Latest Articles

Open AccessFeature PaperArticle
Distribution and Excretion of Arsenic Metabolites after Oral Administration of Seafood-Related Organoarsenicals in Rats
Metals 2016, 6(10), 231; doi:10.3390/met6100231 -
Abstract
Less information is available on the metabolism of organic arsenicals compared to inorganic arsenic in mammals. In the present study, we investigated tissue distribution, metabolism and excretion in rats of organoarsenicals, dimethylarsinic acid (DMAV), arsenobetaine (AB), arsenocholine (AC) and trimethylarsine [...] Read more.
Less information is available on the metabolism of organic arsenicals compared to inorganic arsenic in mammals. In the present study, we investigated tissue distribution, metabolism and excretion in rats of organoarsenicals, dimethylarsinic acid (DMAV), arsenobetaine (AB), arsenocholine (AC) and trimethylarsine oxide (TMAOV). Among these animals, arsenic concentrations in red blood cells (RBCs) and spleen increased remarkably only in the DMAV group. Hepatic arsenic concentration increased significantly only in the AC group. Approximately 17%, 72% and 60% of the dose was excreted in urine in two days in the DMAV, AB and AC groups, respectively; virtually the entire dose was excreted in urine in one day in the TMAOV group. On the other hand, approximately 18%, 0.2%, 0.5% and 0.1% of the dose was excreted in feces in two days in the DMAV, AB, AC and TMAOV groups, respectively. A large amount of arsenic was accumulated in RBCs in the form of protein-bound dimethylarsinous acid (DMAIII), and dimethylmonothioarsinic acid (DMMTAV), a reportedly toxic thio-arsenical, was found in urine and fecal extract in the DMAV group. These results suggest that intake of DMAV is a potential health hazard, given that the metabolites of DMAV, such as DMAIII and DMMTAV, are known to be highly toxic. Full article
Figures

Open AccessArticle
Simulating the Probability of Grain Sorghum Maturity before the First Frost in Northeastern Colorado
Agronomy 2016, 6(4), 44; doi:10.3390/agronomy6040044 -
Abstract
Expanding grain sorghum [Sorghum bicolor (L.) Moench] production northward from southeastern Colorado is thought to be limited by shorter growing seasons due to lower temperatures and earlier frost dates. This study used a simulation model for predicting crop phenology (PhenologyMMS) to [...] Read more.
Expanding grain sorghum [Sorghum bicolor (L.) Moench] production northward from southeastern Colorado is thought to be limited by shorter growing seasons due to lower temperatures and earlier frost dates. This study used a simulation model for predicting crop phenology (PhenologyMMS) to estimate the probability of reaching physiological maturity before the first fall frost for a variety of agronomic practices in northeastern Colorado. Physiological maturity for seven planting dates (1 May to 12 June), four seedbed moisture conditions affecting seedling emergence (from Optimum to Planted in Dust), and three maturity classes (Early, Medium, and Late) were simulated using historical weather data from nine locations for both irrigated and dryland phenological parameters. The probability of reaching maturity before the first frost was slightly higher under dryland conditions, decreased as latitude, longitude, and elevation increased, planting date was delayed, and for later maturity classes. The results provide producers with estimates of the reliability of growing grain sorghum in northeastern Colorado. Full article
Figures

Figure 1

Open AccessArticle
A Trypsin Inhibitor from Tamarind Reduces Food Intake and Improves Inflammatory Status in Rats with Metabolic Syndrome Regardless of Weight Loss
Nutrients 2016, 8(10), 544; doi:10.3390/nu8100544 -
Abstract
Trypsin inhibitors are studied in a variety of models for their anti-obesity and anti-inflammatory bioactive properties. Our group has previously demonstrated the satietogenic effect of tamarind seed trypsin inhibitors (TTI) in eutrophic mouse models and anti-inflammatory effects of other trypsin inhibitors. In [...] Read more.
Trypsin inhibitors are studied in a variety of models for their anti-obesity and anti-inflammatory bioactive properties. Our group has previously demonstrated the satietogenic effect of tamarind seed trypsin inhibitors (TTI) in eutrophic mouse models and anti-inflammatory effects of other trypsin inhibitors. In this study, we evaluated TTI effect upon satiety, biochemical and inflammatory parameters in an experimental model of metabolic syndrome (MetS). Three groups of n = 5 male Wistar rats with obesity-based MetS received for 10 days one of the following: (1) Cafeteria diet; (2) Cafeteria diet + TTI (25 mg/kg); and (3) Standard diet. TTI reduced food intake in animals with MetS. Nevertheless, weight gain was not different between studied groups. Dyslipidemia parameters were not different with the use of TTI, only the group receiving standard diet showed lower very low density lipoprotein (VLDL) and triglycerides (TG) (Kruskal–Wallis, p < 0.05). Interleukin-6 (IL-6) production did not differ between groups. Interestingly, tumor necrosis factor-alpha (TNF-α) was lower in animals receiving TTI. Our results corroborate the satietogenic effect of TTI in a MetS model. Furthermore, we showed that TTI added to a cafeteria diet may decrease inflammation regardless of weight loss. This puts TTI as a candidate for studies to test its effectiveness as an adjuvant in MetS treatment. Full article
Figures

