Characterization and Structural Insights of the Reaction Products by Direct Leaching of the Noble Metals Au, Pd and Cu with N,N′-Dimethyl-piperazine-2,3-dithione/I2 Mixtures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Leaching Behavior and Characterization of the Leaching Products
2.2. Molecular Structures
2.3. Vibrational and Electronic Spectral Features
2.4. DFT Calculations
2.5. Recovery of Metals from the Leachate
3. Materials and Methods
3.1. Synthesis of Reagents and Products
3.2. Procedure for Gold and Reagents Recovery from Complex 1
3.3. X-ray Measurements
3.4. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, M.D.; Singh, K.K.; Morrison, C.A.; Love, J.B. Challenges and opportunities in the recovery of gold from electronic waste. RSC Adv. 2020, 10, 4300–4309. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Holuszko, M.; Espinosa, D.C.R. E-waste: An overview on generation, collection, legislation and recycling practices. Resour. Conserv. Recycl. 2017, 122, 32–42. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, Z. Precious metal recovery from waste printed circuit boards: A review for current status and perspectives. Resour. Conserv. Recycl. 2016, 113, 28–39. [Google Scholar] [CrossRef]
- Akcil, A.; Erust, C.; Gahan, C.S.; Ozgun, M.; Sahin, M.; Tuncuk, A. Precious Metal Recovery from waste printed circuit boards using cyanide and non-cyanide lixiviant. A review. Waste Manag. 2015, 45, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Birich, A.; Raslan, S.; Friedrich, M.B. Screening of Non-cyanide Leaching Reagents for Gold Recovery from Waste Electric and Electronic Equipment. J. Sustain. Metall. 2018. [Google Scholar] [CrossRef]
- Lia, H.; Eksteena, J.; Orabya, E. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives—A review. Resour. Conserv. Recycl. 2018, 139, 122–139. [Google Scholar] [CrossRef]
- Nelson, J.J.M.; Schelter, E.J. Sustainable Inorganic Chemistry: Metal Separations for Recycling. Inorg. Chem. 2019, 58, 979–990. [Google Scholar] [CrossRef]
- Räisänen, M.; Heliövaara, E.; Al-Qaisi, F.; Muuronen, M.; Eronen, A.; Liljeqvist, H.; Nieger, M.; Kemell, M.; Moslova, K.; Hämäläinen, J.; et al. Pyridinethiol-Assisted Dissolution of Elemental Gold in Organic Solutions. Angew. Chem. Int. Ed. 2018, 57, 17104–17109. [Google Scholar] [CrossRef] [PubMed]
- Serpe, A. Green chemistry for precious metals recovery from WEEE. In Waste Electrical and Electronic Equipment Recycling: Aqueous Recovery Methods; Vegliò, F., Birloaga, I., Eds.; Elsevier Ltd.: Duxford, UK, 2018; Chapter 11; pp. 271–332. [Google Scholar]
- Groenewald, T. The dissolution of gold in acidic solutions of thiourea. Hydrometallurgy 1976, 1, 277–290. [Google Scholar] [CrossRef]
- Ubaldini, S.; Fornari, P.; Massidda, R.; Abbruzzese, C. An innovative thiourea gold leaching process. Hydrometallurgy 1998, 48, 113–124. [Google Scholar] [CrossRef]
- Gönen, N. Leaching of finely disseminated gold ore with cyanide and thiourea solutions. Hydrometallurgy 2003, 69, 169–176. [Google Scholar] [CrossRef]
