Advancing Open Science
Supporting academic communities
since 1996
 
21 pages, 2846 KB  
Article
The Safety Evaluation of Branched-Chain Fatty Acid Derived from Lanolin and Its Effects on the Growth Performance, Antioxidant, Immune Function, and Intestinal Microbiota of C57BL/6J Mice
by Jingyi Lv, Yang Cao, Yibo Zhu, Haitao Du, Chunwei Wang, Weiguo Ding, Huihuan Liu, Hangshu Xin and Guangning Zhang
Nutrients 2026, 18(2), 351; https://doi.org/10.3390/nu18020351 (registering DOI) - 21 Jan 2026
Abstract
Background/Objectives: Branched-chain fatty acids (BCFAs) exhibit a range of biological activities; however, their limited natural abundance and high cost have constrained in vivo research. Lanolin represents a promising source for enriching BCFAs. Nevertheless, the in vivo application, safety, and dose-effect relationship of [...] Read more.
Background/Objectives: Branched-chain fatty acids (BCFAs) exhibit a range of biological activities; however, their limited natural abundance and high cost have constrained in vivo research. Lanolin represents a promising source for enriching BCFAs. Nevertheless, the in vivo application, safety, and dose-effect relationship of BCFAs derived from lanolin (BCFAs-DFL) remain unassessed. Methods: In this study, the acute toxicity in C57BL/6J mice was first evaluated for 7 days by a single oral administration of 5000 mg/kg BW of BCFAs-DFL. Subsequently, 40 mice were divided into four groups (control group, low dose of 100 mg/kg BW, medium dose of 300 mg/kg BW, and high dose of 600 mg/kg BW) and were continuously administered by gavage for 28 days to study the effects of BCFAs-DFL on the growth, blood biochemistry, intestinal morphology, and intestinal flora of the mice. Results: In the acute toxicity test, BCFAs-DFL exhibited no lethality or abnormalities in mice, indicating its non-toxic nature. Throughout the 28-day trial, mice in the medium- and high-dose groups experienced a notable decrease in average daily feed intake (p < 0.05), yet their weight gain remained unaffected (p > 0.05). Hemoglobin and hematocrit levels declined in the high-dose group (p < 0.05). Conversely, serum aspartate aminotransferase and total bilirubin levels escalated in the medium- and high-dose groups, while triglycerides and urea nitrogen levels decreased (p < 0.05). The serum’s total antioxidant capacity and immunoglobulin levels (IgA, IgG) rose in proportion to the dosage (p < 0.05). BCFAs-DFL notably enhanced the villus height of the jejunum and ileum in mice (p < 0.05). Gut microbiota analysis indicated no significant impact on overall α and β diversity. Conclusions: The 28-day intervention revealed that BCFAs-DFL can modulate feeding behavior, TG, T-AOC, and immunoglobulin levels in mice. Additionally, it promotes the development of intestinal villi. Based on various indicators, a dosage of 100 mg/kg BW effectively induces beneficial metabolic regulation, such as the reduction of triglycerides, without causing a burden on liver metabolism. This dosage may represent a more suitable application for potential use. Full article
(This article belongs to the Special Issue Animal-Originated Food and Food Compounds in Health and Disease)
Show Figures

Figure 1

16 pages, 2598 KB  
Article
S3PM: Entropy-Regularized Path Planning for Autonomous Mobile Robots in Dense 3D Point Clouds of Unstructured Environments
by Artem Sazonov, Oleksii Kuchkin, Irina Cherepanska and Arūnas Lipnickas
Sensors 2026, 26(2), 731; https://doi.org/10.3390/s26020731 (registering DOI) - 21 Jan 2026
Abstract
Autonomous navigation in cluttered and dynamic industrial environments remains a major challenge for mobile robots. Traditional occupancy-grid and geometric planning approaches often struggle in such unstructured settings due to partial observability, sensor noise, and the frequent presence of moving agents (machinery, vehicles, humans). [...] Read more.
Autonomous navigation in cluttered and dynamic industrial environments remains a major challenge for mobile robots. Traditional occupancy-grid and geometric planning approaches often struggle in such unstructured settings due to partial observability, sensor noise, and the frequent presence of moving agents (machinery, vehicles, humans). These limitations seriously undermine long-term reliability and safety compliance—both essential for Industry 4.0 applications. This paper introduces S3PM, a lightweight entropy-regularized framework for simultaneous mapping and path planning that operates directly on dense 3D point clouds. Its key innovation is a dynamics-aware entropy field that fuses per-voxel occupancy probabilities with motion cues derived from residual optical flow. Each voxel is assigned a risk-weighted entropy score that accounts for both geometric uncertainty and predicted object dynamics. This representation enables (i) robust differentiation between reliable free space and ambiguous/hazardous regions, (ii) proactive collision avoidance, and (iii) real-time trajectory replanning. The resulting multi-objective cost function effectively balances path length, smoothness, safety margins, and expected information gain, while maintaining high computational efficiency through voxel hashing and incremental distance transforms. Extensive experiments in both real-world and simulated settings, conducted on a Raspberry Pi 5 (with and without the Hailo-8 NPU), show that S3PM achieves 18–27% higher IoU in static/dynamic segmentation, 0.94–0.97 AUC in motion detection, and 30–45% fewer collisions compared to OctoMap + RRT* and standard probabilistic baselines. The full pipeline runs at 12–15 Hz on the bare Pi 5 and 25–30 Hz with NPU acceleration, making S3PM highly suitable for deployment on resource-constrained embedded platforms. Full article
(This article belongs to the Special Issue Mobile Robots: Navigation, Control and Sensing—2nd Edition)
16 pages, 1658 KB  
Article
A Novel Scanning and Acquisition Method of Optical Phased Array for Space Laser Communication
by Ye Gu, Xiaonan Yu, Rui Weng, Guosheng Fan, Penglang Wang, Quanhan Wang, Naiyuan Liang, Dewang Liu, Shuai Chang, Dongxu Jiang and Shoufeng Tong
Photonics 2026, 13(1), 98; https://doi.org/10.3390/photonics13010098 (registering DOI) - 21 Jan 2026
Abstract
To meet the requirements of non-mechanical beam scanning and acquisition in space laser communication, this study proposes a two-dimensional scanning and acquisition method based on a silicon-based optical phased array (OPA). The OPA utilizes thermo-optic phase modulation to achieve horizontal beam pointing, while [...] Read more.
To meet the requirements of non-mechanical beam scanning and acquisition in space laser communication, this study proposes a two-dimensional scanning and acquisition method based on a silicon-based optical phased array (OPA). The OPA utilizes thermo-optic phase modulation to achieve horizontal beam pointing, while vertical beam pointing is controlled by wavelength tuning. By combining the OPA with a rectangular spiral scanning strategy, non-mechanical scanning is realized and beam acquisition experiments are carried out. Experimental results demonstrate that for an 8° step signal, the horizontal and vertical rise times are 156.8 μs and 214.76 ms, respectively. A full scan of 440 points covering a ±4° field of view is completed in 8.119 s. Acquisition experiments were conducted assuming a Gaussian-distributed uncertainty region (standard deviation σ = 1°). Out of 106 independent trials, a success rate of 97.17% was achieved with an average acquisition time of 0.41 s. This work experimentally applies a rectangular spiral scanning strategy to an OPA-based acquisition system, addressing a capability that has been largely missing in previous studies. These results verify that the OPA technology has good scanning efficiency and acquisition robustness in space laser communication applications. Full article
(This article belongs to the Special Issue Advances and Challenges in Free-Space Optics)
24 pages, 3402 KB  
Article
Environmental and Mechanical Trade-Off Optimization of Waste-Derived Concrete Using Surrogate Modeling and Pareto Analysis
by Robert Haigh
Sustainability 2026, 18(2), 1119; https://doi.org/10.3390/su18021119 (registering DOI) - 21 Jan 2026
Abstract
Concrete production contributes approximately 4–8% of global cardon dioxide emissions, largely due to Portland cement. Incorporating municipal solid waste (MSW) into concrete offers a pathway to reduce cement demand while supporting circular economy objectives. This study evaluates the mechanical performance, environmental impacts, and [...] Read more.
Concrete production contributes approximately 4–8% of global cardon dioxide emissions, largely due to Portland cement. Incorporating municipal solid waste (MSW) into concrete offers a pathway to reduce cement demand while supporting circular economy objectives. This study evaluates the mechanical performance, environmental impacts, and optimization potential of concrete incorporating three MSW-derived materials: cardboard kraft fibers (KFs), recycled high-density polyethylene (HDPE), and textile fibers. A maximum 10% cement replacement strategy was adopted. Compressive strength was assessed at 7, 14, and 28 days, and a cradle-to-gate life cycle assessment (LCA) was conducted using OpenLCA to quantify global warming potential (GWP100) and other midpoint impacts. A surrogate-based optimization implemented using Non-dominated Sorting Genetic Algorithm II (NSGA-II) was applied to minimize cost and GWP while enforcing compressive strength as a feasibility constraint. The results show that fiber-based wastes significantly reduce embodied carbon, with KF achieving the largest GWP reduction (19%) and textile waste achieving moderate reductions (10%) relative to the control. HDPE-modified concrete exhibited near-control mechanical performance but increased GWP and fossil depletion due to polymer processing burdens. The optimization results revealed well-defined Pareto trade-offs for KF and textile concretes, identifying clear compromise solutions between cost and emissions, while HDPE was consistently dominated. Overall, textile waste emerged as the most balanced option, offering favorable environmental gains with minimal cost and acceptable mechanical performance. The integrated LCA optimization framework demonstrates a robust approach for evaluating MSW-derived concrete and supports evidence-based decision-making toward low-carbon, circular construction materials. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
Show Figures