Open AccessArticle
Polyelectrolyte Hydrogel Platforms for the Delivery of Antidepressant Drugs
Gels 2016, 2(4), 24; doi:10.3390/gels2040024 -
Abstract
Some vinyl hydrogels containing α-amino acid residues (l-phenylalanine, l-valine) were used as polyelectrolyte platforms for the evaluation of the controlled release of two antidepressants (paroxetine and duloxetine). The closer acidity constant (pKa) values of the two drugs show a [...] Read more.
Some vinyl hydrogels containing α-amino acid residues (l-phenylalanine, l-valine) were used as polyelectrolyte platforms for the evaluation of the controlled release of two antidepressants (paroxetine and duloxetine). The closer acidity constant (pKa) values of the two drugs show a closer release profile in physiological phosphate buffered saline (PBS) buffer (pH 7.40) and for long periods of time. The great electrostatic interaction forces between the COO group of the hydrogel and the protonated secondary amino nitrogen of the drug are the main factor improving the release kinetics; this release was found to be slower compared to that of two structurally related drugs bearing the tertiary amino nitrogen atom (citalopram and trazodone). Moreover, at the lower value of pH 4.60, paroxetine showed a flatter release profile from the hydrogel containing the l-phenylalanine residues that, after six days, is half of that shown by duloxetine. Further effects due to steric and hydrophobic interactions may contribute to the different release profile. A further stimulation with alternating magnetic fields (AMF) of low frequency (20 kHz/50 W) enhanced the release of the drug at pH 7.40 from the hydrogel containing magnetic nanoparticles. Both AMF and PBS solution at pH 7.40 were used to trigger the ‘on-demand’ pulsatile paroxetine release from the nanocomposite hydrogel. Full article
Figures

Open AccessArticle
The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression
Nutrients 2016, 8(10), 599; doi:10.3390/nu8100599 -
Abstract
To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a [...] Read more.
To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo. Full article
Figures

Figure 1

Open AccessArticle
Immune-Enhancing Effects of a High Molecular Weight Fraction of Cynanchum wilfordii Hemsley in Macrophages and Immunosuppressed Mice
Nutrients 2016, 8(10), 600; doi:10.3390/nu8100600 -
Abstract
The objective of this study was to investigate the immune-enhancing activity of a high molecular weight fraction (HMF) of Cynanchum wilfordii in RAW 264.7 macrophages and the cyclophosphamide (CYC)-induced mouse model of immunosuppression. To identify the bioactive substances of HMF, a crude [...] Read more.
The objective of this study was to investigate the immune-enhancing activity of a high molecular weight fraction (HMF) of Cynanchum wilfordii in RAW 264.7 macrophages and the cyclophosphamide (CYC)-induced mouse model of immunosuppression. To identify the bioactive substances of HMF, a crude polysaccharide (HMFO) was obtained and treated with sodium periodate (an oxidation agent) or digested with protease. In macrophages, HMF treatment enhanced the production of nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β)), as well as phagocytic ability. In CYC-immunosuppressed mice, HMF improved relative spleen and thymus weights, natural killer (NK) cell activity, and splenic lymphocyte proliferation. These increases in NO and cytokines were mediated by up-regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Periodate treatment, but not protease treatment, decreased the immune-enhancing activity of HMFO, suggesting that polysaccharides are the active ingredients in C. wilfordii extract. Full article
Figures

