How Does the Fear of Missing Out (FOMO) Moderate Reduced SNS Usage Behavior? A Cross-Cultural Study of China and the United States
Abstract
1. Introduction
2. Literature Review and Hypothesis
2.1. SSO Maodel
2.1.1. Technostress as a Stressor
2.1.2. SNS Exhaustion as a Strain
2.1.3. Reduced SNS Usage Intention as an Outcome
2.2. Fear of Missing Out
Research Model
2.3. Cultural Dimension
3. Methods
3.1. Participants and Procedures
3.2. Measurements
3.3. Data Analysis
4. Results
4.1. Group Comparison of Hypothesis Testing
Results of Hypotheses Testing
4.2. Group Comparison of Moderation Effect Test of Fear of Missing Out
4.2.1. Results of Moderating Effect Test
Group Difference Characteristics of the FOMO Moderating Effect
Explanation of the Underlying Cultural and Sample Characteristics and Differences Seen in the Two Groups
5. Discussion
5.1. Theoretical Contributions
5.2. Practical Insights
5.3. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alsharif, S.; Shafie, H.; Al-Qahtani, S.; Al-Qannas, L.; Abdullah, M.; Al-Shammari, H. Saudi Women’s Social Fragility in Friendship Relationships and Its Social and Cultural Effects in Urban Areas: An Analytical Social Study. Cogent Soc. Sci. 2025, 11, 2492393. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, Z.; Kuang, H.; Wang, C. Information Avoidance Behavior on Social Network Sites: Information Irrelevance, Overload, and the Moderating Role of Time Pressure. Int. J. Inf. Manag. 2020, 52, 102067. [Google Scholar] [CrossRef]
- Wang, R.; Mao, Z.; Gu, X. The Relationships between Social Support Seeking, Social Media Use, and Psychological Resilience among College Students. Psychol. Res. Behav. Manag. 2025, 18, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Koeske, G.F.; Koeske, R.D. A Preliminary Test of a Stress-Strain-Outcome Model for Reconceptualizing the Burnout Phenomenon. J. Soc. Serv. Res. 1993, 17, 107–135. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, S.H.; Choi, H.J. Antecedents Influencing SNS Addiction and Exhaustion (Fatigue Syndrome): Focusing on Six Countries. Behav. Inf. Technol. 2023, 42, 2601–2625. [Google Scholar] [CrossRef]
- Zhang, H.M.; Liu, J.Y.; Chen, J.W. The Double-Edged Sword Effect of Performance Pressure on Employee Boundary-Spanning Behavior. J. Chin. Hum. Resour. Manag. 2024, 15, 86–103. [Google Scholar]
- Fioravanti, G.; Casale, S.; Benucci, S.B.; Prostamo, A.; Falone, A.; Ricca, V.; Rotella, F. Fear of Missing Out and Social Networking Sites Use and Abuse: A Meta-Analysis. Comput. Hum. Behav. 2021, 122, 106839. [Google Scholar] [CrossRef]
- Kang, I.; Cui, H.; Son, J. Conformity Consumption Behavior and FoMO. Sustainability 2019, 11, 4734. [Google Scholar] [CrossRef]
- Frampton, J.R.; Fox, J. Social Media’s Role in Romantic Partners’ Retroactive Jealousy: Social Comparison, Uncertainty, and Information Seeking. Soc. Media Soc. 2018, 4, 2056305118800317. [Google Scholar] [CrossRef]
- Ding, X.; Wang, Y.; Wang, W. Does Cyberchondria Influence Subjective Well-Being in Online Healthcare Platforms?—An Empirical Study. Psychol. Res. Behav. Manag. 2025, 18, 1825–1836. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, B. Differential Effects of Active Social Media Use on General Trait and Online-Specific State-FoMO: Moderating Effects of Passive Social Media Use. Psychol. Res. Behav. Manag. 2023, 16, 1391–1402. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Q.; Tian, Y. The Impact of Problematic Social Media Use on Inhibitory Control and the Role of Fear of Missing Out: Evidence from Event-Related Potentials. Psychol. Res. Behav. Manag. 2024, 17, 117–128. [Google Scholar] [CrossRef]