Figure 1

21 pages, 14411 KB  
Article
Experimental Study of Bending and Torsional Effects in Walking-Induced Infrastructure Vibrations: The Pasternak Footbridge
by Ghita Eslami Varzaneh, Elisa Bassoli, Federico Ponsi and Loris Vincenzi
Infrastructures 2026, 11(1), 34; https://doi.org/10.3390/infrastructures11010034 (registering DOI) - 21 Jan 2026
Abstract
Slender, lightweight and modern footbridges are particularly susceptible to vibrations induced by pedestrian activity. While extensive research has focused on vertical and lateral forces produced by walking, torsional moments generated by eccentrically walking pedestrians remain largely overlooked. Traditional assessments typically neglect these torsional [...] Read more.
Slender, lightweight and modern footbridges are particularly susceptible to vibrations induced by pedestrian activity. While extensive research has focused on vertical and lateral forces produced by walking, torsional moments generated by eccentrically walking pedestrians remain largely overlooked. Traditional assessments typically neglect these torsional effects, which can be critical when eccentric pedestrian loading excites torsional modes, especially in footbridges with asymmetric geometries. To address this, the paper considers the coupling between bending and torsional effects in both the pedestrian action and structure reaction, including pedestrian forces and moments, as well as bending-induced deflections and torsion-induced rotations of the cross-sections. A simplified method is also presented, allowing standard bending-only analyses to be easily adapted to include torsional effects using analytically derived correction factors. For validation, several experimental tests are conducted on an asymmetric curved footbridge located in Modena, Italy, characterised by coupled bending-torsional vertical modes and hosting different pedestrian densities, pacing frequencies, and crowd distributions (both uniform and eccentric). Experimental and numerical analyses demonstrate that neglecting torsional effects oversimplifies the assessment, highlighting the importance of accounting for bending-torsion coupling for the serviceability of asymmetric footbridges under eccentric near-resonance loading. Full article
20 pages, 1101 KB  
Article
Regional Disparities Call for Defining the Target Population of Environments (TPEs) and the Breeding Strategies for Sustainable Agriculture: A Case Study on Rice Improvement in Vietnam
by Huynh Quang Tin, Loi Huu Nguyen, Benjamin Kilian and Shivali Sharma
Sustainability 2026, 18(2), 1118; https://doi.org/10.3390/su18021118 (registering DOI) - 21 Jan 2026
Abstract
This study examines the socio-demographic characteristics, rice production practices, and breeding preferences of farmers across three major rice-growing regions of Vietnam: the Mekong Delta, Central Vietnam, and North Vietnam. A survey of 109 rice farmers captured information on cultivation status, livelihood activities, and [...] Read more.
This study examines the socio-demographic characteristics, rice production practices, and breeding preferences of farmers across three major rice-growing regions of Vietnam: the Mekong Delta, Central Vietnam, and North Vietnam. A survey of 109 rice farmers captured information on cultivation status, livelihood activities, and preferred breeding traits for rice improvement. The results reveal clear regional differentiation in farm structure, production objectives, and varietal preferences. Rice farming in the Mekong Delta is predominantly commercially oriented, characterized by larger landholdings and greater male participation, whereas rice production in Central and Northern Vietnam is more subsistence-oriented, with higher female involvement. Farmers across regions consistently valued locally adapted rice varieties, but articulated region-specific trait priorities shaped by agro-ecological conditions. In the Mekong Delta, preferences emphasized soft grain quality and salinity tolerance, reflecting coastal production constraints. In Central Vietnam, farmers prioritized heat tolerance and resistance to pests and diseases, while in Northern Vietnam, cold tolerance and grain quality attributes, including aroma and harder texture, were most important. Major biotic stresses, particularly blast and bacterial blight, also showed significant regional variation in reported incidence. By linking these region-specific preferences to clearly defined Target Populations of Environments (TPEs), this study provides a practical framework for aligning breeding targets with real-world production conditions. The findings offer actionable guidance for participatory breeding and decentralized varietal evaluation under the Biodiversity for Opportunities, Livelihoods, and Development (BOLD) initiative, as well as other rice improvement programs. To our knowledge, this represents the first multi-region evidence from Vietnam that systematically integrates agro-ecological variation with a TPE-based breeding approach, supporting the development of climate-resilient, farmer-preferred rice varieties and more sustainable rice production systems. Full article
20 pages, 1324 KB  
Article
Fractional Modelling of Hereditary Vibrations in Coupled Circular Plate System with Creep Layers
by Julijana Simonović
Fractal Fract. 2026, 10(1), 72; https://doi.org/10.3390/fractalfract10010072 (registering DOI) - 21 Jan 2026
Abstract
This paper presents an analytical model for the hereditary vibrations of a coupled circular plate system interconnected by viscoelastic creep layers. The system is represented as a discrete-continuous chain of thin, isotropic plates with time-dependent material properties. Based on the theory of hereditary [...] Read more.
This paper presents an analytical model for the hereditary vibrations of a coupled circular plate system interconnected by viscoelastic creep layers. The system is represented as a discrete-continuous chain of thin, isotropic plates with time-dependent material properties. Based on the theory of hereditary viscoelasticity and D’Alembert’s principle, a system of partial integro-differential equations is derived and reduced to ordinary integro-differential equations using Bernoulli’s method and Laplace transforms. Analytical expressions for natural frequencies, mode shapes, and time-dependent response functions are obtained. The results reveal the emergence of multi-frequency vibration regimes, with modal families remaining temporally uncoupled. This enables the identification of resonance conditions and dynamic absorption phenomena. The fractional parameter serves as a tunable damping factor: lower values result in prolonged oscillations, while higher values cause rapid decay. Increasing the kinetic stiffness of the coupling layers raises vibration frequencies and enhances sensitivity to hereditary effects. This interplay provides deeper insight into dynamic behavior control. The model is applicable to multilayered structures in aerospace, civil engineering, and microsystems, where long-term loading and time-dependent material behavior are critical. The proposed framework offers a powerful tool for designing systems with tailored dynamic responses and improved stability. Full article
29 pages, 764 KB  
Article
Sustainable Port Site Selection in Mountainous Areas Within Continuous Dam Zones: A Multi-Criteria Decision-Making Framework
by Jianxun Wang, Haiyan Wang and Fuyou Tan
Appl. Sci. 2026, 16(2), 1117; https://doi.org/10.3390/app16021117 (registering DOI) - 21 Jan 2026
Abstract
The development of large-scale cascade hydropower complexes has improved the navigation conditions of mountainous rivers but creates unique “continuous dam zones,” presenting complex challenges for port site selection due to hydrological variability and geological risks. To address the lack of specialized evaluation tools [...] Read more.
The development of large-scale cascade hydropower complexes has improved the navigation conditions of mountainous rivers but creates unique “continuous dam zones,” presenting complex challenges for port site selection due to hydrological variability and geological risks. To address the lack of specialized evaluation tools for this specific context, this paper constructs a comprehensive evaluation indicator system tailored for mountainous reservoir areas. The proposed system explicitly integrates critical engineering and physical constraints—specifically fluctuating backwater zones, geological hazards, and dam-bypass mileage—alongside ecological and social requirements. The Analytic Hierarchy Process (AHP) and Entropy Weight Method (EWM) are integrated using a Game Theory model to determine combined weights, and the Evaluation based on Distance from Average Solution (EDAS) model is applied to rank the alternatives. An empirical analysis of the Xiluodu Reservoir area on the Jinsha River demonstrates that operational efficiency, geological safety, and environmental feasibility constitute the critical decision-making factors. The results indicate that Option C (Majiaheba site) offers the optimal solution (ASi = 0.9695), effectively balancing engineering utility with environmental protection. Sensitivity analysis further validates the consistency and stability of this ranking under different decision-making scenarios. The findings provide quantitative decision support for project implementation and offer a replicable reference for infrastructure planning in similar complex mountainous river basins. Full article
Show Figures

