Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oil from Centipeda minima
Abstract
:1. Introduction
2. Results
2.1. Chemical Component Analysis of EOCM
2.2. Determination of Antibacterial Activity
2.2.1. MIC and MBC of EOCM to S. aureus
2.2.2. Growth Curve
2.2.3. Effect on the Permeability of Bacterial Cell Membrane
2.2.4. Determination of Alkaline Phosphatase (AKP) Activity
2.2.5. Determination of Total ATPase Activity in and out of the Bacteria
2.3. Determination of Anti-Biofilm Activity
2.4. Scanning Electron Microscope (SEM) Analysis
2.5. Confocal Laser Scanning Microscope (CLSM) Analysis
2.6. SDS-PAGE Electrophoresis of the Bacterial Proteins
2.7. Antioxidant Activity
3. Materials and Methods
3.1. Materials and Reagents
3.2. Extraction of Essential Oil
3.3. Chemical Composition Analysis of EOCM
3.4. Determination of Antibacterial Activity
3.4.1. Bacterial Liquid Incubate
3.4.2. The MIC and MBC of EOCM to S. aureus
3.4.3. Growth Curve
3.4.4. Determination of the Release of Nucleic Acids from S. aureus
3.4.5. Effect on the Permeability of Bacterial Cell Membrane
3.4.6. Determination of Alkaline Phosphatase (AKP) Activity
3.4.7. Determination of Total ATPase Activity in and out of the Bacteria
3.5. Determination of Anti-Biofilm Activity
3.6. Scanning Electron Microscope (SEM) Analysis
3.7. Confocal Laser Scanning Microscope (CLSM) Analysis
3.8. SDS-PAGE Electrophoresis of the Bacterial Proteins
3.9. Antioxidant Activity
3.9.1. Determination of DPPH Radical Scavenging Capacity
3.9.2. Determination of Hydroxyl Radical Scavenging Capacity
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mele, E. Electrospinning of Essential Oils. Polymers 2020, 12, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouyahya, A.; Et-Touys, A.; Bakri, Y.; Talbaui, A.; Fellah, H.; Abrini, J.; Dakka, N. Chemical composition of Mentha pulegium and Rosmarinus officinalis essential oils and their antileishmanial, antibacterial and antioxidant activities. Microb. Pathog. 2017, 111, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym. 2020, 236, 116075. [Google Scholar] [CrossRef]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.X.; Lu, W.W.; Geng, Y.C.; Yu, C.H.; Sun, H.J.; Kim, Y.J.; Zhang, G.; Kim, T. Antioxidant, Antimicrobial and Anti-Inflammatory Activities of Essential Oil Derived from the Wild Rhizome of Atractylodes macrocephala. Chem. Biodivers. 2020, 17, e2000268. [Google Scholar] [CrossRef]
- Linh, N.T.T.; Ha, N.T.T.; Tra, N.T.; Anh, L.T.T.; Tuyen, N.V.; Son, N.T. Medicinal Plant Centipeda Minima: A Resource of Bioactive Compounds. Mini Rev. Med. Chem. 2021, 21, 273–287. [Google Scholar] [CrossRef]
- Huang, S.S.; Chiu, C.S.; Lin, T.H.; Lee, M.M.; Lee, C.Y.; Chang, S.J.; Hou, W.C.; Huang, G.J.; Deng, J.S. Antioxidant and anti-inflammatory activities of aqueous extract of Centipeda minima. J. Ethnopharmacol. 2013, 147, 395–405. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhou, Y.L.; He, D.H.; Liu, W.; Fan, X.Z.; Wang, Q.; Pan, H.F.; Cheng, Y.X.; Liu, Y.Q. Centipeda minima extract exerts antineuroinflammatory effects via the inhibition of NF-κB signaling pathway. Phytomedicine Int. J. Phytother. Phytopharm. 2020, 67, 153164. [Google Scholar] [CrossRef]
- Liu, Z.G.; Yu, H.M.; Wen, S.L.; Liu, Y.L. Histopathological study on allergic rhinitis treated with Centipeda minima. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Med. 2005, 30, 292–294. [Google Scholar]