- Behnamfard, A.; Salarirad, M.M.; Veglio, F. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Manag. 2013, 33, 2354–2363. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, N.M.; Birloaga, I.; Ferella, F.; Centofanti, M.; Vegliò, F. Preliminary Study on Gold Recovery from High Grade E-Wasteby Thiourea Leaching and Electrowinning. Minerals 2021, 11, 235. [Google Scholar] [CrossRef]
- Serpe, A.; Artizzu, F.; Mercuri, M.L.; Pilia, L.; Deplano, P. Charge transfer complexes of dithioxamides with dihalogens as powerful reagents in the dissolution of noble metals. Coord. Chem. Rev. 2008, 252, 1200–1212. [Google Scholar] [CrossRef]
- Bigoli, F.; Deplano, P.; Mercuri, M.L.; Pellinghelli, M.A.; Pintus, G.; Serpe, A.; Trogu, E.F. A powerful new oxidation agent towards metallic gold powder: N,N′-dimethylperhydrodiàzepine-2,3-dithione (D) bis(diiodine). Synthesis and X-ray structure of [AuDI2]I3. Chem. Commun. 1998, 21, 2351–2352. [Google Scholar] [CrossRef]
- Serpe, A.; Rigoldi, A.; Marras, C.; Artizzu, F.; Mercuri, M.L.; Deplano, P. Chameleon behaviour of iodine in recovering noble-metals from WEEE: Towards sustainability and “zero” waste. Green Chem. 2015, 17, 2208–2216. [Google Scholar] [CrossRef] [Green Version]
- Serpe, A.; Artizzu, F.; Espa, D.; Rigoldi, A.; Mercuri, M.L.; Deplano, P. From trash to resource: A green approach to noble-metals dissolution and recovery. Green Process. Synth. 2014, 3, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Serpe, A.; Marchiò, L.; Artizzu, F.; Mercuri, M.L.; Deplano, P. Effective one-step gold dissolution using environmentally friendly low-cost reagents. Chem. Eur. J. 2013, 19, 10111–10114. [Google Scholar] [CrossRef]
- Deplano, P.; Mercuri, M.L.; Pilia, L.; Serpe, A.; Vanzi, M. Process for Recovering Noble Metals from Electric and Electronic Wastes. Patent EP196493, 13 February 2008. [Google Scholar]
- Serpe, A.; Artizzu, F.; Marchiò, L.; Mercuri, M.L.; Pilia, L.; Deplano, P. Argentophilic interactions in mono-, di-, and polymeric Ag(I) complexes with N,N′-dimethyl-piperazine-2,3-dithione and iodide. Cryst. Growth Des. 2011, 11, 1278–1286. [Google Scholar] [CrossRef]
- Serpe, A.; Bigoli, F.; Cabras, M.C.; Fornasiero, P.; Graziani, M.; Mercuri, M.L.; Montini, T.; Pilia, L.; Trogu, E.F.; Deplano, P. Pd-Dissolution through a mild and effective one-step reaction and its application for Pd-recovery from spent catalytic converters. Chem. Commun. 2005, 1040–1042. [Google Scholar] [CrossRef]
- Deplano, P.; Fornasiero, P.; Graziani, M.; Mercuri, M.L.; Serpe, A.; Trogu, E.F. Method for the Recovery of Palladium. Patent EP1743044, 12 April 2005. [Google Scholar]
- Bigoli, F.; Deplano, P.; Mercuri, M.L.; Pellinghelli, M.A.; Pintus, G.; Serpe, A.; Trogu, E.F. N,N′-Dimethylpiperazinium-2,3-dithione Triiodide, [Me2Pipdt]I3, as a Powerful New Oxidation Agent toward Metallic Platinum. Synthesis and X-ray Structures of the Reagent and the Product [Pt(Me2Pipdt)2](I3)2. J. Am. Chem. Soc. 2001, 123, 1788–1789. [Google Scholar] [CrossRef] [PubMed]
- tom Dieck, H.; Form, M. C-N Twisted Ethanedithioamides in Electron-Rich Complexes. Angew. Chem. Int. Ed. 1975, 14, 250–251. [Google Scholar] [CrossRef]
- Steifel, E.I. (Ed.) Dithiolene Chemistry: Synthesis, Properties and Applications. In Progress in Inorganic Chemistry; John Wiley&Sons, Inc.: Hoboken, NJ, USA, 2004; Volume 52. [Google Scholar]