Figure 1

20 pages, 13457 KB  
Article
Multi-View 3D Reconstruction of Ship Hull via Multi-Scale Weighted Neural Radiation Field
by Han Chen, Xuanhe Chu, Ming Li, Yancheng Liu, Jingchun Zhou, Xianping Fu, Siyuan Liu and Fei Yu
J. Mar. Sci. Eng. 2026, 14(2), 229; https://doi.org/10.3390/jmse14020229 (registering DOI) - 21 Jan 2026
Abstract
The 3D reconstruction of vessel hulls is crucial for enhancing safety, efficiency, and knowledge in the maritime industry. Neural Radiance Fields (NeRFs) are an alternative to 3D reconstruction and rendering from multi-view images; particularly, tensor-based methods have proven effective in improving efficiency. However, [...] Read more.
The 3D reconstruction of vessel hulls is crucial for enhancing safety, efficiency, and knowledge in the maritime industry. Neural Radiance Fields (NeRFs) are an alternative to 3D reconstruction and rendering from multi-view images; particularly, tensor-based methods have proven effective in improving efficiency. However, existing tensor-based methods typically suffer from a lack of spatial coherence, resulting in gaps in the reconstruction of fine-grained geometric structures. This paper proposes a spatial multi-scale weighted NeRF (MDW-NeRF) for accurate and efficient surface reconstruction of vessel hulls. The proposed method develops a novel multi-scale feature decomposition mechanism that models 3D space by leveraging multi-resolution features, facilitating the integration of high-resolution details with low-resolution regional information. We designed separate color and density weighting, using a coarse-to-fine strategy, for density and a weighted matrix for color to decouple feature vectors from appearance attributes. To boost the efficiency of 3D reconstruction and rendering, we implement a hybrid sampling point strategy for volume rendering, selecting sample points based on volumetric density. Extensive experiments on the SVH dataset confirm MDW-NeRF’s superiority: quantitatively, it outperforms TensoRF by 1.5 dB in PSNR and 6.1% in CD, and shrinks the model size by 9%, with comparable training times; qualitatively, it resolves tensor-based methods’ inherent spatial incoherence and fine-grained gaps, enabling accurate restoration of hull cavities and realistic surface texture rendering. These results validate our method’s effectiveness in achieving excellent rendering quality, high reconstruction accuracy, and timeliness. Full article
15 pages, 1906 KB  
Article
Preoperative Surgical Planning for Lumbar Spine Pedicle Screw Placement Using PointNet
by Seokbin Hwang, Suk-Joong Lee and Sungmin Kim
Electronics 2026, 15(2), 468; https://doi.org/10.3390/electronics15020468 (registering DOI) - 21 Jan 2026
Abstract
This study introduces a novel framework for defining screw trajectory that utilizes PointNet—a deep neural network trained on lumbar vertebrae point clouds—to improve the manual surgical planning procedures. The conventional architecture of PointNet was modified to accommodate various vertebral orientations and predict six [...] Read more.
This study introduces a novel framework for defining screw trajectory that utilizes PointNet—a deep neural network trained on lumbar vertebrae point clouds—to improve the manual surgical planning procedures. The conventional architecture of PointNet was modified to accommodate various vertebral orientations and predict six values, which were reconstructed into two control points that define a linear trajectory. A custom loss function was designed to align the predicted trajectory with the ground-truth trajectory. The neural networks were trained on 4284 point clouds of vertebrae, and 28 unseen point clouds were used to evaluate the model’s performance based on translational error, angular error, and clinical accuracy. For the left pedicle, the mean translational errors were 1.5 ± 0.8 mm at the entry point and 2.3 ± 1.2 mm at the target point. For the right pedicle, the mean translational errors were 1.5 ± 0.7 mm at the entry point and 2.3 ± 1.0 mm at the target point. The mean angular error was 3.5 ± 2.3° for the left pedicle and 3.9 ± 1.7° for the right pedicle. Clinically, the network generated 52 out of 56 trajectories without medial-cortical violations of the spinal canal. The trained neural network demonstrated promising technical and clinical accuracy, generating feasible screw trajectories across various vertebral orientations. Integrating a spinal segmentation network with the proposed framework could enable fully automated surgical planning in the future. Full article
26 pages, 10124 KB  
Article
Transcriptomic Analysis Reveals Novel Mechanisms Underlying Neutrophil Activation Induced by High Salt
by Ignacio Mazzitelli, Lucía Bleichmar, Federico Rivelli, Ingrid Feijoo, Alan Adamczyk, Gonzalo Cabrerizo, Fernando Erra Díaz and Jorge Geffner
Int. J. Mol. Sci. 2026, 27(2), 1083; https://doi.org/10.3390/ijms27021083 (registering DOI) - 21 Jan 2026
Abstract
Elevated sodium concentrations are commonly observed in tumors and sites of inflammation. Previous studies have shown that high salt levels modulate the phenotype and function of CD4+ and CD8+ T cells, regulatory T cells, and macrophages. In this study, we performed [...] Read more.
Elevated sodium concentrations are commonly observed in tumors and sites of inflammation. Previous studies have shown that high salt levels modulate the phenotype and function of CD4+ and CD8+ T cells, regulatory T cells, and macrophages. In this study, we performed transcriptomic studies that revealed profound alterations in the neutrophil transcriptome upon high salt exposure, with changes that significantly exceeded those triggered by conventional agonists. By integrating transcriptomic data with functional assays, our findings suggest that high salt-induced neutrophil activation involves mitochondrial ROS production, which subsequently activates p38 MAPK and engages FOS-, Bruton’s tyrosine kinase (BTK)-, and cyclooxygenase 2 (COX2)-dependent pathways. Remarkably, the plasticity of the neutrophil transcriptome in response to high salt was further evidenced by the upregulation of genes typically associated with other cell types, including semenogelin 1 (SEMG1), intercellular adhesion molecule-4 (ICAM4), tripartite motif69 (TRIM69), amphiregulin (AREG), oncostatin (OSM), and transducer of ERBB2-1 (TOB1), suggesting a broader role for neutrophils in different biological processes beyond their participation in innate immunity. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

