Annual Achievements Report
Available Now
 
18 pages, 1462 KiB  
Article
From Gamma Rays to Cosmic Rays: Lepto-Hadronic Modeling of Blazar Sources as Candidates for Ultra-High-Energy Cosmic Rays
by Luiz Augusto Stuani Pereira and Samuel Victor Bernardo da Silva
Universe 2025, 11(8), 266; https://doi.org/10.3390/universe11080266 (registering DOI) - 14 Aug 2025
Abstract
Ultra-high-energy cosmic rays (UHECRs) with energies exceeding 1019 eV are believed to originate from extragalactic environments, potentially associated with relativistic jets in active galactic nuclei (AGN). Among AGNs, blazars, particularly those detected in very-high-energy (VHE) gamma rays, are promising candidates for UHECR [...] Read more.
Ultra-high-energy cosmic rays (UHECRs) with energies exceeding 1019 eV are believed to originate from extragalactic environments, potentially associated with relativistic jets in active galactic nuclei (AGN). Among AGNs, blazars, particularly those detected in very-high-energy (VHE) gamma rays, are promising candidates for UHECR acceleration and high-energy neutrino production. In this work, we investigate three blazar sources, AP Librae, 1H 1914–194, and PKS 0735+178, using multiwavelength spectral energy distribution (SED) modeling. These sources span a range of synchrotron peak classes and redshifts, providing a diverse context to explore the physical conditions in relativistic jets. We employ both leptonic and lepto-hadronic models to describe their broadband emission from radio to TeV energies, aiming to constrain key jet parameters such as magnetic field strength, emission region size, and particle energy distributions. Particular attention is given to evaluating their potential as sources of UHECRs and high-energy neutrinos. Our results shed light on the complex interplay between particle acceleration mechanisms, radiative processes, and multi-messenger signatures in extreme astrophysical environments. Full article
(This article belongs to the Special Issue Ultra-High Energy Cosmic Rays: Past, Present and Future)
Show Figures

Figure 1

18 pages, 4003 KiB  
Article
Understanding the Paradigm of Molecular-Network Conformations in Nanostructured Se-Rich Arsenoselenides AsxSe100−x (x < 10)
by Oleh Shpotyuk, Zdenka Lukáčová Bujňáková, Yaroslav Shpotyuk and Andriy Kovalskiy
Molecules 2025, 30(16), 3380; https://doi.org/10.3390/molecules30163380 (registering DOI) - 14 Aug 2025
Abstract
The paradigm of molecular-network conformations in Se-rich glassy arsenoselenides AsxSe100−x compositionally approaching pure Se (x < 10) is considered, employing comprehensive XRD analysis of diffuse peak-halos and nanocrystalline reflections from the known Se polymorphs in their XRD patterns. Within a [...] Read more.
The paradigm of molecular-network conformations in Se-rich glassy arsenoselenides AsxSe100−x compositionally approaching pure Se (x < 10) is considered, employing comprehensive XRD analysis of diffuse peak-halos and nanocrystalline reflections from the known Se polymorphs in their XRD patterns. Within a modified microcrystalline model, the changes with growing Se content in these alloys are interpreted in terms of suppression in intermediate range ordering due to shifting to high diffraction angles and a narrowed FSDP (first sharp diffraction peak)-related diffuse peak-halo, accompanied by enhancement in extended range ordering due to a shift to low diffraction angles and a broadened SSDP (second sharp diffraction peak)-related peak-halo. Overlapping of these peak-halos is enhanced in Se-rich alloys, tending towards unified FSDP-SSDP-related halos with characteristic doublet asymmetry due to the remnants of nanocrystalline trigonal t-Se. Drastic enhancement of the crystallization processes related to the trigonal t-Se phase is a principal feature of nanostructurization effects in Se-rich glassy arsenoselenides driven by nanomilling. The nanostructurization response in these alloys is revealed as a fragmentation impact on the correlation length of the FSDP-responsible entities, accompanied by an agglomeration impact on the correlation length of the SSDP-responsible entities. The FSDP- and SSDP-related diffuse peak-halos become more distinguishable in the XRD patterning of nanostructured arsenoselenides, being associated with other contributions from crystalline remnants, such as those expected in transition to glassy arsenoselenides with higher Se content. An irregular sequence of randomly distributed cis- and trans-configurated multiatomic Se linkages is visualized by ab initio quantum-chemical modeling of Sen chain- and ring-like conformations. The most critical point of molecular-network disproportionality analysis in the examined arsenoselenide AsxSe100−x glassy alloys obeying the chain-crossing model corresponds to x = 7 (equivalent to 93 at. % of Se in the binary As-Se system), as an equilibrium point between mixed cis-trans-configurated Se7 chains and exceptionally cis-configurated molecular Se8 rings. At the basis of developed models, the paradigm of thermodynamically stable molecular-network conformations in the nanostructured Se-rich arsenoselenides AsxSe100−x (x < 10) is surely resolved in favor of chain-like network-forming conformations composed of mixed cis-trans-configurated network-forming multiatomic Se fragments. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

21 pages, 741 KiB  
Systematic Review
Physiological and Physical Determinants of Flat-Water Kayaking
by Yi Shin Lee, Amelia Dingley, Danny Lum, Frankie Tan and John F. T. Fernandes
Muscles 2025, 4(3), 32; https://doi.org/10.3390/muscles4030032 (registering DOI) - 14 Aug 2025
Abstract
The main research question of this review involved the identification of the various physiological and physical determinants of flat-water kayaking. A systematic search was conducted using three databases (PubMed, Google Scholar, and Microsoft Academic) between 1991 and December 2022. Quality assessment was performed [...] Read more.
The main research question of this review involved the identification of the various physiological and physical determinants of flat-water kayaking. A systematic search was conducted using three databases (PubMed, Google Scholar, and Microsoft Academic) between 1991 and December 2022. Quality assessment was performed using a version of the National Heart, Lung and Blood Institute checklist tailored for cross-sectional and observational studies. A total of 169 articles were identified in the initial screening. After duplicate removal and further screening for relevance, a total of 17 articles were included in the review. Altogether, it was found that flat-water kayaking performance was strongly correlated with maximum oxygen uptake (VO2max), aerobic and anaerobic thresholds, peak aerobic and anaerobic capacity measure in lab and on the water, and upper and lower-body strength and power, which were measured using heavy resistance, as well as isometric and isokinetic implements. What is less clear is the association between total lean mass and flat-water kayaking performance. However, this may largely be due to the differences in when the measurements were taken. Full article
Show Figures