- Bai, Q.; Nam, B.H.; English, A.S. Acculturation and Linguistic Ideology in the Context of Global Student Mobility: A Cross-Cultural Ethnography of Anglophone International Students in China. Educ. Rev. 2024, 76, 1620–1647. [Google Scholar] [CrossRef]
- Ma, H. The Pursuit of Individual Value and Free Expression: A Comparative Study of the Eastern and Western Renaissance and Its Impact on Modern Society. J. Educ. Hum. Soc. Sci. 2023, 21, 45–52. [Google Scholar] [CrossRef]
- Stoliarchuk, O.; Yang, Q.; Diedkov, M.; Serhieienkova, O.; Ishchuk, A.; Kokhanova, O.; Patlaichuk, O. Self-Realization as a Driver of Sustainable Social Development: Balancing Individual Goals and Collective Values. Eur. J. Sustain. Dev. 2024, 13, 313. [Google Scholar] [CrossRef]
- Zhou, Y. Global Transmission of Chinese Culture from the Perspective of Cross-Cultural Communication. Philos. Soc. Sci. 2024, 1, 10–20. [Google Scholar] [CrossRef]
- Din, J. The impact of Confucianism on ancient Chinese society and governance. Int. J. Foreign Trade Int. Bus 2024, 6, 124–127. [Google Scholar] [CrossRef]
- Cai, C.; Hu, H. Discursive Strategies of Chinese Elders in Intergenerational Conflicts: A Critical Discourse Analysis of Mediation Television Programs in China. PLoS ONE 2025, 20, e0320909. [Google Scholar] [CrossRef] [PubMed]
- Tandon, A.; Dhir, A.; Almugren, I.; AlNemer, G.N.; Mäntymäki, M. Fear of Missing Out (FoMO) among Social Media Users: A Systematic Literature Review, Synthesis and Framework for Future Research. Internet Res. 2021, 31, 782–821. [Google Scholar] [CrossRef]
- Flecha Ortiz, J.A.; Santos Corrada, M.; Perez, S.; Dones, V.; Rodriguez, L.H. Exploring the Influence of Uncontrolled Social Media Use, Fear of Missing Out, Fear of Better Options, and Fear of Doing Anything on Consumer Purchase Intent. Int. J. Consum. Stud. 2024, 48, e12990. [Google Scholar] [CrossRef]
- Yu, L.; Shi, C.; Cao, X. Understanding the Effect of Social Media Overload on Academic Performance: A Stressor-Strain-Outcome Perspective. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Maui, HI, USA, 8–11 January 2019; pp. 2657–2666. [Google Scholar]
- Maier, C.; Laumer, S.; Weinert, C.; Weitzel, T. The Effects of Technostress and Switching Stress on Discontinued Use of Social Networking Services: A Study of Facebook Use. Inf. Syst. J. 2015, 25, 275–308. [Google Scholar] [CrossRef]
- Jamaluddin, H.; Ahmad, Z.; Wei, L.T. Exploring Cyberloafing as a Coping Mechanism in Relation to Job-Related Strain and Outcomes: A Study Using the Mediational Model of Stress. Cogent Soc. Sci. 2023, 9, 2278209. [Google Scholar] [CrossRef]
- Ovsiannikova, Y.; Pokhilko, D.; Kerdyvar, V.; Krasnokutsky, M.; Kosolapov, O. Peculiarities of the Impact of Stress on Physical and Psychological Health. Multidiscip. Sci. J. 2024, 6, 2024ss0711. [Google Scholar] [CrossRef]
- Do, N.B.; Hoang, D.; Do, H.N.; Martinez, L.F. Managing Trust and Fatigue in Social Media Consumption: A Strategic Perspective on Discontinuance Intention. J. Mark. Anal. 2025, 1–17. [Google Scholar] [CrossRef]
- Wang, H.M.; Zhu, Y.P.; Lee, K.T. What Signals Are You Sending? How Signal Consistency Influences Consumer Purchase Behavior in Live Streaming Commerce. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 109. [Google Scholar] [CrossRef]
- Cao, X.; Xu, C.; Ali, A. A Socio-Technical System Perspective to Exploring the Negative Effects of Social Media on Work Performance. Aslib J. Inf. Manag. 2024, 76, 233–247. [Google Scholar] [CrossRef]
- Lee, A.R.; Son, S.M.; Kim, K.K. Information and Communication Technology Overload and Social Networking Service Fatigue: A Stress Perspective. Comput. Hum. Behav. 2016, 55, 51–61. [Google Scholar] [CrossRef]
