- Review
A Dive into Generative Adversarial Networks in the World of Hyperspectral Imaging: A Survey of the State of the Art
- Pallavi Ranjan,
- Ankur Nandal and
- Saurabh Agarwal
- + 1 author
Hyperspectral imaging (HSI) captures rich spectral information across a wide range of wavelengths, enabling advanced applications in remote sensing, environmental monitoring, medical diagnosis, and related domains. However, the high dimensionality, spectral variability, and inherent noise of HSI data present significant challenges for efficient processing and reliable analysis. In recent years, Generative Adversarial Networks (GANs) have emerged as transformative deep learning paradigms, demonstrating strong capabilities in data generation, augmentation, feature learning, and representation modeling. Consequently, the integration of GANs into HSI analysis has gained substantial research attention, resulting in a diverse range of architectures tailored to HSI-specific tasks. Despite these advances, existing survey studies often focus on isolated problems or individual application domains, limiting a comprehensive understanding of the broader GAN–HSI landscape. To address this gap, this paper presents a comprehensive review of GAN-based hyperspectral imaging research. The review systematically examines the evolution of GAN–HSI integration, categorizes representative GAN architectures, analyzes domain-specific applications, and discusses commonly adopted hyperparameter tuning strategies. Furthermore, key research challenges and open issues are identified, and promising future research directions are outlined. This synergy addresses critical hyperspectral data analysis challenges while unlocking transformative innovations across multiple sectors.
Remote Sens.,
6 January 2026



