Enhanced Ultrafast Broadband Reverse Saturable Absorption in Twistacenes with Enlarged π-Conjugated Central Bridge
(This article belongs to the Section Materials Chemistry)
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV-Vis Absorption and Emission Spectra
2.2. Transient Absorption Measurements
2.3. Femtosecond Nonlinear Optical Absorption
2.4. Nonlinear Optical Absorption Properties at Various Pulse-Widths
3. Experimental Section
3.1. Ultrafast Time-Resolved Absorption Spectra
3.2. Open-Aperture Z-Scan Experiment
3.3. DFT Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Gopalan, P.; Sensale-Rodriguez, B. 2D Materials for Terahertz Modulation. Adv. Opt. Mater. 2019, 8, 1900550. [Google Scholar] [CrossRef]
- Jiang, T.; Yin, K.; Wang, C.; You, J.; Ouyang, H.; Miao, R.; Zhang, C.; Wei, K.; Li, H.; Chen, H.; et al. Ultrafast fiber lasers mode-locked by two-dimensional materials: Review and prospect. Photon. Res. 2019, 8, 78–90. [Google Scholar] [CrossRef]
- Franta, B.; Mazur, E.; Sundaram, S.K. Ultrafast laser processing of silicon for photovoltaics. Int. Mater. Rev. 2017, 63, 227–240. [Google Scholar] [CrossRef]
- Lu, L.; Wang, W.; Wu, L.; Jiang, X.; Xiang, Y.; Li, J.; Fan, D.; Zhang, H. All-Optical Switching of Two Continuous Waves in Few Layer Bismuthene Based on Spatial Cross-Phase Modulation. ACS Photon. 2017, 4, 2852–2861. [Google Scholar] [CrossRef]
- Dong, T.; Zhang, S.J.; Wang, N.L. Recent Development of Ultrafast Optical Characterizations for Quantum Materials. Adv. Mater. 2022, 2022, 2110068. [Google Scholar] [CrossRef]
- Huang, X.; Liu, L.; Zhou, S.; Zhao, J. Physical properties and device applications of graphene oxide. Front. Phys. 2020, 15, 33301. [Google Scholar] [CrossRef] [Green Version]
- Divya, R.; Manikandan, N.; Girisun, T.C.S.; Vinitha, G. Investigations on the structural, morphological, linear and third order nonlinear optical properties of manganese doped zinc selenide nanoparticles for optical limiting application. Opt. Mater. 2020, 100, 109641. [Google Scholar] [CrossRef]
- Guo, B.; Xiao, Q.L.; Wang, S.H.; Zhang, H. 2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications. Laser Photonics Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Sun, X.; Hu, X.; Sun, J.; Xie, Z.; Zhou, S. Strong optical limiting properties of Ormosil gel glasses doped with silver nano-particles. New J. Chem. 2019, 43, 6274–6278. [Google Scholar] [CrossRef]
- Medishetty, R.; Zareba, J.K.; Mayer, D.; Samoc, M.; Fischer, R.A. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4976–5004. [Google Scholar] [CrossRef]
- Xing, F.; Wang, Y.; Wang, J.; Zhou, S.; Zhao, J.; Xie, Z. Highly dispersed antimonene oxide quantum dots and their hybrid gel glasses for broadband nonlinear optical limiting. J. Mater. Chem. C 2021, 9, 10084–10088. [Google Scholar] [CrossRef]
- Zhai, X.; Ma, B.; Wang, Q.; Zhang, H.L. 2D materials towards ultrafast photonic applications. Phys. Chem. Chem. Phys. 2020, 22, 22140–22156. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Tan, L.; Zhang, Q.; Prasad, P.N. Multiphoton Absorbing Materials: Molecular Designs, Characterizations, and Applications. Chem. Rev. 2008, 108, 1245–1330. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Chen, Y.; Hu, C.; Hsu, C. Two-photon absorption and optical power limiting properties in femtosecond regime of novel multi-branched chromophores based on tri-substituted olefinic scaffolds. J. Mater. Chem. 2009, 19, 7075–7080. [Google Scholar] [CrossRef]
- Pawlicki, M.; Collins, H.A.; Denning, R.G.; Anderson, H.L. Two-photon absorption and the design of two-photon dyes. Angew. Chem. Int. Edit. 2009, 48, 3244–3266. [Google Scholar] [CrossRef]
- Zhan, C.; Yao, J. More than Conformational “Twisting” or “Coplanarity”: Molecular Strategies for Designing High-Efficiency Nonfullerene Organic Solar Cells. Chem. Mater. 2016, 28, 1948–1964. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.K.; Kim, D.; Bredas, J.L. Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight. Acc. Chem. Res. 2018, 51, 2215–2224. [Google Scholar] [CrossRef]