21 pages, 768 KB  
Review
Effects of Social Support Interventions on Medical Patient Survival: A Meta-Analysis of Non-Randomized Clinical Trials
by Ksenia Illinykh-Bair and Timothy B. Smith
Healthcare 2026, 14(2), 277; https://doi.org/10.3390/healthcare14020277 (registering DOI) - 21 Jan 2026
Abstract
Background: Prior research confirms that social support promotes resilience among medical patients with chronic illness. Beyond emotional benefits, research has increasingly shown the importance of social support on physical health outcomes. Therefore, identifying and evaluating interventions that increase social support among medical patients [...] Read more.
Background: Prior research confirms that social support promotes resilience among medical patients with chronic illness. Beyond emotional benefits, research has increasingly shown the importance of social support on physical health outcomes. Therefore, identifying and evaluating interventions that increase social support among medical patients with chronic conditions is a priority for healthcare. Methods: This meta-analysis summarized data from 39,493 medical patients across 14 non-randomized trials that had been identified by a prior review of the survival benefits of social support interventions. Results: Across four studies reporting hazard ratio data, the results failed to reach statistical significance (HR = 2.10, 95% CI = 0.99 to 4.48, p = 0.0546), and the results of ten studies reporting odds ratio data were of smaller magnitude (OR = 1.27, 95% CI [0.72, 2.23], p > 0.05). Heterogeneity characterized both the odds ratio data (I2 = 53%; Q = 18.1, p = 0.03) and hazard ratio data (I2 = 89%, Q = 23, p < 0.001). A notable finding was that studies with longer periods of data collection showed longer survival among medical patients receiving social support. Conclusions: Long-term observations may be necessary for the survival benefits of social support interventions to become apparent. Further research with a larger pool of data from long-term follow-up studies will be needed to establish firm conclusions. Full article
(This article belongs to the Section Chronic Care)
25 pages, 3615 KB  
Article
Adaptive Hybrid Grid-Following and Grid-Forming Control with Hybrid Coefficient Transition Regulation for Transient Current Suppression
by Wujie Chao, Liyu Dai, Yichen Feng, Junwei Huang, Jinke Wang, Xinyi Lin and Chunpeng Zhang
Energies 2026, 19(2), 549; https://doi.org/10.3390/en19020549 (registering DOI) - 21 Jan 2026
Abstract
With the increasing integration of renewable energy into power grids, voltage source converter-based high-voltage direct current (VSC-HVDC) stations often adopt hybrid grid-following (GFL) and grid-forming (GFM) control strategies to improve adaptability to varying grid strengths. In many existing schemes, the hybrid coefficient changes [...] Read more.
With the increasing integration of renewable energy into power grids, voltage source converter-based high-voltage direct current (VSC-HVDC) stations often adopt hybrid grid-following (GFL) and grid-forming (GFM) control strategies to improve adaptability to varying grid strengths. In many existing schemes, the hybrid coefficient changes abruptly, which may produce large transient current overshoots and compromise the safe and stable operation of converters. An adaptive hybrid GFL-GFM control framework equipped with a hybrid coefficient transition regulation is proposed. Small-signal state–space models are established and eigenvalue analysis confirms stability over the considered short-circuit ratio (SCR) range. The regulating method is activated only during coefficient transitions and is inactive in steady-state, thereby preserving the operating-point eigenvalue properties. Dynamic equations of the converter current change rate are derived to reveal the key role of the hybrid-coefficient change rate in driving transient current overshoots, based on which a real-time hybrid coefficient regulating method is developed to shape coefficient transitions. Simulations on a 500 kV/2100 MW VSC-HVDC project demonstrate reduced transient current overshoot and power oscillations during SCR variations, with robustness under moderate parameter deviations as well as representative SCR assessment error and update delay. Full article
Show Figures