Figure 1

29 pages, 1268 KiB  
Systematic Review
Clinical and Imaging-Based Prognostic Models for Recurrence and Local Tumor Progression Following Thermal Ablation of Hepatocellular Carcinoma: A Systematic Review
by Coosje A. M. Verhagen, Faeze Gholamiankhah, Emma C. M. Buijsman, Alexander Broersen, Gonnie C. M. van Erp, Ariadne L. van der Velden, Hossein Rahmani, Christiaan van der Leij, Ralph Brecheisen, Rodolfo Lanocita, Jouke Dijkstra and Mark C. Burgmans
Cancers 2025, 17(16), 2656; https://doi.org/10.3390/cancers17162656 (registering DOI) - 14 Aug 2025
Abstract
Background: Early detection of patients at high risk for recurrence or local tumor progression (LTP) following thermal ablation of hepatocellular carcinoma (HCC) is essential for treatment selection and individualized follow-up. This systematic review aims to assess and compare the performance of prognostic models [...] Read more.
Background: Early detection of patients at high risk for recurrence or local tumor progression (LTP) following thermal ablation of hepatocellular carcinoma (HCC) is essential for treatment selection and individualized follow-up. This systematic review aims to assess and compare the performance of prognostic models predicting recurrence or LTP in patients with HCC treated with thermal ablation. Methods: PubMed, Web of Science, Cochrane, and Embase were searched for studies developing models to predict recurrence after thermal ablation in treatment-naïve HCC patients, using imaging and clinical data with reported test set performance. Risk of bias and applicability were assessed by the Prediction model Risk of Bias Assessment Tool. Data on model performance, feature extraction and modeling technique was collected. Results: In total, 16 studies comprising 39 prognostic models were included, all developed using retrospective data from China or Korea. Outcomes included recurrence-free survival, (intrahepatic) early recurrence, LTP, late recurrence and aggressive intrasegmental recurrence. Predictive parameters varied across models addressing identical outcomes. Outcome definitions also differed. Nine models were externally validated. Most studies had a high risk of bias due to methodological limitations. Conclusions: Variability in model development methodology and type of predictors was found. Models that integrated multiple types of predictors consistently outperformed those relying on one type. To advance predictive tools toward clinical implementation, future research should prioritize standardized outcome definitions, external testing, and transparent reporting. Until these challenges are addressed, current evaluated models should be regarded as promising but preliminary tools. Full article
Show Figures

Figure 1

21 pages, 6396 KiB  
Article
Field Spectroscopy for Monitoring Nitrogen Fertilization and Estimating Cornstalk Nitrate Content in Maize
by Jesús Val, Iván González-Pérez, Enoc Sanz-Ablanedo, Ángel Maresma and José Ramón Rodríguez-Pérez
AgriEngineering 2025, 7(8), 264; https://doi.org/10.3390/agriengineering7080264 (registering DOI) - 14 Aug 2025
Abstract
Evaluating the response of maize crops to different nitrogen fertilization rates is essential to ensure their agronomic, environmental, and economic efficiency. In this study, the spectral information of maize plants subjected to five distinct nitrogen fertilization strategies was analyzed. The fertilization strategies were [...] Read more.
Evaluating the response of maize crops to different nitrogen fertilization rates is essential to ensure their agronomic, environmental, and economic efficiency. In this study, the spectral information of maize plants subjected to five distinct nitrogen fertilization strategies was analyzed. The fertilization strategies were based on the practices commonly used in maize fields in the study area, with the aim of ensuring the research findings’ applicability. The spectral reflectance was measured using a spectroradiometer covering the 350–2500 nm range, and the results enabled the identification of optimal spectral regions for monitoring plants’ nitrogen status, particularly in the visible and infrared ranges. A Principal Component Analysis (PCA) of the reflectance data revealed the key wavelengths most sensitive to the nitrogen availability: 555 nm and 720 nm during the vegetative stage and 680 nm during the reproductive stage. This information will support the development of drone-mounted multispectral sensor systems for large-scale monitoring, as well as the design of low-cost sensors for early nitrogen deficiency detection. Furthermore, the study demonstrated the feasibility of estimating the cornstalk nitrate content based on direct reflectance measurements of maize stems. The prediction model showed satisfactory performance, with a coefficient of determination (R2) of 0.845 and a root mean square error of prediction (RMSECV) of 2035.3 ppm, indicating its strong potential for predicting the NO3–N concentrations in maize stems. Full article
20 pages, 3278 KiB  
Article
Design and Implementation Process of an Intelligent Automotive Chassis Domain Controller System Based on AUTOSAR
by Yanlin Jin, Yinong Li, Ling Zheng, Guangxuan Li and Xiaoyu Huang
Sensors 2025, 25(16), 5056; https://doi.org/10.3390/s25165056 (registering DOI) - 14 Aug 2025
Abstract
With the rapid development of intelligent automobiles, the chassis serves as an essential carrier of intelligence and a necessary condition for achieving high-level autonomous driving. Its electronic and electrical architecture is evolving toward centralized development, which is also significantly increasing the complexity of [...] Read more.
With the rapid development of intelligent automobiles, the chassis serves as an essential carrier of intelligence and a necessary condition for achieving high-level autonomous driving. Its electronic and electrical architecture is evolving toward centralized development, which is also significantly increasing the complexity of system functions. Meanwhile, with the integration of more sensors and an increase in data volume, stricter requirements have been placed on software scalability, portability, and maintainability. This paper presents a system software design and implementation approach for the chassis domain controller by integrating the AUTOSAR standard with model-based design (MBD). The developed software is subsequently deployed on a domain controller hardware platform based on the Renesas u2a16 chip for integrated testing. The software algorithm development, model-in-the-loop (MIL) testing, hardware-in-the-loop (HIL) testing, and real vehicle calibration processes are described in detail, focusing on the roll stability control software component in the chassis domain controller. A detailed definition of the toolchain for each development stage is also provided. The feasibility and effectiveness of the proposed chassis domain controller software system development process, based on the combination of the AUTOSAR standard and model-based design, are validated through test results. This method effectively achieves software–hardware decoupling and enhances software scalability, module reusability, and reliability, which is of great significance for improving the efficiency and iteration of chassis domain controller development. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

16 pages, 4245 KiB  
Article
Van der Waals Magnetic Tunnel Junctions Based on Two-Dimensional 1T-VSe2 and Rotationally Aligned h-BN Monolayer
by Qiaoxuan Zhang, Cong Wang, Wenjie Wang, Rong Sun, Rongjie Zheng, Qingchang Ji, Hongwei Yan, Zhengbo Wang, Xin He, Hongyan Wang, Chang Yang, Jinchen Yu, Lingjiang Zhang, Ming Lei and Zhongchang Wang
Nanomaterials 2025, 15(16), 1246; https://doi.org/10.3390/nano15161246 (registering DOI) - 14 Aug 2025
Abstract
Magnetic tunnel junctions (MTJs) are pivotal for spintronic applications such as magneto resistive memory and sensors. Two-dimensional van der Waals heterostructures offer a promising platform for miniaturizing MTJs while enabling the twist-angle engineering of their properties. Here, we investigate the impact of twisting [...] Read more.
Magnetic tunnel junctions (MTJs) are pivotal for spintronic applications such as magneto resistive memory and sensors. Two-dimensional van der Waals heterostructures offer a promising platform for miniaturizing MTJs while enabling the twist-angle engineering of their properties. Here, we investigate the impact of twisting the insulating barrier layer on the performance of a van der Waals MTJ with the structure graphene/1T-VSe2/h-BN/1T-VSe2/graphene, where 1T-VSe2 serves as the ferromagnetic electrodes and the monolayer h-BN acts as the tunnel barrier. Using first-principles calculations based on density functional theory (DFT) combined with the non-equilibrium Green’s function (NEGF) formalism, we systematically calculate the spin-dependent transport properties for 18 distinct rotational alignments of the h-BN layer (0° to 172.4°). Our results reveal that the tunneling magnetoresistance (TMR) ratio exhibits dramatic, rotation-dependent variations, ranging from 2328% to 24,608%. The maximum TMR occurs near 52.4°. An analysis shows that the twist angle modifies the d-orbital electronic states of interfacial V atoms in the 1T-VSe2 layers and alters the spin polarization at the Fermi level, thereby governing the spin-dependent transmission through the barrier. This demonstrates that rotational manipulation of the h-BN layer provides an effective means to engineer the TMR and performance of van der Waals MTJs. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