- Su, M.; Li, Y.; Chung, H.Y.; Ye, W. 2beta-(Isobutyryloxy)florilenalin, a sesquiterpene lactone isolated from the medicinal plant Centipeda minima, induces apoptosis in human nasopharyngeal carcinoma CNE cells. Molecules 2009, 14, 2135–2146. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Bao, F.; Dong, X.; Tan, R.; Zhang, C.; Lu, Q.; Cheng, Y. Antibacterial thymol derivatives isolated from Centipeda minima. Molecules 2007, 12, 1606–1613. [Google Scholar] [CrossRef]
- Dai, J.; Wu, S.; Huang, J.; Wu, Q.; Zhang, F.; Zhang, J.; Wang, J.; Ding, Y.; Zhang, S.; Yang, X.; et al. Prevalence and Characterization of Staphylococcus aureus Isolated From Pasteurized Milk in China. Front. Microbiol. 2019, 10, 641. [Google Scholar] [CrossRef]
- de Oliveira, A.; Cataneli Pereira, V.; Pinheiro, L.; Moraes Riboli, D.F.; Benini Martins, K.; Ribeiro de Souza da Cunha Mde, L. Antimicrobial Resistance Profile of Planktonic and Biofilm Cells of Staphylococcus aureus and Coagulase-Negative Staphylococci. Int. J. Mol. Sci. 2016, 17, 1423. [Google Scholar] [CrossRef] [Green Version]
- Oliveira Ribeiro, S.; Fontaine, V.; Mathieu, V.; Zhiri, A.; Baudoux, D.; Stévigny, C.; Souard, F. Antibacterial and Cytotoxic Activities of Ten Commercially Available Essential Oils. Antibiotics 2020, 9, 717. [Google Scholar] [CrossRef]
- Hao, Y.; Li, J.; Shi, L. A Carvacrol-Rich Essential Oil Extracted From Oregano (Origanum vulgare "Hot & Spicy") Exerts Potent Antibacterial Effects Against Staphylococcus aureus. Front. Microbiol. 2021, 12, 741861. [Google Scholar]
- Ozturk, S.; Ercisli, S. The chemical composition of essential oil and in vitro antibacterial activities of essential oil and methanol extract of Ziziphora persica Bunge. J. Ethnopharmacol. 2006, 106, 372–376. [Google Scholar] [CrossRef]
- Jaradat, N.; Adwan, L.; K’Aibni, S.; Shraim, N.; Zaid, A.N. Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. BMC Complement. Altern. Med. 2016, 16, 418. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.C.; He, Q.; Sun, Q.; Zhong, K.; Gao, H. Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara. Int. J. Food Microbiol. 2012, 153, 78–84. [Google Scholar] [CrossRef]
- Kang, J.; Liu, L.; Liu, Y.; Wang, X. Ferulic Acid Inactivates Shigella flexneri through Cell Membrane Destructieon, Biofilm Retardation, and Altered Gene Expression. J. Agric. Food Chem. 2020, 68, 7121–7131. [Google Scholar] [CrossRef]
- Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog. 2020, 141, 103980. [Google Scholar] [CrossRef]
- Li, Z.H.; Cai, M.; Liu, Y.S.; Sun, P.L.; Luo, S.L. Antibacterial Activity and Mechanisms of Essential Oil from Citrus medica L. var. sarcodactylis. Molecules 2019, 24, 1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, C.; Song, K.; Zhang, X.; Sun, Y.; Sui, Y.; Chen, Y.; Jia, Z.; Sun, H.; Sun, Z.; Xia, X. Antimicrobial Activity and Possible Mechanism of Action of Citral against Cronobacter sakazakii. PLoS ONE 2016, 11, e0159006. [Google Scholar] [CrossRef] [PubMed]