Figure 1

21 pages, 1176 KB  
Article
Design and Physicochemical Characterization of Hybrid PLGA–Curcumin/Carbon Dot Nanoparticles for Sustained Galantamine Release: A Proof-of-Concept Study
by Christina Samiotaki, Stavroula Nanaki, Rizos Evangelos Bikiaris, Evi Christodoulou, George Z. Kyzas, Panagiotis Barmpalexis and Dimitrios N. Bikiaris
Biomolecules 2026, 16(1), 176; https://doi.org/10.3390/biom16010176 (registering DOI) - 21 Jan 2026
Abstract
The present study reports the design and physicochemical characterization of a hybrid nanoparticle system for the potential intranasal delivery of galantamine (GAL), aimed at improving its bioavailability. Carbon dots (CDs) were used to load GAL, enhancing its dissolution and stability, and were subsequently [...] Read more.
The present study reports the design and physicochemical characterization of a hybrid nanoparticle system for the potential intranasal delivery of galantamine (GAL), aimed at improving its bioavailability. Carbon dots (CDs) were used to load GAL, enhancing its dissolution and stability, and were subsequently incorporated into a poly(lactic-co-glycolic acid)–curcumin (PLGA–Cur) conjugate matrix. The successful formation of the PLGA-Cur conjugate was verified via 1H-NMR and FTIR spectroscopy, while the loading of GAL and its physical state in the CDs was assessed via FTIR and pXRD, respectively. The resulting GAL-CD/PLGA–Cur nanoparticles were spherical, with particle sizes varying from 153.7 nm to 256.3 nm, a uniform morphology and a narrow size distribution. In vitro release studies demonstrated a multi-phase sustained release pattern extending up to 12 days. Spectroscopic and thermal analyses confirmed successful conjugation and molecular interactions between GAL and the carrier matrix. This proof-of-concept hybrid system demonstrates promising controlled, multi-phase sustained galantamine release in vitro, highlighting the role of curcumin conjugation in modulating polymer structure and release kinetics and providing a foundation for future biological evaluation. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
23 pages, 506 KB  
Article
Psychometric Validation of the Community Antimicrobial Use Scale (CAMUS) in Primary Healthcare and the Implications for Future Use
by Nishana Ramdas, Natalie Schellack, Corrie Uys, Brian Godman, Stephen M. Campbell and Johanna C. Meyer
Antibiotics 2026, 15(1), 107; https://doi.org/10.3390/antibiotics15010107 (registering DOI) - 21 Jan 2026
Abstract
Background/Objectives: Patient-level factors strongly influence antimicrobial resistance (AMR) through the pressure applied to healthcare professionals to prescribe antibiotics even for self-limiting viral infections, enhanced by knowledge and attitude concerns. This includes Africa, with high levels of AMR. However, validated measurement tools for African [...] Read more.
Background/Objectives: Patient-level factors strongly influence antimicrobial resistance (AMR) through the pressure applied to healthcare professionals to prescribe antibiotics even for self-limiting viral infections, enhanced by knowledge and attitude concerns. This includes Africa, with high levels of AMR. However, validated measurement tools for African primary healthcare (PHC) are scarce. This study evaluated the reliability, structural validity, and interpretability of the Community Antimicrobial Use Scale (CAMUS) in South Africa. Methods: A cross-sectional survey was conducted with 1283 adults across 25 diverse public PHC facilities across two provinces. The 30-item theory-based tool underwent exploratory and confirmatory factor analysis (EFA/CFA), reliability, and validity testing. Results: EFA identified a coherent five-factor structure: (F1) Understanding antibiotics; (F2) Social and behavioural norms; (F3) Non-prescribed use; (F4) Understanding of AMR; and (F5) Attitudes. Internal consistency was strongest for knowledge and misuse domains (alpha approximation 0.80). Test–retest reliability was good-to-excellent (ICC: 0.72–0.89). CFA confirmed acceptable composite reliability (CR ≥ 0.63). Although average variance extracted (AVE) was low for broader behavioural constructs, indicating conceptual breadth, it was high for AMR knowledge (0.737). Construct validity was supported by positive correlations with health literacy (r = 0.48) and appropriate use intentions (r = 0.42). Measurement error metrics (SEM = 1.59; SDC = 4.40) indicated good precision for group-level comparisons. Conclusions: CAMUS demonstrated a theoretically grounded structure with robust performance in knowledge and misuse domains. While social and attitudinal domains require refinement, we believe the tool is psychometrically suitable for group-level antimicrobial use surveillance and programme evaluation in South African PHC settings and wider to help with targeting future educational programmes among patients. Full article
15 pages, 1064 KB  
Review
Extracellular Matrix in Human Disease and Therapy: From Pathogenic Remodeling to Biomaterial Platforms and Precision Diagnostics
by Jun-Hyeog Jang
Biomedicines 2026, 14(1), 247; https://doi.org/10.3390/biomedicines14010247 (registering DOI) - 21 Jan 2026
Abstract
The extracellular matrix (ECM) is a dynamic, tissue-specific network that integrates biochemical and mechanical cues to regulate cell behavior and organ homeostasis. Increasing evidence indicates that dysregulated ECM remodeling is an upstream driver of chronic human diseases rather than a passive consequence of [...] Read more.
The extracellular matrix (ECM) is a dynamic, tissue-specific network that integrates biochemical and mechanical cues to regulate cell behavior and organ homeostasis. Increasing evidence indicates that dysregulated ECM remodeling is an upstream driver of chronic human diseases rather than a passive consequence of injury. This review summarizes principles of ECM organization, mechanotransduction, and pathological remodeling and highlights translational opportunities for ECM-targeted therapies, biomaterial platforms, and precision diagnostics. We conducted a narrative synthesis of foundational and recent literature covering ECM composition and turnover, stiffness-dependent signaling, and disease-associated remodeling across fibrosis/cardiovascular disease, cancer, and metabolic disorders, together with advances in ECM-based biomaterials, drug delivery, and ECMderived biomarkers and imaging. Across organs, a self-reinforcing cycle of altered matrix composition, excessive crosslinking, and stiffness-dependent mechanotransduction (including integrin–FAK and YAP/TAZ pathways) sustains fibroinflammation, myofibroblast persistence, and progressive tissue dysfunction. In tumors, aligned and crosslinked ECM promotes invasion, immune evasion, and therapy resistance while also shaping perfusion and drug penetration. Translational strategies increasingly focus on modulating ECM synthesis and crosslinking, normalizing rather than ablating matrix architecture, and targeting ECM–cell signaling axes in combination with anti-fibrotic, cytotoxic, or immunotherapeutic regimens. ECM biology provides a unifying framework linking pathogenesis, therapy, and precision diagnostics across chronic diseases. Clinical translation will benefit from standardized quantitative measures of matrix remodeling, mechanism-based biomarkers of ECM turnover, and integrative imaging–omics approaches for patient stratification and treatment monitoring. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Graphical abstract

20 pages, 5998 KB  
Article
Soil Properties and Aging Processes Regulate Cr(VI) Toxicity to Caenorhabditis elegans
by Xiang Ao, Xiuli Dang, Long Zhao, Caiting Mai, Mengmeng Bao, Fengzhuo Geng, Roland Bol and Iseult Lynch
Agriculture 2026, 16(2), 275; https://doi.org/10.3390/agriculture16020275 (registering DOI) - 21 Jan 2026
Abstract
Chromium (Cr) is a highly toxic heavy metal, yet its effects on soil invertebrates—particularly Caenorhabditis elegans (C. elegans)—remain insufficiently understood, especially regarding how soil properties and Cr speciation change regulate its bioavailability and toxicity. In this study, the toxicity of Cr(VI) [...] Read more.
Chromium (Cr) is a highly toxic heavy metal, yet its effects on soil invertebrates—particularly Caenorhabditis elegans (C. elegans)—remain insufficiently understood, especially regarding how soil properties and Cr speciation change regulate its bioavailability and toxicity. In this study, the toxicity of Cr(VI) to the growth, fertility, and reproduction of C. elegans was assessed in six representative agricultural soils following 7, 60, and 120 days of spiked soil aging, following ISO 10872 guidelines. Substantial differences in toxicity were observed among soils after 7 days of aging, with toxicity ranking from low to high as black soil < yellowish-red soil < red soil < yellow–brown soil < fluvo-aquic soil < purple soil. After 60 days of aging, Cr(VI) toxicity decreased markedly, with EC50 values for growth, fertility, and reproduction increasing by 1.04–2.32, 1.04–2.34, and 1.40–2.20 times, respectively. Organic matter (OM) and amorphous aluminum oxides (AlAO) were identified as the principal soil properties that were significantly correlated with Cr(VI) toxicity and were useful for explaining and estimating toxicity thresholds within the range of soils examined in this study. In addition, the magnitude of the aging effect showed significant positive correlations with both amorphous aluminum oxides (AlAO) and total aluminum (Altotal), suggesting that Al-bearing minerals may contribute to the time-dependent immobilization of Cr(VI) under the experimental conditions of this study. These findings expand the ecotoxicological database for chromium, improve the prediction of toxicity thresholds under diverse soil conditions, and provide a scientific basis for refining soil environmental quality standards and developing targeted management strategies for Cr-contaminated agricultural soils. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

