 29(7):1542. https://doi.org/10.3390/molecules29071542
Chicago/Turabian StyleYuan, Haibin, Huachang Wu, Mingfeng Qiao, Wanting Tang, Ping Dong, and Jing Deng. 2024. "Characterization of Flavor Profile of Sauced Pork from Different Regions of China Based on E-Nose, E-Tongue and Gas Chromatography–Ion Mobility Spectroscopy" Molecules 29, no. 7: 1542. https://doi.org/10.3390/molecules29071542
APA StyleYuan, H., Wu, H., Qiao, M., Tang, W., Dong, P., & Deng, J. (2024). Characterization of Flavor Profile of Sauced Pork from Different Regions of China Based on E-Nose, E-Tongue and Gas Chromatography–Ion Mobility Spectroscopy. Molecules, 29(7), 1542. https://doi.org/10.3390/molecules29071542