- Neves, J.; Turel, O.; Oliveira, T. Explaining Social Media Use Reduction as an Adaptive Coping Mechanism: The Roles of Privacy Literacy, Social Media Addiction and Exhaustion. Inf. Syst. Manag. 2024, 42, 89–102. [Google Scholar] [CrossRef]
- Mondo, M.; Pileri, J.; Barbieri, B.; Bellini, D.; De Simone, S. The Role of Techno-Stress and Psychological Detachment in the Relationship between Workload and Well-Being in a Sample of Italian Smart Workers: A Moderated Mediated Model. Soc. Sci. 2023, 12, 530. [Google Scholar] [CrossRef]
- Merlici, I.A.; Maftei, A.; Opariuc-Dan, C. This Is Too Much! Social Media Integration and Adults’ Psychological Distress: The Mediating Role of Cyber and Place-Based Information Overload. Behav. Inf. Technol. 2025, 44, 2445–2455. [Google Scholar] [CrossRef]
- Azri, M.D.N.; Malek, S.N.N.A.; Besar, T.B.H.T. An Overview of Information Overload, System Feature Overload, Social Overload and Communication Overload. Environ.-Behav. Proc. J. 2024, 9, 179–186. [Google Scholar] [CrossRef]
- Pang, H.; Wang, Y. Deciphering Dynamic Effects of Mobile App Addiction, Privacy Concern and Cognitive Overload on Subjective Well-Being and Academic Expectancy: The Pivotal Function of Perceived Technostress. Technol. Soc. 2025, 81, 102861. [Google Scholar] [CrossRef]
- Tandon, A.; Laato, S.; Islam, N.; Dhir, A. Social Comparisons at Social Networking Sites: How Social Media-Induced Fear of Missing Out and Envy Drive Compulsive Use. Internet Res. 2025, 35, 691–718. [Google Scholar] [CrossRef]
- Rasool, T.; Warraich, N.F.; Arshad, A. Assessing the Relationship between Information Overload, Role Stress, and Teachers’ Job Performance: Exploring the Moderating Effect of Self-Efficacy. Inf. Dev. 2024, 02666669241232422. [Google Scholar] [CrossRef]
- Zhang, Q.; Ahmad, W. Online Impulse Purchase in Social Commerce: Roles of Social Capital and Information Overload. Int. J. Hum.–Comput. Interact. 2024, 40, 4412–4429. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Q.; Li, D.; Tian, X. An Exploration of the Influencing Factors of Privacy Fatigue among Mobile Social Media Users from the Configuration Perspective. Sci. Rep. 2025, 15, 427. [Google Scholar] [CrossRef]
- Dang-Van, T.; Nguyen, P.T.; Vu, T.T.; Doan, M.Q. How Does Social Overload Lead to Withdrawal Behavior? The Case of Social Communities on Social Networking Sites. Inf. Technol. People 2025. [Google Scholar] [CrossRef]
- Tan, F.; Liu, J.; Alvi, A.; Luqman, A.; Shahzad, F.; Sajjad, A. Unpacking the Relationship between Technological Conflicts, Dissatisfaction, and Social Media Discontinuance Intention: An Integrated Theoretical Perspective. Acta Psychol. 2023, 238, 103965. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cai, M. Social Support and Reference Group: The Dual Action Mechanism of the Social Network on Subjective Poverty. Hum. Soc. Sci. Commun. 2024, 11, 349. [Google Scholar] [CrossRef]
- Sheng, N.; Yang, C.; Han, L.; Jou, M. Too Much Overload and Concerns: Antecedents of Social Media Fatigue and the Mediating Role of Emotional Exhaustion. Comput. Hum. Behav. 2023, 139, 107500. [Google Scholar] [CrossRef]
- Lyu, T.; Guo, Y.; Chen, H. Understanding the Privacy Protection Disengagement Behaviour of Contactless Digital Service Users: The Roles of Privacy Fatigue and Privacy Literacy. Behav. Inf. Technol. 2024, 43, 2007–2023. [Google Scholar] [CrossRef]
- Li, Z.; Liang, M.; Lc, R.; Luo, Y. StayFocused: Examining the Effects of Reflective Prompts and Chatbot Support on Compulsive Smartphone Use. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 11–16 May 2024; pp. 1–19. [Google Scholar]
- Vaghefi, I. Want to Disconnect? Understanding the Dual Effects of Compulsive Social Media Use on Temporary Discontinuance Behavior. Inf. Technol. People 2025. [Google Scholar] [CrossRef]