15 pages, 1255 KB  
Article
Development of an mRNA Vaccine for Tick-Borne Encephalitis: Selection of a Prototype Virus Strain
by Maria A. Nikiforova, Vladimir A. Gushchin, Denis A. Kleymenov, Anastasia M. Kocherzhenko, Evgeniia N. Bykonia, Elena P. Mazunina, Sofia R. Kozlova, Leonid I. Russu, Nadezhda A. Kuznetsova, Elena V. Shidlovskaya, Elizaveta V. Marchuk, Evgeny V. Usachev, Olga V. Usacheva, Dmitry V. Shcheblyakov, Irina V. Kozlova, Sergei E. Tkachev, Andrei A. Pochtovyi, Vladimir I. Zlobin, Denis Y. Logunov and Alexander L. Gintsburg
Vaccines 2026, 14(1), 107; https://doi.org/10.3390/vaccines14010107 (registering DOI) - 21 Jan 2026
Abstract
Background/Objectives: While tick-borne encephalitis virus (TBEV) is genetically relatively conserved, the significant antigenic divergence between its main circulating subtypes hinders the development of broadly effective antiviral treatments and vaccines. Current inactivated TBEV vaccines offer limited cross-protection against heterologous strains, as evidenced by [...] Read more.
Background/Objectives: While tick-borne encephalitis virus (TBEV) is genetically relatively conserved, the significant antigenic divergence between its main circulating subtypes hinders the development of broadly effective antiviral treatments and vaccines. Current inactivated TBEV vaccines offer limited cross-protection against heterologous strains, as evidenced by cases among vaccinated individuals in endemic regions. The aim of this study was to design a candidate mRNA vaccine and evaluate the breadth of protective immunity it elicits. Methods: Ten candidate mRNA-PrM/E-LNP vaccines were comparatively evaluated for immunogenicity and protective efficacy in BALB/c mice. Immunogenicity was assessed by measuring antigen-specific IgG titers via ELISA and neutralizing antibody titers against a panel of TBEV strains using a virus-neutralization test. Protective efficiency was determined in a lethal challenge model, where immunized mice were challenged with one of seven distinct TBEV strains. Results: Vaccination with all tested mRNA-PrM/E-LNP candidates conferred 100% survival in mice following a lethal challenge with each of the seven TBEV strains (100 LD50). The construct mRNA-PrM/E—Krasny Yar-8 demonstrated the highest immunogenicity, inducing antigen-specific antibodies with a geometric mean titer (GMT) of 1:6625, as well as the broadest virus-neutralizing activity against both homologous and heterologous TBEV strains in vitro. Conclusions: The mRNA platform represents a promising strategy for developing TBEV vaccines, demonstrating high immunogenicity and cross-protective efficacy against diverse viral strains. Full article
(This article belongs to the Special Issue Feature Papers of DNA and mRNA Vaccines)
30 pages, 2254 KB  
Article
Wind and Snow Protection Design and Optimization for Tunnel Portals in Central Asian Alpine Mountains
by Bin Zhi, Changwei Li, Xiaojing Xu, Zhanping Song and Ang Jiao
Buildings 2026, 16(2), 454; https://doi.org/10.3390/buildings16020454 (registering DOI) - 21 Jan 2026
Abstract
Aiming at the wind-blown snow disasters plaguing tunnel portals along the China-Tajikistan Highway Phase II Project, this study optimizes the protective parameters of wind deflectors through numerical simulation to improve the disaster prevention efficiency of tunnel portals in alpine mountainous areas. Three core [...] Read more.
Aiming at the wind-blown snow disasters plaguing tunnel portals along the China-Tajikistan Highway Phase II Project, this study optimizes the protective parameters of wind deflectors through numerical simulation to improve the disaster prevention efficiency of tunnel portals in alpine mountainous areas. Three core control parameters of wind deflectors, namely horizontal distance from the tunnel portal (L), plate inclination angle (β), and top installation height (h), were selected as the research objects. Single-factor numerical simulation scenarios were designed for each parameter, and an L9(33) orthogonal test was further adopted to formulate 9 groups of multi-parameter combination scenarios, with the snow phase volume fraction at 35 m on the leeward side of the tunnel portal set as the core evaluation index. A computational fluid dynamics (CFD) model was established to systematically investigate the influence laws of each parameter on the wind field structure and snow drift deposition characteristics at tunnel portals and clarify the flow field response rules under different parameter configurations. Single-factor simulation results show that the wind deflector exerts distinct regulatory effects on the wind-snow flow field with different parameter settings: when L = 6 m, the disturbance zone of the wind deflector precisely covers the main wind flow development area in front of the tunnel portal, which effectively lifts the main incoming flow path, compresses the recirculation zone (length reduced from 45.8 m to 22.3 m), and reduces the settlement of snow particles, achieving the optimal comprehensive prevention effect; when β = 60°, the leeward wind speed at the tunnel portal is significantly increased to 10–12 m/s (from below 10 m/s), which effectively promotes the transport of snow particles and mitigates the accumulation risk, being the optimal inclination angle; when h = 2 m, the wind speed on both the windward and leeward sides of the tunnel portal is significantly improved, and the snow accumulation risk at the portal reaches the minimum. Orthogonal test results further quantify the influence degree of each parameter on the snow prevention effect, revealing that the horizontal distance from the tunnel portal is the most significant influencing factor. The optimal parameter combination of the wind deflector is determined as L = 6 m, β = 60°, and h = 2 m. Under this optimal combination, the snow phase volume fraction at 35 m on the leeward side of the tunnel portal is 0.0505, a 12.3% reduction compared with the non-deflector condition; the high-concentration snow accumulation zone is shifted 25 m leeward, and the high-value snow phase volume fraction area (>0.06) disappears completely, which can effectively alleviate the adverse impact of wind-blown snow disasters on the normal operation of tunnel portals. The research results reveal the regulation mechanism of wind deflector parameters on the wind-snow flow field at alpine tunnel portals and determine the optimal protective parameter combination, which can provide important theoretical reference and technical support for the prevention and control of wind-blown snow disasters at tunnel portals in similar alpine mountainous areas. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
41 pages, 7193 KB  
Article
Nonlinear Optical Properties of Fe(II) and Ru(II) Alkynyl-Functionalized 1,3,5-Triphenyl-1,3,5-triazine-2,4,6-triones and 1,3,5-Triphenylbenzenes: Syntheses, Second-Harmonic Generation and Two-Photon Absorption
by Alexander Trujillo, Romain Veillard, Amédée Triadon, Guillaume Grelaud, Gilles Argouarch, Thierry Roisnel, Anu Singh, Isabelle Ledoux, Anissa Amar, Abdou Boucekkine, Marek Samoc, Katarzyna Matczyszyn, Xinwei Yang, Adam Barlow, Marie P. Cifuentes, Mahbod Morshedi, Mark G. Humphrey and Frédéric Paul
Photochem 2026, 6(1), 6; https://doi.org/10.3390/photochem6010006 (registering DOI) - 21 Jan 2026
Abstract
We report the use of σ-alkynyl d6 electron-rich transition metal complexes as electron-releasing end-groups in octupolar molecules designed for nonlinear optical (NLO) applications, specifically, N,N′,N″-triarylisocyanurates (5,7,8,10,12) [...] Read more.
We report the use of σ-alkynyl d6 electron-rich transition metal complexes as electron-releasing end-groups in octupolar molecules designed for nonlinear optical (NLO) applications, specifically, N,N′,N″-triarylisocyanurates (5,7,8,10,12) and 1,3,5-triarylbenzenes (6,9,11) functionalized by Fe(II) and Ru(II) organometallic moieties, and their NLO properties, as assessed by hyper-Rayleigh scattering (HRS) and Z-scan. The redox properties are briefly investigated through isolation of the corresponding Fe(III) trications 5[PF6]3 and 6[PF6]3. The second-harmonic generation (SHG) or two-photon absorption (2PA) performance of the Fe(II) and Ru(II) parents is compared with the help of TD-DFT calculations performed on models. Comparison with tris-ferrocenyl isocyanurate 4 reveals that the σ-connection of the metallic centers to the π-manifold is superior to the η5-connection for enhancing NLO properties. The positive effect of organometallic end-groups on NLO properties relative to purely organic electron-releasing substituents is established. The mechanism by which NLO enhancement occurs is complex and possibly connected to the polarizable π-electrons in the ligands surrounding the metal alkynyl units, but in most cases, the observed NLO enhancement must arise from the transition metal centers interacting with the central π-manifold. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry, 3rd Edition)
Show Figures