- Hobley, L.; Harkins, C.; MacPhee, C.E.; Stanley-Wall, N.R. Giving structure to the biofilm matrix: An overview of individual strategies and emerging common themes. FEMS Microbiol. Rev. 2015, 39, 649–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alibi, S.; Ben Selma, W.; Ramos-Vivas, J.; Smach, M.A.; Touati, R.; Boukadida, J.; Navas, J.; Ben Mansour, H. Anti-oxidant, antibacterial, anti-biofilm, and anti-quorum sensing activities of four essential oils against multidrug-resistant bacterial clinical isolates. Curr. Res. Transl. Med. 2020, 68, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Sun, Z.; Fu, Y.; Yang, M.; Wang, T.; Li, Y. Efficacy of chelerythrine against dual-species biofilms of Staphylococcus aureus and Staphylococcus lugdunensis. 3 Biotech 2020, 10, 427. [Google Scholar] [CrossRef]
- Qian, W.; Sun, Z.; Wang, T.; Yang, M.; Liu, M.; Zhang, J.; Li, Y. Antimicrobial activity of eugenol against carbapenem-resistant Klebsiella pneumoniae and its effect on biofilms. Microb. Pathog. 2020, 139, 103924. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Antibacterial Activity and Mechanism of Ginger Essential Oil against Escherichia coli and Staphylococcus aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef]
- Behera, B.C.; Verma, N.; Sonone, A.; Makhija, U. Antioxidant and antibacterial properties of some cultured lichens. Bioresour. Technol. 2008, 99, 776–784. [Google Scholar] [CrossRef]
- Malviya, S.; Arvind; Jha, A.; Hettiarachchy, N. Antioxidant and antibacterial potential of pomegranate peel extracts. J. Food Sci. Technol. 2014, 51, 4132–4137. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Huang, G.; Huang, H. The antioxidant activities of garlic polysaccharide and its derivatives. Int. J. Biol. Macromol. 2020, 145, 819–826. [Google Scholar] [CrossRef]
- Mei, X.; Yang, W.; Huang, G.; Huang, H. The antioxidant activities of balsam pear polysaccharide. Int. J. Biol. Macromol. 2020, 142, 232–236. [Google Scholar] [CrossRef]
ID | RT | RI | Compound Name | Molecular Formula | Relative Content (%) | |
---|---|---|---|---|---|---|
1 | 12.317 | 1100 | Linalool | C10H18O | 0.51 | (1) |
2 | 14.208 | 1163 | 2,4,6-Trimethyl-3-cyclohexene-1-carboxaldehyde | C10H16O | 0.84 | (2) |
3 | 14.500 | 1173 | α-Phellandrene-8-ol | C10H16O | 0.14 | |
4 | 15.175 | 1196 | α-Terpineol | C10H18O | 0.22 | |
5 | 15.767 | 1218 | 2-Allyl-6-methylphenol | C10H12O | 0.20 | |
6 | 15.992 | 1227 | Nerol | C10H18O | 0.15 | |
7 | 16.883 | 1261 | trans-Chrysanthenyl acetate | C12H16O2 | 20.23 | (3) |
8 | 17.433 | 1283 | Carvacrol | C10H14O | 0.52 | (4) |
9 | 17.550 | 1287 | Bornyl acetate | C12H20O2 | 0.29 | |
10 | 17.642 | 1291 | Thymol | C10H14O | 5.69 | (5) |
11 | 18.908 | 1353 | α-Guaiene | C15H24 | 1.00 | (6) |
12 | 19.025 | 1359 | 1,4,6-trimethyl-5,6-dihydronaphthalene | C13H16 | 0.14 | |
13 | 19.325 | 1375 | α-Amorphene | C15H24 | 0.15 | |
14 | 19.442 | 1381 | α-Copaene | C15H24 | 1.27 | (7) |
15 | 19.575 | 1388 | α-Gurjunene | C15H24 | 0.91 | (8) |
16 | 19.692 | 1394 | 1,2,3,6-Tetramethylbicyclo [2.2.2]octa-2,5-diene | C12H18 | 2.79 | (9) |
17 | 19.808 | 1400 | Sativen | C15H24 | 0.17 | |
18 | 19.967 | 1410 | Allo-Aromadendrene | C15H24 | 1.20 | (10) |
19 | 20.117 | 1419 | Isolongifolene | C15H24 | 1.09 | (11) |
20 | 20.183 | 1424 | α-Santalene | C15H24 | 0.87 | (12) |
21 | 20.233 | 1427 | β-Caryophyllene | C15H24 | 5.26 | (13) |
22 | 20.400 | 1437 | α-Bergamotene | C15H24 | 0.23 | |
23 | 20.650 | 1453 | β-Santalene | C15H24 | 2.29 | (14) |
24 | 20.750 | 1459 | Longifolene | C15H24 | 0.65 | (15) |
25 | 20.825 | 1464 | Humulene | C15H24 | 1.83 | (16) |