- Colston, K.J.; Dille, S.A.; Mogesa, B.; Astashkin, A.V.; Brant, J.A.; Zeller, M.; Basu, P. Design, Synthesis, and Structure of Copper Dithione Complexes: Redox-Dependent Charge Transfer. Eur. J. Inorg. Chem. 2019, 4939–4948. [Google Scholar] [CrossRef]
- Basu, P.; Colston, K.J.; Moges, B. Dithione, the antipodal redox partner of ene-1,2-dithiol ligands and their metal complexes. Coord. Chem. Rev. 2020, 409, 213211. [Google Scholar] [CrossRef]
- Cuscusa, M.; Rigoldi, A.; Artizzu, F.; Cammi, R.; Fornasiero, P.; Deplano, P.; Marchio, L.; Serpe, A. Ionic couple-driven palladium leaching by organic triiodide solutions. ACS Sustain. Chem. Eng. 2017, 5, 4359–4370. [Google Scholar] [CrossRef]
- Zimmerman, M.T.; Bayse, C.A.; Ramoutar, R.R.; Brumaghim, J.L. Sulfur and selenium antioxidants: Challenging radical scavenging mechanisms and developing structure–activity relationships based on metal binding. J. Inorg. Biochem. 2015, 145, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Kimani, M.M.; Bayse, C.A.; Stadelman, B.S.; Brumaghim, J.L. Oxidation of Biologically Relevant Chalcogenones and Their Cu(I) Complexes: Insight into Selenium and Sulfur Antioxidant Activity. Inorg. Chem. 2013, 52, 11685–11687. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [Green Version]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding and other σ-hole interactions: A perspective. Phys. Chem. Chem. Phys. 2013, 15, 11178–11189. [Google Scholar] [CrossRef]
- Clark, T.; Murray, J.S.; Politzer, P. The σ-Hole Coulombic Interpretation of Trihalide Anion Formation. ChemPhysChem 2018, 19, 3044–3049. [Google Scholar] [CrossRef]
- Groenewald, F.; Esterhuysen, C.; Dillen, J. Electrostatic surface potential analysis of the I3- ion in the gas phase, the condensed phase and a novel extrapolation to the solid state. J. Comput. Theor. Chem. 2016, 1090, 225–233. [Google Scholar] [CrossRef]
- Bartashevich, E.V.; Yushina, I.D.; Stash, A.I.; Tsirelson, V.G. The σ-Hole Coulombic Interpretation of Trihalide Anion Formation Halogen Bonding and Other Iodine Interactions in Crystals of Dihydrothiazolo(oxazino)quinolinium Oligoiodides from the Electron-Density Viewpoint. Cryst. Growth Des. 2014, 14, 5674–5684. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; OUP: Chichester, UK, 1999. [Google Scholar]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(i) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 9, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Rosiak, D.; Okuniewski, A.; Chojnacki, J. Novel complexes possessing Hg–(Cl, Br, I)⋯OC halogen bonding and unusual Hg2S2(Br/I)4 kernel. The usefulness of τ4′ structural parameter. Polyhedron 2018, 146, 35–41. [Google Scholar] [CrossRef]
- Metrangolo, P.; Resnati, G. Type II halogen···halogen contacts are halogen bonds. IUCrJ 2014, 1, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Deplano, P.; Ferraro, J.R.; Mercuri, M.L.; Trogu, E.F. Structural and Raman spectroscopic studies as complementary tools in elucidating the nature of the bonding in polyiodides and in donor-I2 adducts. Coord. Chem. Rev. 1999, 188, 71–95. [Google Scholar] [CrossRef]