- Zhang, S.; Kwok, R.C.W.; Lowry, P.B.; Liu, Z.; Wu, J. The Influence of Role Stress on Self-Disclosure on Social Networking Sites: A Conservation of Resources Perspective. Inf. Manag. 2019, 56, 103147. [Google Scholar] [CrossRef]
- Lee, C.W.; Jhou, Y.T. Understanding Self-Disclosure in Social Networking Sites: The Influence of Trust and Perceived Privacy Risk. J. Appl. Financ. Bank. 2025, 15, 111–131. [Google Scholar] [CrossRef]
- Salo, M.; Pirkkalainen, H.; Chua, C.E.H.; Koskelainen, T. Formation and Mitigation of Technostress in the Personal Use of IT. MIS Q. 2022, 46, 1073–1108. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Li, C.; Lu, X. Disentangling User Fatigue in WeChat Use: The Configurational Interplay of Fear of Missing Out and Overload. Internet Res. 2024, 34, 160–186. [Google Scholar] [CrossRef]
- Qin, C.; Li, Y.; Wang, T.; Zhao, J.; Tong, L.; Yang, J.; Liu, Y. Too Much Social Media? Unveiling the Effects of Determinants in Social Media Fatigue. Front. Psychol. 2024, 15, 1277846. [Google Scholar] [CrossRef] [PubMed]
- Piao, X.; Kim, S.; Shin, Y.; Lee, C.; Yue, J. The Effect of Social Anxiety on SNS Addiction among College Students in Northeast China: The Mediating Role of Depressive Symptoms. Acta Psychol. 2025, 259, 105397. [Google Scholar] [CrossRef]
- Hu, Y.; Tian, H.; Hou, Y.; Zhu, M.; Gao, X. Social Networking Sites Use Exacerbates Appearance Anxiety in Young Chinese Women: The Moderating Role of Self-Concept Clarity. Psychol. Pop. Media 2025. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Su, C. System Complexity, Information & Communication Overload, Work-Family Balance & Social Networking Sites’ Tiredness: A Social and Digital Perspective. Prof. Inf. 2024, 33, 4. [Google Scholar]
- Kolas, J.; von Mühlenen, A. Checking in to Check Out? The Effect of Boredom on Craving, Behavioural Inhibition and Social Networking Site Use. Int. J. Ment. Health Addict. 2024, 23, 4265–4284. [Google Scholar] [CrossRef]
- Cunningham, S.; Hudson, C.C.; Harkness, K. Social Media and Depression Symptoms: A Meta-Analysis. Res. Child Adolesc. Psychopathol. 2021, 49, 241–253. [Google Scholar] [CrossRef]
- Osatuyi, B.; Turel, O. Conceptualisation and Validation of System Use Reduction as a Self-Regulatory IS Use Behaviour. Eur. J. Inf. Syst. 2020, 29, 44–64. [Google Scholar] [CrossRef]
- Masood, A.; Feng, Y.; Rasheed, M.I.; Ali, A.; Gong, M. Smartphone-Based Social Networking Sites and Intention to Quit: Self-Regulatory Perspective. Behav. Inf. Technol. 2021, 40, 1055–1071. [Google Scholar] [CrossRef]
- Niu, G.; Yao, L.; Tian, Y.; Sun, X.; Zhou, Z. Information Overload and the Intention to Reduce SNS Usage: The Mediating Roles of Negative Social Comparison and Fatigue. Curr. Psychol. 2022, 41, 5212–5219. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, Z.; Xu, M.; Zhang, H. FOMO: A Fragment-Based Objective Molecule Optimization Framework. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Li, L.; Niu, Z.; Mei, S.; Griffiths, M.D. A Network Analysis Approach to the Relationship between Fear of Missing Out (FoMO), Smartphone Addiction, and Social Networking Site Use among a Sample of Chinese University Students. Comput. Hum. Behav. 2022, 128, 107086. [Google Scholar] [CrossRef]
- Yin, L.; Wang, P.; Nie, J.; Guo, J.; Feng, J.; Lei, L. Social Networking Sites Addiction and FoMO: The Mediating Role of Envy and the Moderating Role of Need to Belong. Curr. Psychol. 2021, 40, 3879–3887. [Google Scholar] [CrossRef]
- Ismail, I.; Ali, H.; Us, K.A. Factors Affecting Critical and Holistic Thinking in Islamic Education in Indonesia: Self-Concept, System, Tradition, Culture. (Literature Review of Islamic Education Management). Dinasti Int. J. Manag. Sci. 2022, 3, 407–437. [Google Scholar] [CrossRef]