- Dubey, R.K.; Melle-Franco, M.; Mateo-Alonso, A. Twisted Molecular Nanoribbons with up to 53 Linearly-Fused Rings. J. Am. Chem. Soc. 2021, 143, 6593–6600. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Liu, Z.; Wang, S.; Xiao, J. Self-assembled multicolor nanoparticles based on functionalized twistacene dendrimer for cell fluorescent imaging. NPG Asia Mater. 2015, 7, e230. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Xiao, J.; Sun, R.; Jin, T.; Yang, J.; Shi, G.; Wang, Y.; Zhang, X.; Song, Y. Spindle-Type Conjugated Compounds Containing Twistacene Unit: Synthesis and Ultrafast Broadband Reverse Saturable Absorption. Adv. Opt. Mater. 2017, 5, 1600712. [Google Scholar] [CrossRef]
- Ramakrishna, G.; Bhaskar, A.; Goodson, T. Ultrafast Excited State Relaxation Dynamics of Branched Donor-π-Acceptor Chromophore: Evidence of a Charge-Delocalized State. J. Phys. Chem. B 2006, 110, 20872–20878. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Xiao, J.; Wu, X.; Wang, Y.; Zhang, X.; Song, Y. Doubly 1,3-butadiyne-bridged ditwistacene with enhanced ultrafast broadband reverse saturable absorption. J. Mater. Chem. C 2022, 10, 14122–14127. [Google Scholar] [CrossRef]
- Wu, Y.; Siegel, J.S. Aromatic Molecular-Bowl Hydrocarbons: Synthetic Derivatives, Their Structures, and Physical Properties. Chem. Rev. 2006, 12, 4843–4867. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xiao, J.; Zhang, X.; Shen, X.; Liu, X.; Shen, F.; Yi, Y.; Song, Y. Effect of the mismatch structure on crystal packing, physical properties and third-order nonlinearity of unsymmetrical twistacenes. Dyes Pigment. 2016, 134, 9–18. [Google Scholar] [CrossRef]
- Deng, X.; Liu, X.; Wei, L.; Ye, T.; Yu, X.; Zhang, C.; Xiao, J. Pentagon-Containing pi-Expanded Systems: Synthesis and Photophysical Properties. J. Org. Chem. 2021, 86, 9961–9969. [Google Scholar] [CrossRef]
- Van Stokkum, I.H.M.; Larsen, D.S.; van Grondelle, R. Global and target analysis of time-resolved spectra. Bba-Bioenergetics 2004, 1657, 82–104. [Google Scholar] [CrossRef] [Green Version]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.-H.; Hagan, D.J.; van Stryland, E.W. Sensitive measurement of optical nonlinearities using a single beam. J. Quantum Elect. 1990, 26, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Shi, Y.; Sun, R.; Ge, J.; Li, Z.; Fang, Y.; Wu, X.; Yang, J.; Zhao, M.; Song, Y. Ultrafast broadband optical limiting in simple pyrene-based molecules with high transmittance from visible to infrared regions. J. Mater. Chem. C 2016, 4, 4647–4653. [Google Scholar] [CrossRef]
- Han, Y.; Xiao, J.; Wu, X.; Wang, Y.; Zhang, X.; Song, Y. Excellent ultrafast broadband optical limiting of functionalized twistacenes based on two-photon absorption-induced excited state absorption. Dyes Pigment. 2022, 208, 110842. [Google Scholar] [CrossRef]
- Mo, C.; Yang, M.; Cheng, Z.; Tang, X.; Yang, L.; Su, R.; Li, J.; Feng, J.; Fang, L.; Yang, K.; et al. Octupolar Acrylonitrile-Bridged 2D-Conjugated Polymers Enable Bright Far-Red Emission with Intense Two-Photon Absorption via Alkoxylation Chemistry. Small 2021, 17, e2100955. [Google Scholar] [CrossRef]
- Du, H.; Zhou, Q.; Yu, Y.; Liu, C.; Zhang, X.; Pang, Z.; Han, S. Observation of up-conversion fluorescence from exciplex of m-MTDATA:TPBi blend. J. Lumin. 2022, 243, 118655. [Google Scholar] [CrossRef]
- Osusky, P.; Nociarova, J.; Smolicek, M.; Gyepes, R.; Georgiou, D.; Polyzos, I.; Fakis, M.; Hrobarik, P. Oxidative C-H Homocoupling of Push-Pull Benzothiazoles: An Atom-Economical Route to Highly Emissive Quadrupolar Arylamine-Functionalized 2,2’-Bibenzothiazoles with Enhanced Two-Photon Absorption. Org. Lett. 2021, 23, 5512–5517. [Google Scholar] [CrossRef] [PubMed]
- Mariz, I.F.A.; Raja, S.; Silva, T.; Almeida, S.; Torres, É.; Baleizão, C.; Maçôas, E. Two-photon absorption of perylene-3,4,9,10-tetracarboxylic acid diimides: Effect of substituents in the bay. Dyes Pigment. 2021, 193, 109470. [Google Scholar] [CrossRef]