26 | 21.042 | 1478 | 2,3,5,6-tetramethyl-Phenol | C10H14O | 2.49 | (17) |
27 | 21.092 | 1481 | γ-Cadinene | C15H24 | 0.31 | |
28 | 21.150 | 1485 | Linalyl isobutyrate | C14H24O2 | 1.57 | (18) |
29 | 21.208 | 1488 | Aromadendrene | C15H24 | 11.47 | (19) |
30 | 21.342 | 1497 | β-Selinene | C15H24 | 0.18 | |
31 | 21.433 | 1503 | β-Chamigrene | C15H24 | 0.89 | (20) |
32 | 21.550 | 1511 | α-Bisabolene | C15H24 | 0.21 | |
33 | 21.750 | 1526 | Dibenzofuran | C12H8O | 4.24 | (21) |
34 | 22.033 | 1546 | Valencene | C15H24 | 0.57 | (22) |
35 | 22.075 | 1549 | 1,1,6-trimethyl-1,2-dihydronaphthalene | C13H16 | 0.29 | |
36 | 22.167 | 1556 | Camphor | C10H16O | 0.35 | |
37 | 22.275 | 1564 | β-Bisabolene | C15H24 | 0.55 | (23) |
38 | 22.383 | 1572 | Geraniol butyrate | C13H22O2 | 2.25 | (24) |
39 | 22.492 | 1580 | Geranyl isovalerate | C15H26O2 | 1.66 | (25) |
40 | 22.683 | 1593 | β-Caryophyllene oxide | C15H24O | 1.03 | (26) |
41 | 22.842 | 1605 | α-Cadinol | C15H26O | 0.23 | |
42 | 22.983 | 1617 | Aromadendrene oxide | C15H24O | 0.48 | |
43 | 23.058 | 1623 | Cedrenol | C15H24O | 0.47 | |
44 | 23.258 | 1639 | Spathulenol | C15H24O | 0.38 | |
45 | 23.342 | 1646 | Cedr-8-en-13-ol | C15H24O | 0.35 | |
46 | 23.392 | 1650 | Muurolol | C15H26O | 0.33 | |
47 | 23.717 | 1676 | δ-Cadinol | C15H26O | 0.30 | |
48 | 23.783 | 1681 | LONGICYCLENE | C15H24 | 0.59 | (27) |
49 | 23.967 | 1696 | Globulol | C15H26O | 0.53 | (28) |
50 | 24.017 | 1700 | Pentadecane | C15H32 | 0.25 | |
51 | 24.317 | 1726 | Valerenal | C15H22O | 0.56 | (29) |
52 | 24.508 | 1743 | Cedrol | C15H26O | 0.25 | |
53 | 25.625 | 1843 | Hexahydrofarnesyl acetone | C18H36O | 1.28 | (30) |
54 | 26.258 | 1902 | d-Nerolidol | C15H26O | 0.54 | (31) |
55 | 26.492 | 1925 | Methyl hexadecanoate | C17H34O2 | 0.59 | (32) |
56 | 26.817 | 1957 | neo-Menthol | C10H20O | 1.51 | (33) |
57 | 27.433 | 2018 | 3-Ethyl-1,2,4,5-tetramethylbenzene | C12H18 | 1.05 | (34) |
58 | 28.000 | 2077 | Kaur-16-ene | C20H32 | 0.53 | (35) |
59 | 28.267 | 2105 | 4,7-dimethyl-3(2H)-Benzofuranone | C10H10O2 | 0.49 | |
60 | 28.308 | 2110 | Neophytadiene | C20H38 | 0.74 | (36) |
Total | 88.15 |
Drug | MIC (mg/mL) | MBC (mg/mL) |
---|---|---|
EOCM | 0.625 | 2.5 |
Thymol | 0.156 | 0.313 |
Carvacrol | 0.156 | 0.313 |
Drug | IC50 DPPH Radical (mg/mL) | IC50 Hydroxyl Radical (mg/mL) |
---|---|---|
EOCM | 1.380 ± 0.240 | 0.712 ± 0.177 |
Thymol | - | 5.882 ± 0.698 |
Carvacrol | - | 4.395 ± 1.339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, F.; Yang, G.; Hu, D.; Ruan, C.; Wang, J.; Zhang, Y.; Zhu, Q. Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oil from Centipeda minima. Molecules 2023, 28, 824. https://doi.org/10.3390/molecules28020824
Su F, Yang G, Hu D, Ruan C, Wang J, Zhang Y, Zhu Q. Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oil from Centipeda minima. Molecules. 2023; 28(2):824. https://doi.org/10.3390/molecules28020824
Chicago/Turabian StyleSu, Fan, Gan Yang, Datong Hu, Chen Ruan, Jing Wang, Yingying Zhang, and Qingjun Zhu. 2023. "Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oil from Centipeda minima" Molecules 28, no. 2: 824. https://doi.org/10.3390/molecules28020824
APA StyleSu, F., Yang, G., Hu, D., Ruan, C., Wang, J., Zhang, Y., & Zhu, Q. (2023). Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oil from Centipeda minima. Molecules, 28(2), 824. https://doi.org/10.3390/molecules28020824