- Bigoli, F.; Deplano, P.; Mercuri, M.L.; Pellinghelli, M.A.; Pilia, L.; Pintus, G.; Serpe, A.; Trogu, E.F. Ion Pair Charge-Transfer Complexes between Anionic and Cationic Metal-Dithiolenes [M(II)] = Pd, Pt]. Inorg. Chem. 2002, 41, 5241–5248. [Google Scholar] [CrossRef] [PubMed]
- Mealli, C.; Proserpio, D. MO Theory Made Visible. J. Chem. Educ. 1990, 67, 399–402. [Google Scholar] [CrossRef]
- Espa, D.; Pilia, L.; Marchiò, L.; Mercuri, M.L.; Serpe, A.; Sessini, E.; Deplano, P. Near-infrared pigments based on ion-pair charge transfer salts of dicationic and dianionic metal–dithiolene [M(II) = Pd, Pt] complexes. Dalton Trans. 2013, 42, 12429–12439. [Google Scholar] [CrossRef]
- Kokatam, S.; Ray, K.; Pap, J.; Bill, E.; Geiger, W.E.; LeSuer, R.J.; Rieger, P.H.; Weyhermuller, T.; Neese, F.; Wieghardt, K. Molecular and Electronic Structure of Square-Planar Gold Complexes Containing Two 1,2-Di(4-tert-butylphenyl)ethylene-1,2-dithiolato Ligands: [Au(2L)2]1+/0/1-/2-. A Combined Experimental and Computational Study. Inorg. Chem. 2007, 46, 1100–1111. [Google Scholar] [CrossRef]
- Herebian, D.; Wieghardt, K.E.; Neese, F. Analysis and Interpretation of Metal-Radical Coupling in a Series of Square Planar Nickel Complexes: Correlated Ab Initio and Density Functional Investigation of [Ni(LISQ)2] (LISQ)3,5-di-tert-butyl-o-diiminobenzosemiquinonate(1-). J. Am. Chem. Soc. 2003, 125, 10997. [Google Scholar] [CrossRef]
- Luda, M.P. Recycling of Printed Circuit Boards, Integrated Waste Management—Volume II; Kumar, S., Ed.; InTech: Rijeka, Croatia, 2011; ISBN 978-953-307-447-4. Available online: http://www.intechopen.com/books/integrated-waste-management-volume-ii/recycling-of-printed-circuit-boards (accessed on 3 August 2021).
- Sethurajan, M.; van Hullebusch, E.D.; Fontana, D.; Akcil, A.; Deveci, H.; Batinic, B.; Leal, J.P.; Gasche, T.A.; Kucuker, M.A.; Kuchta, K.; et al. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes—A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 212–275. [Google Scholar] [CrossRef] [Green Version]
- Rigoldi, A.; Trogu, E.F.; Marcheselli, G.C.; Artizzu, F.; Picone, N.; Colledani, M.; Deplano, P.; Serpe, A. Advances in Recovering Noble Metals from Waste Printed Circuit Boards (WPCBs). ACS Sustain. Chem. Eng. 2019, 7, 1308–1317. [Google Scholar] [CrossRef]
- Jantan, K.A.; Kwok, C.Y.; Chan, K.W.; Marchiò, L.; White, A.J.P.; Deplano, P.; Serpe, A.; Wilton-Ely, J.D.E.T. From recovered metal waste to high-performance palladium catalysts. Green Chem. 2017, 19, 5846–5853. [Google Scholar] [CrossRef] [Green Version]
- Bruker. APEX3 Software; Bruker AXS Inc.: Madison, WI, USA, 2012. [Google Scholar]
- Agilent. CrysAlis PRO; Agilent Technologies Ltd.: Yarnton, UK, 2014. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. [SADABS-2016/2]—Bruker AXS area detector scaling and absorption correction. J. Appl. Cryst. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theoret. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations—Potentials for the transition-metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.A. ArgusLab 4.0.1; Planaria Software LLC: Seattle, WA, USA. Available online: http://www.arguslab.com/arguslab.com/ArgusLab.html/ (accessed on 3 August 2021).