Graphical abstract

24 pages, 839 KB  
Article
The Association of Physical Activity with Health Indices and Healthcare Utilization
by Anastasia Keremi, Antonia Kaltsatou, Anna Tsiakiri, Dimitrios Tsiptsios, Sotirios Botaitis, Foteini Christidi, Vasilis-Spyridon Tseriotis, Maria Voulgari, Pinelopi Vlotinou, Aspasia Serdari, Kostas Anagnostopoulos and Gregory Tripsianis
Sci 2026, 8(1), 23; https://doi.org/10.3390/sci8010023 (registering DOI) - 21 Jan 2026
Abstract
This study aimed to examine the association between physical activity and individuals’ health status, healthcare utilization, socio-demographic characteristics, and health behaviors in a large representative sample from Northern Greece. A cross-sectional study was conducted involving 1227 participants (47.4% males, mean age 49.94 ± [...] Read more.
This study aimed to examine the association between physical activity and individuals’ health status, healthcare utilization, socio-demographic characteristics, and health behaviors in a large representative sample from Northern Greece. A cross-sectional study was conducted involving 1227 participants (47.4% males, mean age 49.94 ± 14.87 years) from Thrace, Greece, selected through a two-stage stratified sampling method. According to the Greek version of IPAQ, participants were classified as inactive/insufficiently active, sufficiently and highly active. Data on socio-demographic, lifestyle, and health-related variables were collected through structured interviews. Multivariate logistic regression analysis was performed to determine the independent effect of physical activity on subjects’ characteristics using SPSS ver. 19. Half of the participants (49.8%) were inactive/insufficiently active, 418 participants (34.1%) were sufficiently active, and 198 participants (16.1%) were highly active. In univariate analysis, smoking (p < 0.001), higher coffee consumption (p = 0.002), higher adherence to Mediterranean diet (p < 0.001), napping during the day (p = 0.017) and short sleep duration (p < 0.001) were associated with lower prevalence of high activity. In adjusted analyses, sufficiently active participants had a lower risk for bad self-rated health (aOR = 0.63), hypertension (aOR = 0.41), dyslipidemia (aOR = 0.42), diabetes (aOR = 0.53), obesity (aOR = 0.61), cardiovascular diseases (aOR = 0.43), anxiety (aOR = 0.65), depression (aOR = 0.56), daily sleepiness (aOR = 0.62), poor sleep quality (aOR = 0.71), as well as for primary (aOR = 0.54) and secondary (aOR = 0.40) healthcare utilization compared to inactive participants. Higher-intensity physical activity did not enhance these beneficial effects of sufficient activity on subjects’ characteristics. Physical inactivity significantly compromises health across multiple domains. Promoting even moderate-intensity physical activity may reduce chronic disease burden and healthcare utilization. Full article
Show Figures

Figure 1

12 pages, 772 KB  
Article
Protective Effects of Grapeseed Proanthocyanidins in Ulcerative Colitis: A Pilot Study Evaluating a Potential Therapeutic Strategy
by Sonia Facchin, Elena Agostini, Elisa Laparra-Ruiz, Giuseppe Benvenuto, Giorgio Valle, Luisa Bertin and Edoardo Vincenzo Savarino
J. Clin. Med. 2026, 15(2), 888; https://doi.org/10.3390/jcm15020888 (registering DOI) - 21 Jan 2026
Abstract
Background/Objectives: Recent research highlights Vitis vinifera seeds as a rich source of bioactive proanthocyanidins (PACs) with antioxidant and immunomodulatory effects. Poorly absorbed PACs are metabolized by gut microbiota into active phenolic metabolites. This pilot study in ulcerative colitis patients assessed grape seed [...] Read more.
Background/Objectives: Recent research highlights Vitis vinifera seeds as a rich source of bioactive proanthocyanidins (PACs) with antioxidant and immunomodulatory effects. Poorly absorbed PACs are metabolized by gut microbiota into active phenolic metabolites. This pilot study in ulcerative colitis patients assessed grape seed extract effects on microbiota, zonulin-related permeability, and quality of life. Methods: This prospective pilot study, conducted at the University Hospital of Padua, evaluated the effects of an eight-week treatment with proanthocyanidins (ECOVITIS®) on gut microbiota, intestinal permeability (zonulin), and well-being in patients with ulcerative colitis in remission (IBDQ). Fecal and serum samples were collected at T0 and T1. Microbiota analysis was performed through 16S rRNA gene sequencing (QIIME2), zonulin was quantified using an ELISA kit for pre-haptoglobin gene2 (pre-HP2), and HP1/HP2 genotyping was conducted by quantitative PCR. Statistical analyses (Wilcoxon, ALDEx2, PERMANOVA) assessed microbial diversity and taxonomic changes between pre- and post-treatment samples. Results: Twenty-five ulcerative colitis patients completed the study. IBDQ scores significantly improved after treatment (mean Δ = +11.2, p < 0.001), especially in the 11 best IBDQ responders (Δ = +24.2, p < 0.001). Microbiota analysis showed increased Lachnospiraceae and Sutterellaceae in responders, while overall diversity remained unchanged. Zonulin levels were unaffected. Conclusions: PAC treatment improved quality of life in ulcerative colitis patients, as shown by increased IBDQ scores. Serum zonulin levels remained unchanged. Microbiota analysis revealed enrichment of Lachnospiraceae and Sutterellaceae families, suggesting beneficial modulation. Limitations include lack of metabolic assessment and a control group, and caution is needed in interpreting zonulin measurements. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