- Li, Y.; Tang, R.; Liu, X.; Gong, J.; Zhao, Z.; Sheng, Z.; Zhang, J.; Li, X.; Niu, G.; Kwok, R.T.K.; et al. Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound Therapy of Cancers. ACS Nano 2020, 14, 16840–16853. [Google Scholar] [CrossRef]
- Yang, M.; Mo, C.; Fang, L.; Li, J.; Yuan, Z.; Chen, Z.; Jiang, Q.; Chen, X.; Yu, D. Multibranched Octupolar Module Embedded Covalent Organic Frameworks Enable Efficient Two-Photon Fluorescence. Adv. Funct. Mater. 2020, 30, 2000516. [Google Scholar] [CrossRef]
- Castro-Fernandez, S.; Cruz, C.M.; Mariz, I.F.A.; Marquez, I.R.; Jimenez, V.G.; Palomino-Ruiz, L.; Cuerva, J.M.; Macoas, E.; Campana, A.G. Two-Photon Absorption Enhancement by the Inclusion of a Tropone Ring in Distorted Nanographene Ribbons. Angew. Chem. Int. Ed. Engl. 2020, 59, 7139–7145. [Google Scholar] [CrossRef]
- Zhen, S.; Wang, S.; Li, S.; Luo, W.; Gao, M.; Ng, L.G.; Goh, C.C.; Qin, A.; Zhao, Z.; Liu, B.; et al. Efficient Red/Near-Infrared Fluorophores Based on Benzo[1,2-b:4,5-b′]dithiophene 1,1,5,5-Tetraoxide for Targeted Photodynamic Therapy and In Vivo Two-Photon Fluorescence Bioimaging. Adv. Funct. Mater. 2018, 28, 1706945. [Google Scholar] [CrossRef]
- Berera, R.; van Grondelle, R.; Kennis, J.T. Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems. Photosynth Res. 2009, 101, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Zaier, R.; Ayachi, S. DFT Molecular Modeling Studies of D-π-A-π-D Type Cyclopentadithiophene-Diketopyrrolopyrrole Based Small Molecules Donor Materials for Organic Photovoltaic Cells. Optik 2021, 239, 166787. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, Q.; Song, P.; Ma, F.; Yang, Y.; Li, Y. PCDTBT8-Doped PffBT4T-2ODBased Ternary Solar Cells with Enhanced Open-Circuit Voltage, Fill Factor and Charge Separation Efficiency. Sol. RRL 2021, 5, 2100670. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. GAUSSIAN 09 (Revision D.01); Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020, 165, 461–467. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
DPyA | DPyN | |||
---|---|---|---|---|
Wavelength (nm) | (GM) | 10−21 m2 | (GM) | 10−21 m2 |
650 | 4300 | 7 | 1000 | 22 |
700 | 3500 | 8 | 900 | 20 |
750 | 2300 | 7 | 850 | 17 |
800 | 1500 | 5 | 650 | 13 |
850 | 900 | 3 | 420 | 10 |
900 | 600 | 2 | 330 | 9 |
Sample | Wavelength (nm) | (GM) | Journal | Ref |
---|---|---|---|---|
DPyA | 650 | 4300 | This work | |
BTAN-TPOC5-COF | 800 | 1124 | Small | [30] |
3333 m-MTDATA:TPBi | 750 | 387 | J. Lumin. | [31] |
bisbtz-VI | 830 | 1252 | Org. Lett. | [32] |
7 PDI-(OPh)4 | 710 | 595 | Dyes Pigments | [33] |
AIE NPs | 800 | 560 | ACS Nano. | [34] |
cyano-sp2c-COF | 800 | 1225 | Adv. Funct. Mater. | [35] |
1a | 730 | 696 | Angew. Chem. Int. Ed. Engl. | [36] |
TCzP-BDTO | 820 | 693 | Adv.Funct. Mater. | [37] |
Sample | DPyA a | DPyN a | DPyA b | DPyN b |
---|---|---|---|---|
βeff (cm/GW) | 0.7 | - | 10.5 | - |
IS (10−3 GW/cm2) | - | 45 | - | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhou, W.; Wang, M.; Wu, X.; Jia, J.; Xiao, J.; Yang, J.; Song, Y. Enhanced Ultrafast Broadband Reverse Saturable Absorption in Twistacenes with Enlarged π-Conjugated Central Bridge. Molecules 2022, 27, 9059. https://doi.org/10.3390/molecules27249059
Liu X, Zhou W, Wang M, Wu X, Jia J, Xiao J, Yang J, Song Y. Enhanced Ultrafast Broadband Reverse Saturable Absorption in Twistacenes with Enlarged π-Conjugated Central Bridge. Molecules. 2022; 27(24):9059. https://doi.org/10.3390/molecules27249059
Chicago/Turabian StyleLiu, Xindi, Wenfa Zhou, Mengyi Wang, Xingzhi Wu, Jidong Jia, Jinchong Xiao, Junyi Yang, and Yinglin Song. 2022. "Enhanced Ultrafast Broadband Reverse Saturable Absorption in Twistacenes with Enlarged π-Conjugated Central Bridge" Molecules 27, no. 24: 9059. https://doi.org/10.3390/molecules27249059
APA StyleLiu, X., Zhou, W., Wang, M., Wu, X., Jia, J., Xiao, J., Yang, J., & Song, Y. (2022). Enhanced Ultrafast Broadband Reverse Saturable Absorption in Twistacenes with Enlarged π-Conjugated Central Bridge. Molecules, 27(24), 9059. https://doi.org/10.3390/molecules27249059