- Donnelly, J.M.; Lermyte, F.; Wolny, J.A.; Walker, M.; Breeze, B.G.; Needham, R.J.; Müller, C.S.; O’Connor, P.B.; Schünemann, V.; Collingwood, J.F.; et al. Cu(III)–bis-thiolato complex forms an unusual mono-thiolato Cu(III)–peroxido adduct. Chem. Commun. 2021, 57, 69–72. [Google Scholar] [CrossRef] [PubMed]
[Au(Me2pipdt)I2]I3 (1) | [Pd(Me2pipdt)2](I)2 (2a) | ||
---|---|---|---|
Au-S(1) | 2.316(2) | Pd-S(1) | 2.2952(5) |
Au-S(2) | 2.319(2) | Pd-S(2) | 2.2826(5) |
Au-I(1) | 2.6113(4) | C(1)-S(1) | 1.700(2) |
Au-I(2) | 2.6139(5) | S(2)-C(2) | 1.701(2) |
C(1)-S(1) | 1.694(5) | C(1)-N(1) | 1.313(2) |
C(2)-S(2) | 1.699(6) | C(2)-N(2) | 1.307(2) |
C(1)-N(1) | 1.311(7) | C(1)-C(2) | 1.500(3) |
C(2)-N(2) | 1.319(7) | ||
C(1)-C(2) | 1.493(7) | ||
I(3)-I(4) | 3.0419(5) | ||
I(4)-I(5) | 2.8293(6) | ||
S(1)-Au-S(2) | 89.97(5) | S(1)-Pd-S(2) | 88.58(2) |
Complex | β | α | τ4 | τ4′ |
---|---|---|---|---|
[Au(Me2pipdt)I2]I3 | 177.72 | 177.52 | 0.03 | 0.03 |
[Pd(Me2pipdt)2](I)2 | 180 | 180 | 0.00 | 0.00 |
[Cu(Me2pipdt)2]I3 | 133.81 | 132.67 | 0.66 | 0.66 |
[Cu(Me2pipdt)2]BF4 * | 125.39 | 116.23 | 0.84 | 0.81 |
126.9 | 125.09 | 0.77 | 0.76 | |
[Cu(Me2dazdt)2]I3 * | 113.8 | 111.11 | 0.96 | 0.95 |
124.23 | 122.8 | 0.80 | 0.80 |
[Cu(Me2pipdt)2]I3(3) | [Cu(Me2pipdt)2]BF4(4) | [Cu(Me2dazdt)2]I3(5) | |||
---|---|---|---|---|---|
Cu-S(11) | 2.272(2) | Cu(1)-S(11) | 2.260(1) | Cu(1)-S(11) | 2.342(4) |
Cu-S(21) | 2.295(2) | Cu(1)-S(21) | 2.300(1) | Cu(1)-S(21) | 2.344(4) |
C(11)-S(11) | 1.689(5) | C(11)-S(11) | 1.683(4) | C(11)-S(11) | 1.69(1) |
C(21)-S(21) | 1.679(6) | C(21)-S(21) | 1.682(3) | C(21)-S(21) | 1.69(2) |
C(11)-N(11) | 1.323(7) | C(11)-N(11) | 1.320(4) | C(11)-N(11) | 1.29(2) |
C(21)-N(21) | 1.322(7) | C(21)-N(21) | 1.319(4) | C(21)-N(21) | 1.34(2) |
C(11)-C(21) | 1.515(8) | C(11)-C(21) | 1.520(5) | C(11)-C(21) | 1.49(2) |
Cu-S(12) | 2.276(2) | Cu(1)-S(12) | 2.274(1) | Cu(1)-S(12) | 2.309(4) |
Cu-S(22) | 2.283(2) | Cu(1)-S(22) | 2.302(1) | Cu(1)-S(22) | 2.338(4) |
C(12)-S(12) | 1.679(5) | C(12)-S(12) | 1.681(3) | C(12)-S(12) | 1.69(1) |
C(22)-S(22) | 1.670(5) | C(22)-S(22) | 1.687(3) | C(22)-S(22) | 1.69(1) |
C(12)-N(12) | 1.313(7) | C(12)-N(12) | 1.326(4) | C(12)-N(12) | 1.29(2) |
C(22)-N(22) | 1.318(7) | C(22)-N(22) | 1.312(4) | C(22)-N(22) | 1.31(2) |
C(12)-C(22) | 1.523(8) | C(12)-C(22) | 1.520(5) | C(12)-C(22) | 1.52(2) |