25 pages, 625 KiB  
Review
Evolution of Shipboard Motor Failure Monitoring Technology: Multi-Physics Field Mechanism Modeling and Intelligent Operation and Maintenance System Integration
by Jun Sun, Pan Sun, Boyu Lin and Weibo Li
Energies 2025, 18(16), 4336; https://doi.org/10.3390/en18164336 (registering DOI) - 14 Aug 2025
Abstract
As a core component of both the ship propulsion system and mission-critical equipment, shipboard motors are undergoing a technological transition from traditional fault diagnosis to multi-physical-field collaborative modeling and integrated intelligent maintenance systems. This paper provides a systematic review of recent advances in [...] Read more.
As a core component of both the ship propulsion system and mission-critical equipment, shipboard motors are undergoing a technological transition from traditional fault diagnosis to multi-physical-field collaborative modeling and integrated intelligent maintenance systems. This paper provides a systematic review of recent advances in shipboard motor fault monitoring, with a focus on key technical challenges under complex service environments, and offers several innovative insights and analyses in the following aspects. First, regarding the fault evolution under electromagnetic–thermal–mechanical coupling, this study summarizes the typical fault mechanisms, such as bearing electrical erosion, rotor eccentricity, permanent magnet demagnetization, and insulation aging, and analyzes their modeling approaches and multi-physics coupling evolution paths. Second, in response to the problem of multi-source signal fusion, the applicability and limitations of feature extraction methods—including current analysis, vibration demodulation, infrared thermography, and Dempster–Shafer (D-S) evidence theory—are evaluated, providing a basis for designing subsequent signal fusion strategies. With respect to intelligent diagnostic models, this paper compares model-driven and data-driven approaches in terms of their suitability for different scenarios, highlighting their complementarity and integration potential in the complex operating conditions of shipboard motors. Finally, considering practical deployment needs, the key aspects of monitoring platform implementation under shipborne edge computing environments are discussed. The study also identifies current research gaps and proposes future directions, such as digital twin-driven intelligent maintenance, fleet-level PHM collaborative management, and standardized health data transmission. In summary, this paper offers a comprehensive analysis in the areas of fault mechanism modeling, feature extraction method evaluation, and system deployment frameworks, aiming to provide a theoretical reference and engineering insights for the advancement of shipboard motor health management technologies. Full article
36 pages, 11327 KiB  
Article
Design and Research of High-Speed Synchronous Membrane-Covering Device for Rice Membrane-Covering Transplanter Based on PSO-Fuzzy PID
by Weiping Zhang, Miao Lu, Lixing Wei, Shengjie Yang, Liuxihang Wang, Pan Ma, Xixuan Lin, Anrui Hu, Shuangxi Liu and Shenghui Fu
Agronomy 2025, 15(8), 1962; https://doi.org/10.3390/agronomy15081962 (registering DOI) - 14 Aug 2025
Abstract
Rice membrane-covered cultivation offers notable agronomic advantages, including effective weed suppression and improved moisture retention. However, current mechanized approaches remain constrained by high labor requirements, low operational efficiency, and the inherent fragility of biodegradable membranes. To address these limitations, this study integrates a [...] Read more.
Rice membrane-covered cultivation offers notable agronomic advantages, including effective weed suppression and improved moisture retention. However, current mechanized approaches remain constrained by high labor requirements, low operational efficiency, and the inherent fragility of biodegradable membranes. To address these limitations, this study integrates a high-speed synchronous membrane-covering device, governed by a PSO-Fuzzy PID control algorithm, into a conventional rice transplanter. This integration enables precise coordination between membrane-laying and transplanting operations. The mechanical properties of the membranes were analyzed, and a tension evaluation model was developed considering structural parameters and roll diameter variation. Experimental tests on three biodegradable membranes revealed an average thickness of 0.012 mm, a longitudinal tensile force of 0.57 N, and a tensile strength of 2.85 N/mm. The PSO algorithm was employed to optimize fuzzy PID parameters (K = 5.3095, Kp = 10.6981, Ki = 0.0100, Kd = 8.2892), achieving adaptive synchronization between membrane output speed and transplanter travel speed. Simulation results demonstrated that the PSO-Fuzzy PID reduced rise time by 53.13%, stabilization time by 90.58%, and overshoot by 3.3% compared with the conventional PID. In addition, a dedicated test bench for the membrane-covering device was designed and fabricated. Orthogonal experiments determined the optimal parameters for the speed-measurement system: a membrane pressure of 5.000 N, a roller width of 28.506 mm, and a placement angle of 0.690°. Under these conditions, the minimum membrane-stretching tension was 0.55 N, and the rotational speed error was 0.359%. Field tests indicated a synchronization error below 1.00%, a membrane-width variation rate below 1.50%, and strong anti-interference capability. The proposed device provides an effective solution for intelligent and fully mechanized rice transplanting. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

28 pages, 3987 KiB  
Review
Towards Harmonized Reduction of Seismic Vulnerability: Analyzing Regulatory and Incentive Frameworks in the Adriatic—Ionian Region
by Petra Triller, Angela Santangelo, Giulia Marzani and Maja Kreslin
Urban Sci. 2025, 9(8), 319; https://doi.org/10.3390/urbansci9080319 (registering DOI) - 14 Aug 2025
Abstract
The Adriatic–Ionian region is seismically very active and poses a major challenge for risk mitigation. Each country has developed laws, standards, and techniques to reduce seismic vulnerability. The ADRISEISMIC project created a database of existing regulatory and incentive frameworks, based on a comprehensive [...] Read more.
The Adriatic–Ionian region is seismically very active and poses a major challenge for risk mitigation. Each country has developed laws, standards, and techniques to reduce seismic vulnerability. The ADRISEISMIC project created a database of existing regulatory and incentive frameworks, based on a comprehensive study conducted in six countries. The study covered seismic norms, building regulations, urban planning regulations, incentive frameworks, and post-earthquake planning. A comparative matrix was developed in which key parameters, such as year of issuance, references to EU regulations, level of enforcement, mandatory status, target groups, reference period in relation to earthquake occurrence, and consideration of cultural heritage, were analyzed. The database aims to support a harmonized strategy to reduce seismic vulnerability by promoting measures based on common reference standards. This increases safety, improves the built environment, and minimizes risks to people and nature. Particular attention will be paid to historic urban areas that are both vulnerable and rich in cultural heritage. The collected regulatory and incentive framework will serve as a basis for future research to support the identification of good practices and the formulation of customized roadmaps to apply them to reduce seismic vulnerability. Full article
Show Figures