- Mosca, O.; Milani, A.; Fornara, F.; Manunza, A.; Krys, K.; Maricchiolo, F. Basic Psychological Needs, Good Societal Development and Satisfaction with Life: The Mediating Role of the Environment. Sustainability 2023, 15, 13794. [Google Scholar] [CrossRef]
- Tri, N.M. Culture as a Dynamic Product of Socially and Historically Situated Discourse Communities: A Review of Literature. VMOST J. Soc. Sci. Hum. 2024, 66, 121–128. [Google Scholar] [CrossRef]
- Hofstede, G. Culture’s Consequences: Comparing Values, Behaviors, Institutions and Organizations Across Nations; Sage Publications: Thousand Oaks, CA, USA, 2001. [Google Scholar]
- Chen, C.C.; Unal, A.F. Individualism-Collectivism: A Review of Conceptualization and Measurement. In Oxford Research Encyclopedia of Business and Management; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Bienek, N.B.; Gross, C.; Lackes, R.; Siepermann, M. Toward an Understanding of Individualism, Collectivism and Technostress on Social Network Sites: Evidence from China and Germany. Int. J. Mob. Commun. 2024, 23, 324–343. [Google Scholar] [CrossRef]
- Lin, K.Y.; Wang, Y.T.; Huang, T.K. Exploring the Antecedents of Mobile Payment Service Usage: Perspectives Based on Cost–Benefit Theory, Perceived Value, and Social Influences. Online Inf. Rev. 2020, 44, 299–318. [Google Scholar] [CrossRef]
- Yuan, Y.; Du, J.; Yang, K.; Ge, Y.; Ma, Y.; Mao, H.; Wu, D. Relationship between Horizontal Collectivism and Social Network Influence among College Students: Mediating Effect of Self-Monitoring and Moderating Effect of Self-Efficacy. Front. Psychol. 2024, 15, 1424223. [Google Scholar] [CrossRef] [PubMed]
- Park, N. The Moderating Influence of SNS Users’ Attachment Style on the Associations between Perceived Information Overload, SNS Fatigue, and Mental Health. Behav. Inf. Technol. 2024, 43, 3510–3522. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, X.; Ma, L. The Influences of Information Overload and Social Overload on Intention to Switch in Social Media. Behav. Inf. Technol. 2022, 41, 228–241. [Google Scholar] [CrossRef]
- Wang, C.; Lee, M.K. Why We Cannot Resist Our Smartphones: Investigating Compulsive Use of Mobile SNS from a Stimulus-Response-Reinforcement Perspective. J. Assoc. Inf. Syst. 2020, 21, 4. [Google Scholar] [CrossRef]
- Fan, X.; Jiang, X.; Deng, N.; Dong, X.; Lin, Y. Does Role Conflict Influence Discontinuous Usage Intentions? Privacy Concerns, Social Media Fatigue and Self-Esteem. Inf. Technol. People 2021, 34, 1152–1174. [Google Scholar] [CrossRef]
- Przybylski, A.K.; Murayama, K.; DeHaan, C.R.; Gladwell, V. Motivational, Emotional, and Behavioral Correlates of Fear of Missing Out. Comput. Hum. Behav. 2013, 29, 1841–1848. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. On the Evaluation of Structure Equation Models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Alizadeh, A.; Mahmoodi, F.; Adib, Y. Representation of Cultural Patterns of Individualism and Collectivism in Primary School Textbooks. Intercult. Educ. 2024, 35, 257–282. [Google Scholar] [CrossRef]
- Oghazi, P.; Schultheiss, R.; Chirumalla, K.; Kalmer, N.P.; Rad, F.F. User Self-Disclosure on Social Network Sites: A Cross-Cultural Study on Facebook’s Privacy Concepts. J. Bus. Res. 2020, 112, 531–540. [Google Scholar] [CrossRef]
- Thomson, R.; Yuki, M.; Ito, N. A Socio-Ecological Approach to National Differences in Online Privacy Concern: The Role of Relational Mobility and Trust. Comput. Hum. Behav. 2015, 51, 285–292. [Google Scholar] [CrossRef]
- Lacko, D.; Čeněk, J.; Točík, J.; Avsec, A.; Đorđević, V.; Genc, A.; Subotić, S. The Necessity of Testing Measurement Invariance in Cross-Cultural Research: Potential Bias in Cross-Cultural Comparisons with Individualism–Collectivism Self-Report Scales. Cross-Cult. Res. 2022, 56, 228–267. [Google Scholar] [CrossRef]
- Zhang, J.; Han, T. Individualism and Collectivism Orientation and the Correlates among Chinese College Students. Curr. Psychol. 2023, 42, 3811–3821. [Google Scholar] [CrossRef]
- Markus, H.R.; Kitayama, S. Cultural variation in the self-concept. In The Self: Interdisciplinary Approaches; Springer: New York, NY, USA, 1991; pp. 18–48. [Google Scholar]





| Characteristics | CN | US | ||
|---|---|---|---|---|
| n = 338 | n = 346 | |||
| Gender | ||||
| Male | 179 | 52.96% | 217 | 62.72% |
| Female | 159 | 47.04% | 126 | 36.42% |
| Prefer not to say | - | - | 3 | 0.87% |
| Age | ||||
| 20 and under | 28 | 8.28% | 39 | 11.27% |
| 21–30 | 195 | 57.7% | 83 | 23.99% |
| 31–40 | 105 | 31.07% | 113 | 32.66% |
| 41–50 | 6 | 1.78% | 59 | 17.05% |
| 51 and over | 4 | 1.18% | 52 | 15.03% |
| Education Background | ||||
| High school and under | 45 | 13.31% | 69 | 19.94% |
| Bachelor’s Degree | 260 | 76.92% | 218 | 63.01% |
| Master’s Degree and above | 33 | 9.76% | 59 | 17.05% |
| Marital Status | ||||
| Single | 89 | 26.33% | 102 | 29.48% |
| In a relationship | 82 | 24.26% | 65 | 18.79% |
| Married | 171 | 50.59% | 176 | 50.87% |
| Prefer not to say | - | - | 3 | 0.87% |
| Characteristics | CN | US | ||
|---|---|---|---|---|
| n = 338 | n = 346 | |||
| Amount of Currently Used SNS Apps | ||||
| 1 | 8 | 2.37% | 67 | 19.36% |
| 2 | 75 | 22.19% | 123 | 35.55% |
| 3 | 102 | 30.18% | 65 | 18.79% |
| More than 3 | 153 | 45.27% | 91 | 26.30% |
| Most Commonly Used SNS Platform (Select one for following survey) | ||||
| 169 | 50% | |||
| Douyin | 135 | 39.94% | ||
| Sina Weibo | 18 | 5.33% | ||
| Others | 16 | 4.73% | - | - |
| 169 | 48.84% | |||
| Tiktok | 85 | 24.57% | ||
| 62 | 17.92% | |||
| Others | - | - | 30 | 8.67% |
| Main Purpose of Using This SNS | ||||
| (Multiple Choice Questions) | ||||
| Chatting | 239 | 70.71% | 163 | 47.11% |
| Meeting new friends | 82 | 24.26% | 92 | 26.59% |
| Getting information | 180 | 53.25% | 255 | 73.7% |
| Enjoyment | 161 | 47.63% | 269 | 77.75% |
| Posting (recording) your life | 175 | 51.78% | 58 | 16.76% |
| Following your friends’ lives | 221 | 65.38% | 136 | 39.31% |
| Others: | 35 | 10.36% | 46 | 13.29% |
| How Many Friends in This SNS | ||||
| 100 or below | 9 | 2.66% | 88 | 25.43% |
| 101–300 | 112 | 33.14% | 107 | 30.92% |
| 301–600 | 139 | 41.12% | 82 | 23.7% |
| 601–1000 | 55 | 16.27% | 63 | 18.21% |
| Above 1000 | 23 | 6.8% | 6 | 1.73% |
| How Long Have You Used This SNS Platform | ||||
| 2 years or less | 9 | 2.66% | 29 | 8.38% |
| 2–3 years | 16 | 4.73% | 64 | 18.5% |
| 3–4 years | 35 | 10.36% | 85 | 24.57% |
| 4–5 years | 67 | 19.82% | 93 | 26.88% |
| More than 5 years | 211 | 62.43% | 75 | 21.68% |
| Variables | Items | Source |
|---|---|---|
| Perceived Information Overload | PIO1. Distracted by an excessive amount of information PIO2. Too much information burden to process PIO3. Only a small part of the information is relevant | [69] |
| Perceived Social Overload | PSO1. Take too much care of friends PSO2. Deal with too many problems of friends PSO3. Sense of responsibility for how much my friends have fun on SNS PSO4. Care for friends too often PSO5. Pay too much attention to friends’ posts | [70] |
| Perceived Compulsive Use | PCU1. Difficult to stop using PCU2. Often continue using PCU3. Unsuccessfully in spending less time | [71] |
| Perceived Privacy Concern | PPC1. Concern about privacy PPC2. Personal information can easily be used PPC3. Give too much information PPC4. Setting privacy can keep information private | [72] |
| Perceived Role Conflict | PRC1. Have different roles for different friends PRC2. Posted information only suitable for someone PRC3. Posted information can’t be endorsed by someone PRC4. Different speaking styles for different friends | [72] |
| SNS Exhaustion | SE1. Feel tired SE2. Feel drained SE3. Feel using SNS is a strain SE4. Feel burned out SE5. Feel indifferent | [69] |
| Reduced Usage Intention of SNS | RUI1. Intend to reduce RUI2. Predict to reduce RUI3. Plan to reduce usage instead of discontinue usage RUI4. Predict to reduce instead of discontinue usage | [70] |
| Fear of Missing Out | FoMO1. Others have more rewarding experiences FoMO2. Friends have more rewarding experiences FoMO3. Friends are having fun without me FoMO4. Feel anxious for what my friends are up to FoMO5. Understanding jokes of friends FoMO6. Bothered by missing an opportunity to meet up with friends FoMO7. Bothered by missing out on a planned get together FoMO8. Keep tabs on what friends are doing | [73] |
| Construct | Items | Mean | Factor Loading | AVE | CR | Cronbach’s Alpha | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| CN | US | CN | US | CN | US | CN | US | CN | US | ||
| Perceived Information Overload | PIO1 PIO2 PIO3 | 3.93 3.84 4.09 | 4.09 3.90 4.52 | 0.748 0.701 0.739 | 0.822 0.888 0.774 | 0.532 | 0.688 | 0.773 | 0.868 | 0.77 | 0.867 |
| Perceived Social Overload | PSO1 PSO2 PSO3 PSO4 PSO5 | 3.87 3.89 3.77 4.02 4.44 | 3.55 3.30 3.32 3.62 3.71 | 0.73 0.772 0.808 0.817 0.801 | 0.857 0.793 0.816 0.858 0.881 | 0.618 | 0.708 | 0.89 | 0.924 | 0.889 | 0.924 |
| Perceived Compulsive Use | PCU1 PCU2 PCU3 | 4.80 4.78 4.31 | 4.39 4.25 3.84 | 0.812 0.809 0.757 | 0.784 0.76 0.766 | 0.629 | 0.593 | 0.835 | 0.814 | 0.833 | 0.813 |
| Perceived Privacy Concern | PPC1 PPC2 PPC3 PPC4 | 4.61 4.71 4.64 4.74 | 4.53 4.59 4.50 4.73 | 0.698 0.696 0.764 0.707 | 0.726 0.81 0.797 0.786 | 0.514 | 0.609 | 0.808 | 0.861 | 0.808 | 0.859 |
| Perceived Role Conflict | PRC1 PRC2 PRC3 PRC4 | 5.17 4.85 5.14 5.12 | 4.75 4.31 4.46 4.68 | 0.709 0.676 0.777 0.764 | 0.716 0.73 0.824 0.773 | 0.537 | 0.581 | 0.822 | 0.847 | 0.818 | 0.846 |
| SNS Exhaustion | SE1 SE2 SE3 SE4 SE5 | 4.02 3.99 4.10 3.93 4.20 | 3.58 3.46 3.76 3.61 4.05 | 0.85 0.753 0.826 0.862 0.702 | 0.818 0.8 0.854 0.897 0.773 | 0.642 | 0.688 | 0.899 | 0.917 | 0.898 | 0.916 |
| Reduced Usage Intention | RUI1 RUI2 RUI3 RUI4 | 3.99 4.14 4.23 4.26 | 3.82 3.98 4.05 3.95 | 0.837 0.705 0.806 0.842 | 0.832 0.676 0.784 0.857 | 0.639 | 0.625 | 0.876 | 0.868 | 0.874 | 0.867 |
| Fear of Missing Out | FOMO1 FOMO2 FOMO3 FOMO4 FOMO5 FOMO6 FOMO7 FOMO8 | 3.74 4.01 4.00 4.06 4.73 4.30 4.42 5.00 | 2.90 3.07 2.92 2.91 3.50 3.09 3.12 3.27 | 0.859 0.799 0.869 0.836 0.712 0.746 0.717 0.699 | 0.766 0.791 0.833 0.822 0.657 0.765 0.752 0.784 | 0.612 | 0.598 | 0.926 | 0.922 | 0.926 | 0.921 |
| PIO | PSO | PCU | PPC | PRC | SE | RUI | FOMO | |
|---|---|---|---|---|---|---|---|---|
| PIO | 0.729 | |||||||
| PSO | 0.351 ** | 0.786 | ||||||
| PCU | 0.226 ** | 0.238 ** | 0.793 | |||||
| PPC | 0.313 ** | 0.320 ** | 0.299 ** | 0.717 | ||||
| PRC | 0.219 ** | 0.355 ** | 0.312 ** | 0.320 ** | 0.733 | |||
| SE | 0.397 ** | 0.324 ** | 0.239 ** | 0.366 ** | 0.349 ** | 0.801 | ||
| RUI | −0.253 ** | −0.325 ** | −0.475 ** | −0.320 ** | −0.286 ** | −0.227 ** | 0.782 | |
| FOMO | 0.389 ** | 0.422 ** | 0.319 ** | 0.420 ** | 0.428 ** | 0.527 ** | −0.343 ** | 0.799 |
| PIO | PSO | PCU | PPC | PRC | SE | RUI | FOMO | |
|---|---|---|---|---|---|---|---|---|
| PIO | 0.829 | |||||||
| PSO | 0.406 ** | 0.841 | ||||||
| PCU | 0.305 ** | 0.356 ** | 0.770 | |||||
| PPC | 0.432 ** | 0.432 ** | 0.481 ** | 0.780 | ||||
| PRC | 0.359 ** | 0.378 ** | 0.336 ** | 0.432 ** | 0.762 | |||
| SE | 0.555 ** | 0.540 ** | 0.355 ** | 0.460 ** | 0.397 ** | 0.829 | ||
| RUI | −0.120 * | −0.180 ** | −0.251 ** | −0.162 ** | −0.222 ** | −0.210 ** | 0.773 | |
| FOMO | 0.340 ** | 0.315 ** | 0.220 ** | 0.326 ** | 0.240 ** | 0.502 ** | −0.331 ** | 0.791 |
| CN | US | |
|---|---|---|
| Chi square (χ2) | 857.642 | 955.631 |
| Degrees of freedom (df) | 566 | 566 |
| χ2/df | 1.515 | 1.688 |
| Goodness-of-fit index (GFI) | 0.88 | 0.872 |
| Adjusted goodness-of-fit index (AGFI) | 0.859 | 0.849 |
| Comparative fit index (CFI) | 0.956 | 0.951 |
| Root mean square error of approximation (RMSEA) | 0.039 | 0.045 |
| CN | US | |
|---|---|---|
| Chi square (χ2) | 537.523 | 537.633 |
| Degrees of freedom (df) | 334 | 334 |
| χ2/df | 1.609 | 1.61 |
| Goodness-of-fit index (GFI) | 0.902 | 0.904 |
| Adjusted goodness-of-fit index (AGFI) | 0.881 | 0.884 |
| Comparative fit index (CFI) | 0.957 | 0.966 |
| Root mean square error of approximation (RMSEA) | 0.043 | 0.042 |
| Path | Coefficients | Standard Coefficients | t-Value | p-Value | Results | |
|---|---|---|---|---|---|---|
| H1.PIO → SE | CN | 0.347 | 0.309 | 4.493 | *** | Supported |
| US | 0.372 | 0.388 | 6.606 | *** | Supported | |
| H2.PSO → SE | CN | 0.111 | 0.094 | 1.487 | 0.137 | n.s |
| US | 0.27 | 0.302 | 5.4 | *** | Supported | |
| H3.PCU → SE | CN | 0.024 | 0.027 | 0.447 | 0.655 | n.s |
| US | 0.048 | 0.051 | 0.845 | 0.398 | n.s | |
| H4.PPC → SE | CN | 0.255 | 0.198 | 2.903 | 0.004 | Supported |
| US | 0.136 | 0.11 | 1.659 | 0.097 | n.s | |
| H5.PRC → SE | CN | 0.285 | 0.214 | 3.25 | 0.001 | Supported |
| US | 0.099 | 0.082 | 1.449 | 0.147 | n.s | |
| H6.SE → RUI | CN | 0.675 | 0.613 | 10.449 | *** | Supported |
| US | 0.545 | 0.57 | 9.73 | *** | Supported | |
| H7: SE → RUI (Fear of Missing Out) High < Low | Results | |||||||
|---|---|---|---|---|---|---|---|---|
| Coeff. | se | t | p | LLCI | ULCI | |||
| CN | constant | 4.148 | 0.066 | 63.07 | 0 | 4.018 | 4.277 | n.s |
| SE | 0.517 | 0.05 | 10.301 | 0 | 0.418 | 0.615 | ||
| FOMO | −0.249 | 0.049 | −5.081 | 0 | −0.346 | −0.153 | ||
| SE*FOMO | −0.014 | 0.033 | −0.426 | 0.671 | −0.078 | 0.05 | ||
| US | constant | 3.903 | 0.062 | 63.455 | 0 | 3.782 | 4.024 | Supported (High < Low) |
| SE | 0.435 | 0.042 | 10.429 | 0 | 0.353 | 0.518 | ||
| FOMO | −0.197 | 0.048 | −4.081 | 0 | −0.292 | −0.102 | ||
| SE*FOMO | −0.11 | 0.029 | −3.837 | 0 | −0.167 | −0.054 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, H.-M.; Jiang, N.; Xiao, H.; Lee, K. How Does the Fear of Missing Out (FOMO) Moderate Reduced SNS Usage Behavior? A Cross-Cultural Study of China and the United States. J. Theor. Appl. Electron. Commer. Res. 2026, 21, 20. https://doi.org/10.3390/jtaer21010020
Wang H-M, Jiang N, Xiao H, Lee K. How Does the Fear of Missing Out (FOMO) Moderate Reduced SNS Usage Behavior? A Cross-Cultural Study of China and the United States. Journal of Theoretical and Applied Electronic Commerce Research. 2026; 21(1):20. https://doi.org/10.3390/jtaer21010020
Chicago/Turabian StyleWang, Hui-Min, Nuo Jiang, Han Xiao, and Kyungtag Lee. 2026. "How Does the Fear of Missing Out (FOMO) Moderate Reduced SNS Usage Behavior? A Cross-Cultural Study of China and the United States" Journal of Theoretical and Applied Electronic Commerce Research 21, no. 1: 20. https://doi.org/10.3390/jtaer21010020
APA StyleWang, H.-M., Jiang, N., Xiao, H., & Lee, K. (2026). How Does the Fear of Missing Out (FOMO) Moderate Reduced SNS Usage Behavior? A Cross-Cultural Study of China and the United States. Journal of Theoretical and Applied Electronic Commerce Research, 21(1), 20. https://doi.org/10.3390/jtaer21010020