Figure 1

Open AccessArticle
Enhanced Removal of Trichloroethylene in Water Using Nano-ZnO/Polybutadiene Rubber Composites
Catalysts 2016, 6(10), 152; doi:10.3390/catal6100152 -
Abstract
An innovative nanoscale ZnO/polybutadiene rubber composite (ZBRC) was developed as a valid alternative to TiO2 particles or immobilized TiO2 for the mineralization of chlorinated hydrocarbons without difficulties in the recovery of nanoscale photocatalyst particles. A synergistic increase in the removal [...] Read more.
An innovative nanoscale ZnO/polybutadiene rubber composite (ZBRC) was developed as a valid alternative to TiO2 particles or immobilized TiO2 for the mineralization of chlorinated hydrocarbons without difficulties in the recovery of nanoscale photocatalyst particles. A synergistic increase in the removal of 1,1,2-trichloroethylene (TCE) through the coupled reaction processes (i.e., sorption, photolysis, and photocatalysis) was observed because sorption of TCE to the ultraviolet(UV)-transparent polybutadiene rubber occurred, and was coupled with the heterogeneous photocatalytic reactions with nanoscale ZnO particles on the surface of ZBRC. The removal rate of TCE decreased with an increase in the initial concentration of TCE because of both inhibited generation of electron–hole pairs and deficiency of photons to activate ZnO particles. Also, the TCE removal rate increased as the loading amount of ZBRC increased. Based on satisfactory linear regressions (R2 ≥ 0.94) between the apparent degradation rate constant (Kapp) and the initial concentration vs. the ZBRC loading amount, the Kapp values can be estimated, a priori, without performing photocatalytic experiments. The removal efficiencies were more significantly affected by the changes in the initial concentration of TCE and the ZBRC loading amounts than by the changes in light intensity and pH in aqueous solutions. From the results of response surface analysis, the greater removal efficiencies of TCE were achieved with higher pH values, greater amounts of ZBRC, and greater intensity of light. Based on these results, newly-developed ZBRC with both high removal efficiency and low cost performs as a valid alternative to TiO2 particles or immobilized TiO2 for the mineralization of chlorinated hydrocarbons in various environmental and industrial matrices. Full article
Figures

Open AccessArticle
Translating into Practice Cancer Patients’ Views on Do-Not-Resuscitate Decision-Making
Cancers 2016, 8(10), 89; doi:10.3390/cancers8100089 -
Abstract
Do-not-resuscitate (DNR) orders are necessary if resuscitation, the default option in hospitals, should be avoided because a patient is known to be dying and attempted resuscitation would be inappropriate. To avoid inappropriate resuscitation at night, if no DNR order has been recorded, [...] Read more.
Do-not-resuscitate (DNR) orders are necessary if resuscitation, the default option in hospitals, should be avoided because a patient is known to be dying and attempted resuscitation would be inappropriate. To avoid inappropriate resuscitation at night, if no DNR order has been recorded, after-hours medical staff are often asked to have a DNR discussion with patients whose condition is deteriorating, but with whom they are unfamiliar. Participants in two qualitative studies of cancer patients’ views on how to present DNR discussions recognized that such patients are at different stages of understanding of their situation and may not be ready for a DNR discussion; therefore, a one-policy-fits-all approach was thought to be inappropriate. To formulate a policy that incorporates the patient’s views, we propose that a standard form which mandates a DNR discussion is replaced by a “blank sheet” with instructions to record the progress of the discussion with the patient, and a medical recommendation for a DNR decision to guide the nursing staff in case of a cardiac arrest. Such an advance care directive would have to honor specifically expressed patient or guardian wishes whilst allowing for flexibility, yet would direct nurses or other staff so that they can avoid inappropriate cardiopulmonary resuscitation of a patient dying of cancer. Full article
Open AccessArticle
MicroRNA-944 Affects Cell Growth by Targeting EPHA7 in Non-Small Cell Lung Cancer
Int. J. Mol. Sci. 2016, 17(10), 1493; doi:10.3390/ijms17101493 -
Abstract
MicroRNAs (miRNAs) have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC) and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 [...] Read more.
MicroRNAs (miRNAs) have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC) and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 and 801D) and a human immortalized cell line 16HBE, we then studied miRNA function by cell proliferation and apoptosis. cDNA microarray, luciferase reporter assay and miRNA transfection were used to investigate interaction between the miRNA and target gene. miR-944 was significantly down-regulated in NSCLC and had many putative targets. Moreover, the forced expression of miR-944 significantly inhibited the proliferation of NSCLC cells in vitro. By integrating mRNA expression data and miR-944-target prediction, we disclosed that EPHA7 was a potential target of miR-944, which was further verified by luciferase reporter assay and microRNA transfection. Our data indicated that miR-944 targets EPHA7 in NSCLC and regulates NSCLC cell proliferation, which may offer a new mechanism underlying the development and progression of NSCLC. Full article
Figures

Figure 1

News & Announcements

19 September 2016
Peer Review Week 2016

Follow MDPI

loading...

Jobs in Research

Selected Special Issues

Selected Collections

Institutional Membership

Member institutes benefit from discounts and convenient payment options.

Feedback

We are keen to hear what you think about MDPI. To leave us your feedback, suggestions or questions please click here.

See what our authors and guest editors say about us.

About MDPI

MDPI.com is a platform for peer-reviewed, scientific open-access journals operated by MDPI AG, based in Basel, Switzerland. Additional offices are located in Beijing and Wuhan (China) as well as in Barcelona (Spain).

Back to Top