Figure 1

20 pages, 2601 KiB  
Article
Necrotic Bone Fluid Suppresses Energy Metabolism of Porcine PBMC-Derived Macrophages In Vitro
by Zhuo Deng, Chau P. Nguyen, Yan Liu, Jaehyup Kim, Thomas P. Mathews, Chi Ma, Yinshi Ren, Chao Xing and Harry K. W. Kim
Cells 2025, 14(16), 1258; https://doi.org/10.3390/cells14161258 (registering DOI) - 14 Aug 2025
Abstract
Legg–Calvé–Perthes disease is a juvenile ischemic osteonecrosis (ON) of the femoral head. A disruption of blood supply to the femoral head produces extensive cell death and necrotic debris. Macrophages are innate immune cells recruited to the necrotic bone to orchestrate the repair process. [...] Read more.
Legg–Calvé–Perthes disease is a juvenile ischemic osteonecrosis (ON) of the femoral head. A disruption of blood supply to the femoral head produces extensive cell death and necrotic debris. Macrophages are innate immune cells recruited to the necrotic bone to orchestrate the repair process. However, the role macrophages play in the ON repair process is still not elucidated. The purpose of this study was to determine the effect of necrotic bone fluid (NBF) on porcine peripheral blood mononuclear cell (PBMC)-derived macrophages. Monocytes were positively selected by CD14 MicroBeads from pig PBMCs. After maturation, cells were treated with no stimulant (Con), LPS + IFNγ (M1), IL4 + IL13 (M2), or NBF. All culture supernatants and cells were harvested for ELISA, Western blot, FACS, RT-qPCR and bulk RNAseq. The Western blot and ELISA showed that only the M1 condition elevated the protein level of pro-inflammatory cytokines. The FACS results indicated that percentage of CD8086+ (M1 marker) cells was significantly lower in the M2 vs. other conditions, whereas the relative median fluorescence intensity of CD8086 was significantly higher in the M1 vs. other conditions. The NBF did not show any significant change compared to the Con. mRNA analysis showed significantly increased IL1β and IL8 expression in the M1 vs. Con scenario. TNFα expression was significantly decreased in the M2 vs. Con scenario. Interestingly, the NBF did not induce pro-inflammatory gene expression. For bulk RNAseq, the Gene Set Enrichment Analyses of the M1-stimulated cells revealed the enrichment of pro-inflammatory gene sets. For the M2, most of the enriched categories were related to the down-regulation of inflammation. For the NBF, the most enriched categories were related to the down-regulation of protein translation and mitochondrial metabolism. We further confirmed the suppressive effects of NBF on macrophage functions using Seahorse Cell Mito Stress Tests, 13C-glucose metabolic flux analysis, mitochondrial ROS detection via MitoSOXTM staining, and phagocytosis assay. Taken together, these results revealed that the NBF down-regulates the overall cellular activity and energy metabolism of macrophages. Full article
20 pages, 2100 KiB  
Article
PEPAD: A Promising Therapeutic Approach for the Treatment of Murine Melanoma (B16F10-Nex2)
by Camila de Oliveira Gutierrez, Rafael Araujo Pereira, Claudiane Vilharroel Almeida, Luís Henrique de Oliveira Almeida, Caio Fernando Ramalho de Oliveira, Ana Cristina Jacobowski, Patrícia Maria Guedes Paiva, Durvanei Augusto Maria, Rodrigo Juliano Oliveira, Thais de Andrade Farias Rodrigues, Tamaeh Monteiro-Alfredo, Ana Paula de Araújo Boleti and Maria Ligia Rodrigues Macedo
Pharmaceuticals 2025, 18(8), 1203; https://doi.org/10.3390/ph18081203 (registering DOI) - 14 Aug 2025
Abstract
Background/Objectives: Cancer is one of the leading causes of death worldwide, and skin cancer is especially prevalent and lethal in Brazil. Despite advancements in treatment, there is still a need for new anticancer agents that are effective, selective, and less toxic. This [...] Read more.
Background/Objectives: Cancer is one of the leading causes of death worldwide, and skin cancer is especially prevalent and lethal in Brazil. Despite advancements in treatment, there is still a need for new anticancer agents that are effective, selective, and less toxic. This study aimed to evaluate the cytotoxic and therapeutic potential of the peptide PEPAD. Methods: The cytotoxicity of PEPAD was assessed by MTT assay in murine melanoma (B16F10-Nex2), human melanoma (SK-MEL-28), breast (MCF-7), and cervical (HeLa) cancer cell lines. Selectivity was evaluated in healthy cells (RAW 264.7 and FN1). Morphological changes were analyzed by microscopy. Cell migration was assessed using scratch assays. Apoptotic features were evaluated using MitoTracker Deep Red, NucBlue, CaspACETM labeling, and flow cytometry. Immunogenic cell death was investigated by calreticulin and HMGB1 release. Molecular dynamics simulations explored peptide structure and interaction with lipid membranes. Results: PEPAD showed IC50 values of 7.4 µM and 18 µM in B16F10-Nex2 and SK-MEL-28 cells, respectively, and >60 µM in MCF-7 and HeLa cells. Low toxicity was observed in healthy cells (IC50 > 56 µM), indicating high selectivity. Apoptotic morphology and reduced cell migration were observed. Flow cytometry and fluorescence probes confirmed apoptosis and mitochondrial swelling. Calreticulin and HMGB1 release indicated immunogenic cell death. Simulations showed that PEPAD maintains a stable α-helical conformation and interacts with membranes. Conclusions: These findings highlight PEPAD’s selective cytotoxicity and its potential as an anticancer agent with apoptotic and immunogenic properties, making it a promising candidate for therapeutic development. Full article
Show Figures