16 pages, 1516 KB  
Article
Knockout of MDHAR Paralogs Suggests Broader Regulatory Roles Beyond Ascorbic Acid Recycling in Lettuce
by Ugo Rogo, Samuel Simoni, Ambra Viviani, Claudio Pugliesi, Marco Fambrini, Alberto Vangelisti, Lucia Natali, Andrea Cavallini, Richard Michelmore and Tommaso Giordani
Horticulturae 2026, 12(1), 122; https://doi.org/10.3390/horticulturae12010122 (registering DOI) - 21 Jan 2026
Abstract
Ascorbic acid (AsA) is a key antioxidant and nutrient in plants, regulating reactive oxygen species (ROS) levels and maintaining cellular redox homeostasis. The AsA recycling pathway sustains AsA pools by restoring its oxidized forms, ensuring intracellular balance. Among the enzymes involved, monodehydroascorbate reductase [...] Read more.
Ascorbic acid (AsA) is a key antioxidant and nutrient in plants, regulating reactive oxygen species (ROS) levels and maintaining cellular redox homeostasis. The AsA recycling pathway sustains AsA pools by restoring its oxidized forms, ensuring intracellular balance. Among the enzymes involved, monodehydroascorbate reductase (MDHAR) is important for the regeneration of AsA from monodehydroascorbate. In this study, we analyzed the four MDHAR paralogs in Lactuca sativa using CRISPR/Cas9 to determine whether disruption of individual MDHAR genes could alter AsA levels in lettuce leaves. Unexpectedly, none of the knockouts caused long-term changes in leaf AsA content. Transcriptomic analyses at 14 and 28 days showed minimal effects on AsA recycling or biosynthesis genes, except MDHAR genes. However, several other genes indirectly implicated in AsA regulation displayed differential expression in all mutants compared to the wild type, suggesting the presence of a complex regulatory network. In particular, genes encoding transcription factors (TFs), such as mTERF15, COL9, UPBEAT1, NAC28, and NAC42, were differentially regulated in all MDHAR mutants compared to the wild type at 28 days. These findings indicate that, although AsA content remains unchanged, MDHAR single knockouts alter expression of other genes through which the plants may indirectly compensate to maintain redox homeostasis. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Graphical abstract

19 pages, 2128 KB  
Article
The Effect of Different Crop Production Systems on Seed Germination and Longevity in Winter Wheat (Triticum aestivum L.)
by Monika Agacka-Mołdoch, Krzysztof Jończyk, Jan Bocianowski and Andreas Börner
Agronomy 2026, 16(2), 260; https://doi.org/10.3390/agronomy16020260 (registering DOI) - 21 Jan 2026
Abstract
Seed germination performance and storability are fundamental components of seed quality and critical for successful crop establishment. However, information on the impact of different crop production systems on the quality and storability of seed material is still limited. Therefore, the aim of this [...] Read more.
Seed germination performance and storability are fundamental components of seed quality and critical for successful crop establishment. However, information on the impact of different crop production systems on the quality and storability of seed material is still limited. Therefore, the aim of this study was to compare the effects of different crop production systems (ecological, integrated, conventional, and monoculture) on seed germination and predisposition for storage. The research was carried out on four varieties of winter wheat. Seed material was produced within a two-year period, during which different weather conditions occurred. Four germination-related traits were assessed: germination capacity NS (%), total germination (TG%), time to reach 50% germination (t50) and the area under the germination curve (AUC). The results demonstrated that the cultivar, the cultivation system and the year of study had a significant impact on germination characteristics. The ecological system ensured the highest germination rate in fresh seeds. However, in the CD test, the conventional system demonstrated the highest levels of stress resistance and stability, suggesting the best storage potential. The significant system × variety interaction demonstrates the importance of accurate matching of the genotype to the growing conditions to ensure optimal seed quality. Furthermore, the data demonstrated a strong influence of climatic conditions in the year of production, which is crucial for seed vigor. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

23 pages, 1822 KB  
Article
Trajectory Association for Moving Targets of GNSS-S Radar Based on Statistical and Polarimetric Characteristics Under Low SNR Conditions
by Jiayi Yan, Fuzhan Yue, Zhenghuan Xia, Shichao Jin, Xin Liu, Chuang Zhang, Kang Xing, Zhiying Cui, Zhilong Zhao, Zongqiang Liu, Lichang Duan and Yue Pang
Remote Sens. 2026, 18(2), 367; https://doi.org/10.3390/rs18020367 (registering DOI) - 21 Jan 2026
Abstract
The Global Navigation Satellite System-Scattering (GNSS-S) radar has a wide coverage and strong concealment, enabling large-scale and long-term monitoring of sea surface targets. However, its signal power is extremely low and susceptible to sea clutter interference. To address the challenge of detecting and [...] Read more.
The Global Navigation Satellite System-Scattering (GNSS-S) radar has a wide coverage and strong concealment, enabling large-scale and long-term monitoring of sea surface targets. However, its signal power is extremely low and susceptible to sea clutter interference. To address the challenge of detecting and tracking moving targets in complex maritime environments using low-resolution radar, this paper proposes a method for extracting moving target trajectories from GNSS-S radar under low signal-to-noise ratio (SNR) conditions. The method constructs a feature plane consisting of statistical and polarization characteristics, based on the unique distribution of different motion targets in this plane, the distinction between sea clutter and multi-motion targets is carried out using machine learning algorithms, and finally the trajectory association of the targets is achieved by the Kalman filter, and the tracking correctness can reach more than 93.89%. Compared with the tracking method based on high-resolution imaging targets, this technique does not require complex imaging operations, and only requires certain processing on the radar echo, which has the advantages of easy operation and high reliability. Full article
43 pages, 6577 KB  
Review
Biopolymers and Biocomposites for Additive Manufacturing of Optical Frames
by Beatriz Carvalho, Fátima Santos, Juliana Araújo, Bruna Santos, João Alhada Lourenço, Pedro Ramos and Telma Encarnação
Macromol 2026, 6(1), 8; https://doi.org/10.3390/macromol6010008 (registering DOI) - 21 Jan 2026
Abstract
Optical frames are used worldwide to correct visual impairments, protect from UV damage, or simply for fashion purposes. Optical frames are often made of poorly biodegradable and fossil-based materials, with designs not targeted to everyone’s tastes and requirements. Additive manufacturing processes allow personalisation [...] Read more.
Optical frames are used worldwide to correct visual impairments, protect from UV damage, or simply for fashion purposes. Optical frames are often made of poorly biodegradable and fossil-based materials, with designs not targeted to everyone’s tastes and requirements. Additive manufacturing processes allow personalisation of optical frames and the use of new sustainable biomaterials to replace fossil-based ones. This comprehensive review combines an extensive survey of the scientific literature, market trends, and information from other relevant sources, analysing the biomaterials currently used in additive manufacturing and identifying biomaterials (biopolymers, natural fibres, and natural additives) with the potential to be developed into biocomposites for printing optical frames. Requirements for optical devices were carefully considered, such as standards, regulations, and demands for manufacturing materials. By comparing with fossil-based analogues and by discussing the chemical, physical, and mechanical properties of each biomaterial, it was found that combining various materials in biocomposites is promising for achieving the desirable properties for printing optical frames. The advantages of the various techniques of this cutting-edge technology were also analysed and discussed for optical industry applications. This study aims to answer the central research question: which biopolymers and biocomposite constituents (natural fibres, plasticisers, and additives) have the ideal mechanical, thermal, physical, and chemical properties for combining into a biomaterial suitable for producing sustainable, customisable, and inclusive optical frames on demand, using additive manufacturing techniques. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop