Synergistic Inhibiting Effect of Phytochemicals in Rheum palmatum on Tyrosinase Based on Metabolomics and Isobologram Analyses
Abstract
:1. Introduction
2. Results
2.1. Inhibiting Effect of RP Extracts (RPEs) on TYR
2.2. Correlation of NMR Data and Activity Results
2.3. Inhibitory Effect of GA and CH on TYR
2.4. Synergistic Effect of GA and CH
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. RP Sample
4.3. PSE
4.4. NMR Analysis
4.5. Data Processing and Multivariate Data Analysis
4.6. TYR Inhibition Assay
4.7. Synergistic Effect of GA and CH
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
CH | catechin hydrate |
CI | combination index |
DMSO | dimethyl sulfoxide |
GA | gallic acid |
IC | inhibitory concentration |
KA | kojic acid |
L-DOPA | 3,4-dihydroxy-L-phenylalanine |
NMR | nuclear magnetic resonance |
OPLS | orthogonal partial least squares to latent structures |
PSE | pressurized solvent extraction |
RP | Rheum palmatum |
RPE | Rheum palmatum extract |
TYR | tyrosinase |
References
- Goldman, A.; Goldust, M.; Wollina, U. Periorbital hyperpigmentation—Dark circles under the eyes; treatment suggestions and combining procedures. Cosmetics 2021, 8, 26. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, L.; Zhang, C.; Xi, P.; Cheng, J.; Wang, X.; Liu, L. Skin-care functions of peptides prepared from Chinese quince seed protein: Sequences analysis, tyrosinase inhibition and molecular docking study. Ind. Crops Prod. 2020, 148, 112331. [Google Scholar] [CrossRef]
- Xie, P.; Huang, L.; Zhang, C.; Ding, S.; Deng, Y.; Wang, X. Skin-care effects of dandelion leaf extract and stem extract: Antioxidant properties, tyrosinase inhibitory and molecular docking simulations. Ind. Crops Prod. 2018, 111, 238–246. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strzępek-Gomółka, M.; Gaweł-Bęben, K.; Angelis, A.; Antosiewicz, B.; Sakipova, Z.; Kozhanova, K.; Glowniak, K.; Kukula-Koch, W. Identification of mushroom and murine tyrosinase inhibitors from Achillea biebersteinii Afan. extract. Molecules 2021, 26, 964. [Google Scholar] [CrossRef]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef]
- Kolodziejczyk-Czepas, J.; Liudvytska, O. Rheum rhaponticum and Rheum rhabarbarum: A review of phytochemistry, biological activities and therapeutic potential. Phytochem. Rev. 2021, 20, 589–607. [Google Scholar] [CrossRef]
- China Pharmacopoeia Committee. Chinese Pharmacopoeia; First Division; China Medical Science and Technology Press: Beijing, China, 2020; pp. 24–25. [Google Scholar]
- Hu, B.; Zhang, H.; Meng, X.; Wang, F.; Wang, P. Aloe-emodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264. 7 macrophages. J. Ethnopharmacol. 2014, 153, 846–853. [Google Scholar] [CrossRef]
- Silveira, J.P.S.; Seito, L.N.; Eberlin, S.; Dieament, G.C.; Nogueira, C.; Pereda, M.C.V.; Di Stasi, L.C. Photoprotective and antioxidant effects of Rhubarb: Inhibitory action on tyrosinase and tyrosine kinase activities and TNF-α, IL-1α and α-MSH production in human melanocytes. BMC Complement. Altern. Med. 2013, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Dall’Acqua, S.; Sut, S.; Sinan, K.I.; Zengin, G.; Ferrarese, I.; Peron, G.; Yildiztugay, E.; Picot-Allain, C.; Mahomoodally, M.F. An integrated NMR, LC-DAD-MS, LC-QTOF metabolomic characterization of Sartoria hedysaroides: Correlation of antioxidant and enzyme inhibitory activity with chemical composition by multivariate data analysis. Antioxidants 2022, 11, 110. [Google Scholar] [CrossRef]
- Bayona, L.M.; Videnova, M.; Choi, Y.H. Increasing metabolic diversity in marine sponges extracts by controlling extraction parameters. Mar. Drugs 2018, 16, 393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.W.; Cai, L.; Fang, Y.S.; Duan, W.H.; Li, Z.J.; Ding, Z.T. Simultaneous, simple and rapid determination of five bioactive free anthraquinones in Radix et Rhizoma Rhei by quantitative 1H NMR. J. Braz. Chem. Soc. 2016, 27, 2120–2126. [Google Scholar] [CrossRef]
- Kubo, I.; Kinst-Hori, I.; Nihei, K.I.; Soria, F.; Takasaki, M.; Calderón, J.S.; Céspedes, C.L. Tyrosinase inhibitors from galls of Rhus javanica leaves and their effects on insects. Z. Nat. C 2003, 58, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.; Pei, L.; Liu, Q.; Chen, S.; Dou, H.; Shu, G.; Yuan, Z.; Lin, J.; Peng, G.; Zhang, W.; et al. Isobologram analysis: A comprehensive review of methodology and current research. Front. Pharmacol. 2019, 10, 1222. [Google Scholar] [CrossRef]
- Kifer, D.; Jakšić, D.; Šegvić Klarić, M. Assessing the effect of mycotoxin combinations: Which mathematical model is (the most) appropriate? Toxins 2020, 12, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zolghadri, S.; Bahrami, A.; Khan, M.T.H.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [Green Version]
- Bayram, B.; González-Sarrías, A.; Istas, G.; Garcia-Aloy, M.; Morand, C.; Tuohy, K.; García-Villalba, R.; Mena, P. Breakthroughs in the health effects of plant food bioactives: A perspective on microbiomics, nutri(epi)genomics, and metabolomics. J. Agric. Food Chem. 2018, 66, 10686–10692. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, X.; Liang, X.; Xiang, L.; Zhang, W. Metabolomic strategy to study therapeutic and synergistic effects of tanshinone IIA, salvianolic acid B and ginsenoside Rb1 in myocardial ischemia rats. J. Ethnopharmacol. 2011, 134, 45–49. [Google Scholar] [CrossRef]
- Caesar, L.K.; Kellogg, J.J.; Kvalheim, O.M.; Cech, N.B. Opportunities and limitations for untargeted mass spectrometry metabolomics to identify biologically active constituents in complex natural product mixtures. J. Nat. Prod. 2019, 82, 469–484. [Google Scholar] [CrossRef]
- Chen, X.X.; Shi, Y.; Chai, W.M.; Feng, H.L.; Zhuang, J.X.; Chen, Q.X. Condensed tannins from Ficus virens as tyrosinase inhibitors: Structure, inhibitory activity and molecular mechanism. PLoS ONE 2014, 9, e91809. [Google Scholar] [CrossRef]
- Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Banerjee, V.; Sharda, N.; Huse, J.; Singh, D.; Sokolov, D.; Czinn, S.J.; Blanchard, T.G.; Banerjee, A. Synergistic potential of dual andrographolide and melatonin targeting of metastatic colon cancer cells: Using the Chou-Talalay combination index method. Eur. J. Pharmacol. 2021, 897, 173919. [Google Scholar] [CrossRef] [PubMed]
- Choi, R.C.Y.; Zhu, J.T.T.; Yung, A.W.Y.; Lee, P.S.C.; Xu, S.L.; Guo, A.J.Y.; Zhu, K.Y.; Dong, T.T.X.; Tsim, K.W.S. Synergistic action of flavonoids, baicalein, and daidzein in estrogenic and neuroprotective effects: A development of potential health products and therapeutic drugs against Alzheimers’s disease. Evid.-Based Complement. Altern. Med. 2013, 2013, 635694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Wu, H.; He, M.; Jia, Y.; Wang, L.; Liu, T.; Hui, L.; Li, L.; Wei, S.; van Wijk, E.; et al. Integrated assessment of medicinal rhubarb by combination of delayed luminescence and HPLC fingerprint with emphasized on bioactivities based quality control. Chin. Med. 2020, 15, 72–88. [Google Scholar] [CrossRef] [PubMed]
- López-Gresa, M.P.; Lisón, P.; Kim, H.K.; Choi, Y.H.; Verpoorte, R.; Rodrigo, I.; María Bellés, J.; Conejero, V. Metabolic fingerprinting of Tomato Mosaic Virus infected Solanum lycopersicum. J. Plant Physiol. 2012, 169, 1586–1596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.H.; Aziz, F.H.A.; Syahida, A.; Abas, F.; Shaari, K.; Israf, D.A.; Laijs, N.H. Synthesis and biological evaluation of curcumin-like diarylpentanoid analogues for anti-inflammatory, antioxidant and anti-tyrosinase activities. Eur. J. Med. Chem. 2009, 44, 3195–3200. [Google Scholar] [CrossRef]
- Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef]
Solvents Composition (%) | |||
---|---|---|---|
Extracts | n-Hexane | Acetone | Water |
RPE1 | 100 | 0 | 0 |
RPE2 | 65 | 35 | 0 |
RPE3 | 35 | 65 | 0 |
RPE4 | 0 | 100 | 0 |
RPE5 | 0 | 65 | 35 |
RPE6 | 0 | 35 | 65 |
RPE7 | 0 | 0 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Kim, H.K.; Özer, Ö.Ç.; van Duijn, B.; Korthout, H.A.A.J.; Zi, L.; Cai, A. Synergistic Inhibiting Effect of Phytochemicals in Rheum palmatum on Tyrosinase Based on Metabolomics and Isobologram Analyses. Molecules 2023, 28, 944. https://doi.org/10.3390/molecules28030944
Xiong Y, Kim HK, Özer ÖÇ, van Duijn B, Korthout HAAJ, Zi L, Cai A. Synergistic Inhibiting Effect of Phytochemicals in Rheum palmatum on Tyrosinase Based on Metabolomics and Isobologram Analyses. Molecules. 2023; 28(3):944. https://doi.org/10.3390/molecules28030944
Chicago/Turabian StyleXiong, Yin, Hye Kyong Kim, Övgü Çelikler Özer, Bert van Duijn, Henrie A. A. J. Korthout, Lihong Zi, and Ang Cai. 2023. "Synergistic Inhibiting Effect of Phytochemicals in Rheum palmatum on Tyrosinase Based on Metabolomics and Isobologram Analyses" Molecules 28, no. 3: 944. https://doi.org/10.3390/molecules28030944
APA StyleXiong, Y., Kim, H. K., Özer, Ö. Ç., van Duijn, B., Korthout, H. A. A. J., Zi, L., & Cai, A. (2023). Synergistic Inhibiting Effect of Phytochemicals in Rheum palmatum on Tyrosinase Based on Metabolomics and Isobologram Analyses. Molecules, 28(3), 944. https://doi.org/10.3390/molecules28030944