Graphical abstract

19 pages, 7477 KiB  
Article
An Exploratory Study on the Use of Root-Mean-Square Vertical Acceleration Data from Aircraft for the Detection of Low-Level Turbulence at an Operating Airport
by Christy Yan Yu Leung, Ping Cheung, Man Lok Chong and Pak Wai Chan
Appl. Sci. 2025, 15(16), 8974; https://doi.org/10.3390/app15168974 (registering DOI) - 14 Aug 2025
Abstract
Low-level turbulence is a meteorological hazard that disrupts the operation of airports and is particularly pronounced at Hong Kong International Airport (HKIA), which is impacted by various sources of low-level turbulence (e.g., terrain disrupting wind flow, sea breeze, and thunderstorms). The possibility of [...] Read more.
Low-level turbulence is a meteorological hazard that disrupts the operation of airports and is particularly pronounced at Hong Kong International Airport (HKIA), which is impacted by various sources of low-level turbulence (e.g., terrain disrupting wind flow, sea breeze, and thunderstorms). The possibility of using root-mean-square vertical acceleration (RMSVA) data from Automatic Dependent Surveillance–Broadcast (ADS-B) for low-level turbulence monitoring is studied in this paper. Comparisons are performed between RMSVA and Light Detection And Ranging (LIDAR)-based Eddy Dissipation Rate (EDR) maps and the aircraft-based EDR. Moreover, the LIDAR-based EDR map, aircraft EDR, and pilot report for turbulence reporting are compared for two typical cases at HKIA. It was found that the various estimates/reports of turbulence are generally consistent with one another, at least based on the limited sample considered in this paper. However, at very low altitudes close to the touchdown of arrival flights, RMSVA may not be available due to a lack of ADS-B data. With effective quality control and further in-depth study, it will be possible to use RMSVA to monitor low-level turbulence and to alert pilots if turbulence is reported by the pilot of the preceding flight based on RMSVA. The technical details of the various comparisons and the assumptions made are described herein. Full article
(This article belongs to the Section Earth Sciences)
24 pages, 1735 KiB  
Article
A Multi-Sensor Fusion-Based Localization Method for a Magnetic Adhesion Wall-Climbing Robot
by Xiaowei Han, Hao Li, Nanmu Hui, Jiaying Zhang and Gaofeng Yue
Sensors 2025, 25(16), 5051; https://doi.org/10.3390/s25165051 (registering DOI) - 14 Aug 2025
Abstract
To address the decline in the localization accuracy of magnetic adhesion wall-climbing robots operating on large steel structures, caused by visual occlusion, sensor drift, and environmental interference, this study proposes a simulation-based multi-sensor fusion localization method that integrates an Inertial Measurement Unit (IMU), [...] Read more.
To address the decline in the localization accuracy of magnetic adhesion wall-climbing robots operating on large steel structures, caused by visual occlusion, sensor drift, and environmental interference, this study proposes a simulation-based multi-sensor fusion localization method that integrates an Inertial Measurement Unit (IMU), Wheel Odometry (Odom), and Ultra-Wideband (UWB). An Extended Kalman Filter (EKF) is employed to integrate IMU and Odom measurements through a complementary filtering model, while a geometric residual-based weighting mechanism is introduced to optimize raw UWB ranging data. This enhances the accuracy and robustness of both the prediction and observation stages. All evaluations were conducted in a simulated environment, including scenarios on flat plates and spherical tank-shaped steel surfaces. The proposed method maintained a maximum localization error within 5 cm in both linear and closed-loop trajectories and achieved over 30% improvement in horizontal accuracy compared to baseline EKF-based approaches. The system exhibited consistent localization performance across varying surface geometries, providing technical support for robotic operations on large steel infrastructures. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

16 pages, 1210 KiB  
Article
Comprehensive Analysis of Gastrointestinal Injury Induced by Nonsteroidal Anti-Inflammatory Drugs Using Data from FDA Adverse Event Reporting System Database
by Motoki Kei and Yoshihiro Uesawa
Pharmaceuticals 2025, 18(8), 1204; https://doi.org/10.3390/ph18081204 (registering DOI) - 14 Aug 2025
Abstract
Background/Objectives: Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly associated with gastrointestinal (GI) adverse events. This study aimed to assess the incidence and patterns of NSAID-induced GI disorders using the FDA Adverse Event Reporting System (FAERS) database and to compare the risks among different NSAIDs. [...] Read more.
Background/Objectives: Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly associated with gastrointestinal (GI) adverse events. This study aimed to assess the incidence and patterns of NSAID-induced GI disorders using the FDA Adverse Event Reporting System (FAERS) database and to compare the risks among different NSAIDs. Methods: NSAID-related reports were extracted from FAERS, focusing on 21 ulcer-related GI events with ≥1000 reports each, based on MedDRA v26.0. The number of reports, reporting odds ratios, and p-values were calculated and visualized using a volcano plot. Principal component analysis(PCA) was carried out to reduce the dimensionality of the dataset and revealed under-lying patterns in the data.PCA was performed to identify patterns related to risk, severity, and injury site, whereas hierarchical clustering was used to group NSAIDs based on these patterns. Hierarchical cluster analysis is a method of grouping similar data to generate a classification. Results: Statistically significant signals were identified for 19 of the 21 GI-related adverse events, including the serious condition of perforation. PCA revealed that the first component represented risk, the second severity, and the third the site of injury (upper vs. lower GI tract). Cyclooxygenase-2 (COX-2) selective NSAIDs (e.g., celecoxib, rofecoxib) were associated with a lower incidence but greater severity, primarily in the upper GI tract. Conversely, nonselective NSAIDs (e.g., acetylsalicylic acid, lornoxicam) showed higher incidence rates, though the events were generally milder. In our dataset, acetylsalicylic acid had the highest incidence, whereas meloxicam showed the highest severity. Clustering analysis revealed three distinct NSAID groups with differing patterns in risk, severity, and affected GI site. Mild adverse events may be underreported in FAERS. Dosage-related effects were not assessed in this study. Conclusions: NSAIDs differ significantly in their gastrointestinal adverse event profiles, attributable to COX selectivity. When selecting an NSAID, both the likelihood and the nature of potential GI harm should be considered. Full article
Show Figures

Graphical abstract

17 pages, 354 KiB  
Article
Research on Environmental Evaluation Index of Carbon-Based Power Generation Formats Under the “Dual Carbon Goals”
by Chaojie Li, Xiankui Wen, Ying Zhang, Ruyue Guo and Siran Peng
Energies 2025, 18(16), 4337; https://doi.org/10.3390/en18164337 (registering DOI) - 14 Aug 2025
Abstract
As a major source of carbon emissions, the carbon-based power generation industry requires a scientifically robust environmental performance evaluation system to facilitate its green transition and sustainable development. Focusing on unique transition dynamics across four carbon-based power generation formats, this study compares environmental [...] Read more.
As a major source of carbon emissions, the carbon-based power generation industry requires a scientifically robust environmental performance evaluation system to facilitate its green transition and sustainable development. Focusing on unique transition dynamics across four carbon-based power generation formats, this study compares environmental dimension indicators across typical ESG evaluation frameworks and proposes an innovative evaluation index model of environmental performance based on common metrics, with a particular emphasis on their contribution potential to the “Dual Carbon Goals”. The framework’s core innovation lies in its Dual Carbon-focused indicator system, which evaluates three critical indicators overlooked by mainstream ESG methodologies. It extends to include upstream/downstream processes, addressing gaps in current evaluation systems. The findings reveal that core environmental issues, such as climate change, pollution emissions, and resource utilization, exhibit broad commonality in ESG evaluations. Among the assessed indicators, carbon emission intensity carries the highest weight, underscoring its centrality in each power generation sector’s efforts to align with the Dual Carbon Goals. Furthermore, the analysis demonstrates that underground coal gasification combined cycle power generation has a relatively favorable environmental performance, ranking slightly below natural gas combined cycle but above shale gas combined cycle power generation. In contrast, traditional coal-fired power generation exhibits significantly poorer environmental outcomes, highlighting both the efficacy of technological upgrades in reducing emissions and the urgent need for transitioning away from conventional coal-based power. Full article
Show Figures