S(11)-Cu-S(21) | 91.71(6) | S(11)-Cu(1)-S(21) | 91.16(4) | S(11)-Cu(1)-S(21) | 93.1(1) |
S(12)-Cu-S(22) | 91.24(5) | S(12)-Cu(1)-S(22) | 90.99(4) | S(12)-Cu(1)-S(22) | 93.6(1) |
Cu(2)-S(13) | 2.279(1) | Cu(2)-S(13) | 2.312(4) | ||
Cu(2)-S(23) | 2.298(1) | Cu(2)-S(23) | 2.335(4) | ||
C(13)-S(13) | 1.682(4) | C(13)-S(13) | 1.68(1) | ||
C(23)-S(23) | 1.673(3) | C(23)-S(23) | 1.70(1) | ||
C(13)-N(13) | 1.320(4) | C(13)-N(13) | 1.33(2) | ||
C(23)-N(23) | 1.318(4) | C(23)-N(23) | 1.32(2) | ||
C(13)-C(23) | 1.518(5) | C(13)-C(23) | 1.52(2) | ||
Cu(2)-S(14) | 2.268(1) | Cu(2)-S(14) | 2.301(4) | ||
Cu(2)-S(24) | 2.277(1) | Cu(2)-S(24) | 2.361(4) | ||
C(14)-S(14) | 1.680(3) | C(14)-S(14) | 1.67(1) | ||
C(24)-S(24) | 1.678(3) | C(24)-S(24) | 1.68(1) | ||
C(14)-N(14) | 1.319(4) | C(14)-N(14) | 1.33(2) | ||
C(24)-N(24) | 1.320(4) | C(24)-N(24) | 1.32(2) | ||
C(14)-C(24) | 1.519(5) | C(14)-C(24) | 1.51(2) | ||
S(13)-Cu(2)-S(23) | 91.73(4) | S(13)-Cu(2)-S(23) | 94.4(1) | ||
S(14)-Cu(2)-S(24) | 92.20(4) | S(14)-Cu(2)-S(24) | 92.9(1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serpe, A.; Pilia, L.; Balestri, D.; Marchiò, L.; Deplano, P. Characterization and Structural Insights of the Reaction Products by Direct Leaching of the Noble Metals Au, Pd and Cu with N,N′-Dimethyl-piperazine-2,3-dithione/I2 Mixtures. Molecules 2021, 26, 4721. https://doi.org/10.3390/molecules26164721
Serpe A, Pilia L, Balestri D, Marchiò L, Deplano P. Characterization and Structural Insights of the Reaction Products by Direct Leaching of the Noble Metals Au, Pd and Cu with N,N′-Dimethyl-piperazine-2,3-dithione/I2 Mixtures. Molecules. 2021; 26(16):4721. https://doi.org/10.3390/molecules26164721
Chicago/Turabian StyleSerpe, Angela, Luca Pilia, Davide Balestri, Luciano Marchiò, and Paola Deplano. 2021. "Characterization and Structural Insights of the Reaction Products by Direct Leaching of the Noble Metals Au, Pd and Cu with N,N′-Dimethyl-piperazine-2,3-dithione/I2 Mixtures" Molecules 26, no. 16: 4721. https://doi.org/10.3390/molecules26164721
APA StyleSerpe, A., Pilia, L., Balestri, D., Marchiò, L., & Deplano, P. (2021). Characterization and Structural Insights of the Reaction Products by Direct Leaching of the Noble Metals Au, Pd and Cu with N,N′-Dimethyl-piperazine-2,3-dithione/I2 Mixtures. Molecules, 26(16), 4721. https://doi.org/10.3390/molecules26164721