Figure 1

27 pages, 11958 KiB  
Article
In Silico and In Vivo Studies Reveal the Potential Preventive Impact of Cuminum cyminum and Foeniculum vulgare Essential Oil Nanocapsules Against Depression-like States in Mice Fed a High-Fat Diet and Exposed to Chronic Unpredictable Mild Stress
by Karem Fouda and Rasha S. Mohamed
Sci. Pharm. 2025, 93(3), 37; https://doi.org/10.3390/scipharm93030037 (registering DOI) - 14 Aug 2025
Abstract
Hyperlipidemia, oxidative stress, and excessive inflammatory cytokine production are risk factors for depression. The potential preventive effects of essential oils (EOs) such as cumin and fennel EOs on depression may stem from their hypolipidemic, antioxidant, and anti-inflammatory activities. This work aimed to investigate [...] Read more.
Hyperlipidemia, oxidative stress, and excessive inflammatory cytokine production are risk factors for depression. The potential preventive effects of essential oils (EOs) such as cumin and fennel EOs on depression may stem from their hypolipidemic, antioxidant, and anti-inflammatory activities. This work aimed to investigate the effects of cumin and fennel EO nanocapsules in a mouse model of depression caused by a high-fat diet (HFD) and chronic mild stress (CMS) using both in silico and in vivo studies. The cumin and fennel EOs were extracted, analyzed by GC-MS, and encapsulated in nano-form using gum Arabic and maltodextrin as wall materials. The freeze-dried nanocapsules were evaluated in HFD/CMS-treated mice. Molecular docking was used to examine the significance of the oils’ compounds in blocking the active sites of hydroxymethylglutaryl-CoA (HMG-CoA) and indoleamine 2,3-dioxygenase (IDO). According to the molecular docking results, the interactions between EO components and HMG-CoA or IDO indicate that these EOs may have hypercholesterolemic and antidepressive effects. Cumin and fennel EO nanocapsules showed hypolipidemic, antioxidant, and anti-inflammatory effects in vivo. This was demonstrated by the down-regulation of oxidants (ROS, MDA, and NO) and inflammatory markers (TLR4, TNF-α, and IL-6) in the brain, changes in lipid profile parameters, and the up-regulation of antioxidant enzymes (SOD, CAT, and GSH). The in silico and in vivo outputs revealed the potential preventive impact of cumin and fennel EO nanocapsules against depression-like states in the mouse model through the prevention of dyslipidemia, neuroxidation, and neuroinflammation. More human studies are needed to fully understand the antidepressive effects of cumin and fennel EO nanocapsules. Full article
Show Figures

Figure 1

20 pages, 1717 KiB  
Article
Optimization of Extraction Methods for NMR and LC-MS Metabolite Fingerprint Profiling of Botanical Ingredients in Food and Natural Health Products (NHPs)
by Varathan Vinayagam, Arunachalam Thirugnanasambandam, Subramanyam Ragupathy, Ragupathy Sneha and Steven G. Newmaster
Molecules 2025, 30(16), 3379; https://doi.org/10.3390/molecules30163379 (registering DOI) - 14 Aug 2025
Abstract
Metabolite fingerprint profiling is a robust tool for verifying suppliers of authentic botanical ingredients. While comparative studies exist, few apply identical conditions across multiple species; this study utilized a cross-species comparison to identify versatile solvents despite biochemical variability. Multiple solvents were used for [...] Read more.
Metabolite fingerprint profiling is a robust tool for verifying suppliers of authentic botanical ingredients. While comparative studies exist, few apply identical conditions across multiple species; this study utilized a cross-species comparison to identify versatile solvents despite biochemical variability. Multiple solvents were used for sample extraction prior to analysis by proton NMR and liquid chromatography–mass spectrometry (LC-MS) for multiple botanicals including Camellia sinensis, Cannabis sativa, Myrciaria dubia, Sambucus nigra, Zingiber officinale, Curcuma longa, Silybum marianum, Vaccinium macrocarpon, and Prunus cerasus. Comparisons were normalized by total intensity; deuterated methanol aids NMR lock but is not required for LC-MS. Hierarchical clustering analysis (HCA) evaluated solvent efficacy. Methanol–deuterium oxide (1:1) was the most effective extraction method, yielding 155 NMR spectral metabolite variables for Camellia sinensis, while methanol (90% CH3OH + 10% CD3OD) produced 198 for Cannabis sativa and 167 for Myrciaria dubia, with 11, 9, and 28 assigned metabolites, respectively. LC-MS detected 121 metabolites in Myrciaria dubia in methanol as the most effective extraction method. Methanol (10% deuterated) is the most effective extraction method for comprehensive metabolite fingerprinting using NMR and LC-MS protocols because it provides the broadest metabolite coverage. This study advances fit-for-purpose methods to qualify suppliers of botanical ingredients in food and NHP quality control programs. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

25 pages, 1953 KiB  
Article
Microbiome and Chemistry Insights into Two Oligotrophic Karst Water Springs in Slovenia from 2016 and 2023 Perspectives
by Mojca Likar, Marko Blagojevič, Maša Ošlak, Matjaž Mikoš, Zala Prevoršek, Ladislav Holko, Dragana Ribič, Blaž Likozar, Uroš Novak, Boštjan Murovec, Sabina Kolbl Repinc and Blaž Stres
Water 2025, 17(16), 2402; https://doi.org/10.3390/w17162402 (registering DOI) - 14 Aug 2025
Abstract
Groundwater, a critical source of drinking water, plays an essential role in global biogeochemical cycles, yet its microbial ecosystems remain insufficiently characterized, particularly in pristine karst aquifers. This study conducted high-resolution profiling of microbial communities and environmental parameters in two representative alpine karst [...] Read more.
Groundwater, a critical source of drinking water, plays an essential role in global biogeochemical cycles, yet its microbial ecosystems remain insufficiently characterized, particularly in pristine karst aquifers. This study conducted high-resolution profiling of microbial communities and environmental parameters in two representative alpine karst aquifers in Slovenia: Idrijska Bela and Krajcarca. Monthly groundwater samples from the Krajcarca spring and Idrijska Bela borehole over a 14-month period were analyzed using whole-metagenome sequencing (WMS), UV-Vis spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), and isotopic analysis. The results revealed stable hydrochemical conditions with clear spatial differences driven by bedrock composition and groundwater residence time. Bacterial communities displayed strong correlations with hydrochemical parameters, while archaeal communities exhibited temporal stability. Functional gene profiles mirrored bacterial patterns, emphasizing the influence of environmental gradients on metabolic potential. No significant temporal changes were detected across two sampling campaigns (2016–2023), highlighting the resilience of these aquifers. This work establishes a valuable baseline for understanding pristine groundwater microbiomes and informs future monitoring and water quality management strategies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 407 KiB  
Article
Does IFRS Adoption Improve Analysts’ Earnings Forecasts? Evidence from Saudi Arabia
by Taoufik Elkemali
Risks 2025, 13(8), 152; https://doi.org/10.3390/risks13080152 (registering DOI) - 14 Aug 2025
Abstract
This study explores how IFRS adoption is associated with analysts’ forecast accuracy, optimism, and dispersion in Saudi Arabia. Drawing on data from publicly listed firms from 2013 to 2020, we assess changes in forecasting behavior surrounding the IFRS transition, accounting for firm-specific and [...] Read more.
This study explores how IFRS adoption is associated with analysts’ forecast accuracy, optimism, and dispersion in Saudi Arabia. Drawing on data from publicly listed firms from 2013 to 2020, we assess changes in forecasting behavior surrounding the IFRS transition, accounting for firm-specific and macroeconomic factors. We argue that IFRS is expected to support more transparent financial statements, reduce risk and uncertainty, and offer a standardized and detailed reporting framework that influences analysts’ predictive performance. The findings reveal more accurate forecasts and a decline in both optimism and dispersion following IFRS adoption, suggesting enhanced financial reporting quality and reduced uncertainty. These associations underscore IFRS’s potential role in refining analysts’ earnings predictions and promoting stock market transparency. Full article
(This article belongs to the Special Issue Risk Management for Capital Markets)
22 pages, 2002 KiB  
Article
Uncovering the Kinematic Signature of Freezing of Gait in Parkinson’s Disease Through Wearable Inertial Sensors
by Francesco Castelli Gattinara Di Zubiena, Alessandro Zampogna, Martina Patera, Giovanni Cusolito, Ludovica Apa, Ilaria Mileti, Antonio Cannuli, Antonio Suppa, Marco Paoloni, Zaccaria Del Prete and Eduardo Palermo
Sensors 2025, 25(16), 5054; https://doi.org/10.3390/s25165054 (registering DOI) - 14 Aug 2025
Abstract
Parkinson’s disease (PD) is a disorder that causes a decrease in motor skills. Among the symptoms that have been observed, the most significant is the occurrence of Freezing of Gait (FoG), which manifests as an abrupt cessation of walking. This study investigates the [...] Read more.
Parkinson’s disease (PD) is a disorder that causes a decrease in motor skills. Among the symptoms that have been observed, the most significant is the occurrence of Freezing of Gait (FoG), which manifests as an abrupt cessation of walking. This study investigates the impact of spatiotemporal gait parameters using wearable inertial measurement units (IMUs). Notably, 30 PD patients (15 with FoG, 15 without) and 20 healthy controls were enrolled. Gait data were acquired using two foot-mounted IMUs and key parameters such as stride time, gait phase distribution, cadence, stride length, speed, and foot clearance were extracted. Results indicated a tangible decline in motor abilities in PD patients, especially in those with FoG. Differences were observed in the segmentation of gait phases, with diminished swing phase duration observed in patients, and in the diminished spatial parameters of stride length, velocity, and foot clearance. Additionally, to validate the results, the accuracy of IMU-derived clearance measurements was validated against an optoelectronic system. While the IMUs accurately detected maximum points, the minimum clearance showed a higher measurement error. These findings support the use of wearable IMUs as a reliable and low-cost alternative to laboratory systems for the assessment of gait abnormalities in PD. Moreover, they highlight the potential for early detection and monitoring of FoG in both clinical and home settings. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2025)
Show Figures

Figure 1

24 pages, 927 KiB  
Article
Measurement of Cross-Regional Ecological Compensation Standards from a Dual Perspective of Costs and Benefits
by Jun Ma, Xiaoying Gu and Qiuyu Chen
Water 2025, 17(16), 2403; https://doi.org/10.3390/w17162403 (registering DOI) - 14 Aug 2025
Abstract
Establishing scientifically sound and equitable compensation standards is crucial for effective ecological compensation. This study focuses on the quantitative assessment of ecological compensation standards in the water-source areas of the South-to-North Water Diversion Project. Based on the dual perspective of cost and benefit, [...] Read more.
Establishing scientifically sound and equitable compensation standards is crucial for effective ecological compensation. This study focuses on the quantitative assessment of ecological compensation standards in the water-source areas of the South-to-North Water Diversion Project. Based on the dual perspective of cost and benefit, we embed a three-dimensional dynamic adjustment coefficient—water volume, water quality, and payment capacity—and fully considered spillover effects. Using the AHP-Entropy Method, the allocation ratio of the water-receiving area was scientifically divided, achieving differentiated distribution and dynamic adaptation of the compensation mechanism. The compensation allocation ratio for water-receiving areas was determined, ensuring differentiated distribution and dynamic adaptability in the compensation mechanism. The results show the following: (1) In 2023, the ecological compensation amount for Yangzhou, based on the cost method and the equivalent factor method, ranges from CNY 1.21 billion to 2.53 billion. The amount of compensation after the dynamic game between both parties can avoid the waste of resources caused by over-compensation, and at the same time make up for the shortcomings of under-compensation due to the current water price. (2) Ecological compensation is measured only from the single perspective of the water-source area, without considering the differences in the receiving area. This paper uses the AHP-entropy value method to combine and assign weights, and calculates the apportionment ratio of the main water-receiving areas of Shandong Province in the east line of the South-to-North Water Diversion: for the Jiaodong line, these are Qingdao 20.97% and Jinan 14.53%, and for the North Shandong line, they are Dongying 23.98%, Dezhou 13.68%, Liaocheng 9.47%, and Binzhou 17.37%. (3) The dynamic correction coefficient and game model can effectively balance the cost of protecting the water-source area and the receiving area’s ability to pay, and combination with the empowerment method enhances the regional difference in suitability. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
21 pages, 1362 KiB  
Article
Depletion of Albendazole and Its Metabolites and Their Impact on the Gut Microbial Community Following Multiple Oral Dosing in Yellow River Carp (Cyprinus carpio haematopterus)
by Yue Liu, Yan Dai, Yan-Ni Zhang, Wen-Rui Wang, Yu-Xin Chen, Yang-Guang Jin, Long-Ji Sun, Shi-Hao Li, Fang Yang, Xing-Ping Li and Fan Yang
Fishes 2025, 10(8), 410; https://doi.org/10.3390/fishes10080410 (registering DOI) - 14 Aug 2025
Abstract
Healthy Yellow River carp (Cyprinus carpio haematopterus) reared at a water temperature of 23 ± 0.6 °C were orally administered albendazole (ABZ) at a dose of 12 mg/kg body weight (BW) once daily for seven consecutive days. At predetermined time points [...] Read more.
Healthy Yellow River carp (Cyprinus carpio haematopterus) reared at a water temperature of 23 ± 0.6 °C were orally administered albendazole (ABZ) at a dose of 12 mg/kg body weight (BW) once daily for seven consecutive days. At predetermined time points after the final administration, five fish were randomly selected for sampling. Plasma, skin-on-muscle, liver, and kidney tissues were collected, and the concentrations of ABZ and its three metabolites—albendazole sulfoxide (ABZSO), albendazole sulfone (ABZSO2), and albendazole-2-aminosulfone (ABZ-2-NH2−SO2)—were determined using high-performance liquid chromatography (HPLC). The results indicated that ABZ and ABZSO were widely distributed across tissues, while ABZSO2 and ABZ-2-NH2-SO2 were only present at trace levels. Pharmacokinetic analysis of ABZ and ABZSO in plasma and tissues was performed using noncompartmental analysis (NCA). ABZ peaked in plasma at 0.73 μg/mL at 24 h after the last administration, with an elimination half-life (t1/2λZ) of 38.56 h. ABZSO reached a peak plasma concentration of 1.54 μg/mL at 24 h, with a t1/2λZ of 53.73 h. According to China’s national standard, where ABZ-2-NH2−SO2 is the marker residue with a maximum residue limit (MRL) of 100 μg/kg in fish skin-on muscle, no withdrawal period was necessary. However, based on the European Union standard—which uses the sum of ABZ and its three metabolites as the marker residue and an MRL of 100 μg/kg in ruminants—a withdrawal period of 16 days (or 351 °C–days) was required. Additionally, the study assessed changes in the intestinal microbiota following multiple oral doses of ABZ. The results indicated that ABZ administration significantly altered microbial diversity and composition in a dose- and time-dependent manner. After drug withdrawal, the intestinal microbiota gradually returned to baseline levels, similar to the untreated control group. Full article
(This article belongs to the Special Issue Aquaculture Pharmacology)
23 pages, 17882 KiB  
Article
When Generative AI Meets Abuse: What Are You Anxious About?
by Yuanzhao Song and Haowen Tan
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 215; https://doi.org/10.3390/jtaer20030215 (registering DOI) - 14 Aug 2025
Abstract
The rapid progress of generative artificial intelligence (AI) has sparked growing concerns regarding its misuse, privacy risks, and ethical issues. This study investigates the interplay between Generative AI Abuse Anxiety, trust, perceived usefulness, acceptance, and the intention to use it. Using variance-based partial [...] Read more.
The rapid progress of generative artificial intelligence (AI) has sparked growing concerns regarding its misuse, privacy risks, and ethical issues. This study investigates the interplay between Generative AI Abuse Anxiety, trust, perceived usefulness, acceptance, and the intention to use it. Using variance-based partial least squares (PLS-SEM), we analyze 318 valid survey responses. The findings reveal that Generative AI Abuse Anxiety negatively impacts trust, perceived usefulness, acceptance, and the intention to use generative AI. Additionally, different subdimensions of trust play significant roles in influencing users’ technology acceptance and intention to use it, though the specific mechanisms differ. This research extends the applicability of the technology acceptance model to the generative AI context and enriches the multidimensional framework of trust studies. Full article
Show Figures

Figure 1

28 pages, 10634 KiB  
Article
A Novel ECC-Based Method for Secure Image Encryption
by Younes Lahraoui, Saiida Lazaar, Youssef Amal and Abderrahmane Nitaj
Algorithms 2025, 18(8), 514; https://doi.org/10.3390/a18080514 (registering DOI) - 14 Aug 2025
Abstract
As the Internet of Things (IoT) expands, ensuring secure and efficient image transmission in resource-limited environments has become crucial and important. In this paper, we propose a lightweight image encryption scheme based on Elliptic Curve Cryptography (ECC), tailored for embedded and IoT applications. [...] Read more.
As the Internet of Things (IoT) expands, ensuring secure and efficient image transmission in resource-limited environments has become crucial and important. In this paper, we propose a lightweight image encryption scheme based on Elliptic Curve Cryptography (ECC), tailored for embedded and IoT applications. In this scheme, the image data blocks are mapped into elliptic curve points using a decimal embedding algorithm and shuffled to improve resistance to tampering and noise. Moreover, an OTP-like operation is applied to enhance the security while avoiding expensive point multiplications. The proposed scheme meets privacy and cybersecurity requirements with low computational costs. Classical security metrics such as entropy, correlation, NPCR, UACI, and key sensitivity confirm its strong robustness. Rather than relying solely on direct comparisons with existing benchmarks, we employ rigorous statistical analyses to objectively validate the encryption scheme’s robustness and security. Furthermore, we propose a formal security analysis that demonstrates the resistance of the new scheme to chosen-plaintext attacks and noise and cropping attacks, while the GLCM analysis confirms the visual encryption quality. Our scheme performs the encryption of a 512×512 image in only 0.23 s on a 1 GB RAM virtual machine, showing its efficiency and suitability for real-time IoT systems. Our method can be easily applied to guarantee the security and the protection of lightweight data in future smart environments. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
18 pages, 623 KiB  
Review
Microbiological Air Quality in Healthcare Environments: A Review of Selected Facilities
by Katarzyna Kauch, Ewa Brągoszewska and Anna Mainka
Appl. Sci. 2025, 15(16), 8976; https://doi.org/10.3390/app15168976 (registering DOI) - 14 Aug 2025
Abstract
Exposure to microorganisms can significantly impact well-being and, more importantly, human health. A frequently overlooked aspect of indoor air quality (IAQ) research is the risk posed by harmful biological agents transported through the air in the form of biological aerosols. Given that healthcare [...] Read more.
Exposure to microorganisms can significantly impact well-being and, more importantly, human health. A frequently overlooked aspect of indoor air quality (IAQ) research is the risk posed by harmful biological agents transported through the air in the form of biological aerosols. Given that healthcare facilities create environments with an increased risk of infection transmission, monitoring IAQ and reducing microbiological contamination have become global public health challenges. This paper presents a literature review, focusing on the current state of knowledge regarding microbiological air quality in healthcare settings. The analysis confirms that Escherichia coli and Staphylococcus aureus are among the most prevalent airborne pathogens in healthcare facilities. The review also underlines the necessity for harmonized guidelines and integrated air quality management strategies to reduce microbial contamination effectively. Finally, the review compiles data on microorganism concentration levels and influencing factors. The present study highlights that implementing standardized monitoring and effective air filtration and disinfection methods is essential to improving microbiological air quality and enhancing patient safety. The sources analyzed in this review were collected from databases such as PubMed, ScienceDirect, ResearchGate, and Web of Science, considering only English-language publications. The studies cited were conducted in multiple countries across different regions, providing a comprehensive global perspective on the issue. Full article

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop