Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (692)

Search Parameters:
Keywords = young carbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8483 KiB  
Article
Research on Innovative Design of Two-in-One Portable Electric Scooter Based on Integrated Industrial Design Method
by Yang Zhang, Xiaopu Jiang, Shifan Niu and Yi Zhang
Sustainability 2025, 17(15), 7121; https://doi.org/10.3390/su17157121 - 6 Aug 2025
Abstract
With the advancement of low-carbon and sustainable development initiatives, electric scooters, recognized as essential transportation tools and leisure products, have gained significant popularity, particularly among young people. However, the current electric scooter market is plagued by severe product similarity. Once the initial novelty [...] Read more.
With the advancement of low-carbon and sustainable development initiatives, electric scooters, recognized as essential transportation tools and leisure products, have gained significant popularity, particularly among young people. However, the current electric scooter market is plagued by severe product similarity. Once the initial novelty fades for users, the usage frequency declines, resulting in considerable resource wastage. This research collected user needs via surveys and employed the KJ method (affinity diagram) to synthesize fragmented insights into cohesive thematic clusters. Subsequently, a hierarchical needs model for electric scooters was constructed using analytical hierarchy process (AHP) principles, enabling systematic prioritization of user requirements through multi-criteria evaluation. By establishing a house of quality (HoQ), user needs were transformed into technical characteristics of electric scooter products, and the corresponding weights were calculated. After analyzing the positive and negative correlation degrees of the technical characteristic indicators, it was found that there are technical contradictions between functional zoning and compact size, lightweight design and material structure, and smart interaction and usability. Then, based on the theory of inventive problem solving (TRIZ), the contradictions were classified, and corresponding problem-solving principles were identified to achieve a multi-functional innovative design for electric scooters. This research, leveraging a systematic industrial design analysis framework, identified critical pain points among electric scooter users, established hierarchical user needs through priority ranking, and improved product lifecycle sustainability. It offers novel methodologies and perspectives for advancing theoretical research and design practices in the electric scooter domain. Full article
Show Figures

Figure 1

20 pages, 3145 KiB  
Article
Determination of Dynamic Elastic Properties of 3D-Printed Nylon 12CF Using Impulse Excitation of Vibration
by Pedro F. Garcia, Armando Ramalho, Joel C. Vasco, Rui B. Ruben and Carlos Capela
Polymers 2025, 17(15), 2135; https://doi.org/10.3390/polym17152135 - 4 Aug 2025
Viewed by 210
Abstract
Material Extrusion (MEX) process is increasingly used to fabricate components for structural applications, driven by the availability of advanced materials and greater industrial adoption. In these contexts, understanding the mechanical performance of printed parts is crucial. However, conventional methods for assessing anisotropic elastic [...] Read more.
Material Extrusion (MEX) process is increasingly used to fabricate components for structural applications, driven by the availability of advanced materials and greater industrial adoption. In these contexts, understanding the mechanical performance of printed parts is crucial. However, conventional methods for assessing anisotropic elastic behavior often rely on expensive equipment and time-consuming procedures. The aim of this study is to evaluate the applicability of the impulse excitation of vibration (IEV) in characterizing the dynamic mechanical properties of a 3D-printed composite material. Tensile tests were also performed to compare quasi-static properties with the dynamic ones obtained through IEV. The tested material, Nylon 12CF, contains 35% short carbon fibers by weight and is commercially available from Stratasys. It is used in the fused deposition modeling (FDM) process, a Material Extrusion technology, and exhibits anisotropic mechanical properties. This is further reinforced by the filament deposition process, which affects the mechanical response of printed parts. Young’s modulus obtained in the direction perpendicular to the deposition plane (E33), obtained via IEV, was 14.77% higher than the value in the technical datasheet. Comparing methods, the Young’s modulus obtained in the deposition plane, in an inclined direction of 45 degrees in relation to the deposition direction (E45), showed a 22.95% difference between IEV and tensile tests, while Poisson’s ratio in the deposition plane (v12) differed by 6.78%. This data is critical for designing parts subject to demanding service conditions, and the results obtained (orthotropic elastic properties) can be used in finite element simulation software. Ultimately, this work reinforces the potential of the IEV method as an accessible and consistent alternative for characterizing the anisotropic properties of components produced through additive manufacturing (AM). Full article
(This article belongs to the Special Issue Mechanical Characterization of Polymer Composites)
Show Figures

Figure 1

30 pages, 4014 KiB  
Article
Spatial Heterogeneity in Carbon Pools of Young Betula sp. Stands on Former Arable Lands in the South of the Moscow Region
by Gulfina G. Frolova, Pavel V. Frolov, Vladimir N. Shanin and Irina V. Priputina
Plants 2025, 14(15), 2401; https://doi.org/10.3390/plants14152401 - 3 Aug 2025
Viewed by 125
Abstract
This study investigates the spatial heterogeneity of carbon pools in young Betula sp. stands on former arable lands in the southern Moscow region, Russia. The findings could be useful for the current estimates and predictions of the carbon balance in such forest ecosystems. [...] Read more.
This study investigates the spatial heterogeneity of carbon pools in young Betula sp. stands on former arable lands in the southern Moscow region, Russia. The findings could be useful for the current estimates and predictions of the carbon balance in such forest ecosystems. The research focuses on understanding the interactions between plant cover and the environment, i.e., how environmental factors such as stand density, tree diameter and height, light conditions, and soil properties affect ecosystem carbon pools. We also studied how heterogeneity in edaphic conditions affects the formation of plant cover, particularly tree regeneration and the development of ground layer vegetation. Field measurements were conducted on a permanent 50 × 50 m sampling plot divided into 5 × 5 m subplots, in order to capture variability in vegetation and soil characteristics. Key findings reveal significant differences in carbon stocks across subplots with varying stand densities and light conditions. This highlights the role of the spatial heterogeneity of soil properties and vegetation cover in carbon sequestration. The study demonstrates the feasibility of indirect estimation of carbon stocks using stand parameters (density, height, and diameter), with results that closely match direct measurements. The total ecosystem carbon stock was estimated at 80.47 t ha−1, with the soil contribution exceeding that of living biomass and dead organic matter. This research emphasizes the importance of accounting for spatial heterogeneity in carbon assessments of post-agricultural ecosystems, providing a methodological framework for future studies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

25 pages, 9676 KiB  
Article
A Comparative Analysis of SAR and Optical Remote Sensing for Sparse Forest Structure Parameters: A Simulation Study
by Zhihui Mao, Lei Deng, Xinyi Liu and Yueyang Wang
Forests 2025, 16(8), 1244; https://doi.org/10.3390/f16081244 - 29 Jul 2025
Viewed by 280
Abstract
Forest structure parameters are critical for understanding and managing forest ecosystems, yet sparse forests have received limited attention in previous studies. To address this research gap, this study systematically evaluates and compares the sensitivity of active Synthetic Aperture Radar (SAR) and passive optical [...] Read more.
Forest structure parameters are critical for understanding and managing forest ecosystems, yet sparse forests have received limited attention in previous studies. To address this research gap, this study systematically evaluates and compares the sensitivity of active Synthetic Aperture Radar (SAR) and passive optical remote sensing to key forest structure parameters in sparse forests, including Diameter at Breast Height (DBH), Tree Height (H), Crown Width (CW), and Leaf Area Index (LAI). Using the novel computer-graphics-based radiosity model applicable to porous individual thin objects, named Radiosity Applicable to Porous Individual Objects (RAPID), we simulated 38 distinct sparse forest scenarios to generate both SAR backscatter coefficients and optical reflectance across various wavelengths, polarization modes, and incidence/observation angles. Sensitivity was assessed using the coefficient of variation (CV). The results reveal that C-band SAR in HH polarization mode demonstrates the highest sensitivity to DBH (CV = −6.73%), H (CV = −52.68%), and LAI (CV = −63.39%), while optical data in the red band show the strongest response to CW (CV = 18.83%) variations. The study further identifies optimal acquisition configurations, with SAR data achieving maximum sensitivity at smaller incidence angles and optical reflectance performing best at forward observation angles. This study addresses a critical gap by presenting the first systematic comparison of the sensitivity of multi-band SAR and VIS/NIR data to key forest structural parameters across sparsity gradients, thereby clarifying their applicability for monitoring young and middle-aged sparse forests with high carbon sequestration potential. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

22 pages, 4318 KiB  
Article
The Molecular Mechanism and Effects of Root Pruning Treatment on Blueberry Tree Growth
by Liwei Chu, Chengjing Shi, Xin Wang, Benyin Li, Siyu Zuo, Qixuan Li, Jiarui Han, Hexin Wang and Xin Lou
Plants 2025, 14(15), 2269; https://doi.org/10.3390/plants14152269 - 23 Jul 2025
Viewed by 220
Abstract
Root pruning can promote the transplanting of young green plants, but the overall impact of pruning on root growth, morphology, and physiological functions remains unclear. This study integrated transcriptomics and physiological analyses to elucidate the effects of root pruning on blueberry growth. Appropriate [...] Read more.
Root pruning can promote the transplanting of young green plants, but the overall impact of pruning on root growth, morphology, and physiological functions remains unclear. This study integrated transcriptomics and physiological analyses to elucidate the effects of root pruning on blueberry growth. Appropriate pruning (CT4) significantly promoted plant growth, with above-ground biomass and leaf biomass significantly increasing compared to the control group within 42 days. Photosynthesis temporarily decreased at 7 days but recovered at 21 and 42 days. Transcriptomics analysis showed that the cellulose metabolism pathway was rapidly activated and influenced multiple key genes in the starch metabolism pathway. Importantly, transcription factors associated with vascular development were also significantly increased at 7, 21, and 42 days after root pruning, indicating their role in regulating vascular differentiation. Enhanced aboveground growth was positively correlated with the expression of photosynthesis-related genes, and the transport of photosynthetic products via vascular tissues provided a carbon source for root development. Thus, root development is closely related to leaf photosynthesis, and changes in gene expression associated with vascular tissue development directly influence root development, ultimately ensuring coordinated growth between aboveground and belowground parts. These findings provide a theoretical basis for optimizing root pruning strategies to enhance blueberry growth and yield. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

20 pages, 3380 KiB  
Article
Resilience of Mangrove Carbon Sequestration Under Typhoon Disturbance: Insights from Different Restoration Ages
by Youwei Lin, Ruina Liu, Yunfeng Shi, Shengjie Han, Huaibao Zhao and Zongbo Peng
Forests 2025, 16(7), 1165; https://doi.org/10.3390/f16071165 - 15 Jul 2025
Viewed by 312
Abstract
Typhoons are major climate disturbances that significantly impact coastal ecosystems, particularly mangrove forests. This study examines the effects of typhoons on mangrove communities at different stages of recovery, focusing on how environmental factors influence carbon storage and net ecosystem exchange (NEE). Three mangrove [...] Read more.
Typhoons are major climate disturbances that significantly impact coastal ecosystems, particularly mangrove forests. This study examines the effects of typhoons on mangrove communities at different stages of recovery, focusing on how environmental factors influence carbon storage and net ecosystem exchange (NEE). Three mangrove sites were selected based on their recovery age: young, moderately restored, and mature. The results revealed that typhoons had the most pronounced effect on young mangroves, resulting in significant reductions in both above-ground and soil carbon storage. In contrast, mid-aged and mature mangroves demonstrated greater resilience, with mature mangroves recovering most rapidly in terms of community structure and carbon storage. Key factors such as wind speed, heavy rainfall, and changes in photosynthetically active radiation (PAR) contributed to carbon storage losses, particularly in young mangrove forests. This study underscores the importance of recovery age in determining mangrove resilience to extreme weather events and offers insights for enhancing restoration and conservation strategies to mitigate the impacts of climate change on coastal carbon sequestration. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

18 pages, 470 KiB  
Article
The Impact of Financial Development on Renewable Energy Consumption: Evidence from RECAI Countries
by Dilber Doğan, Yakup Söylemez, Şenol Doğan and Neslihan Akça
Sustainability 2025, 17(14), 6381; https://doi.org/10.3390/su17146381 - 11 Jul 2025
Viewed by 397
Abstract
Many environmental risks, such as global warming and depletion of natural resources, force governments to achieve economic growth and financial development without causing environmental degradation. The dependency of countries’ dependence on fossil fuels also causes energy supply security problems due to the associated [...] Read more.
Many environmental risks, such as global warming and depletion of natural resources, force governments to achieve economic growth and financial development without causing environmental degradation. The dependency of countries’ dependence on fossil fuels also causes energy supply security problems due to the associated risks at regional and global levels. These reasons lead countries to diversify and increase their renewable energy investments. In this context, this study focuses on the most attractive countries in terms of renewable energy investments and analyzes the relationships between renewable energy consumption (REC), carbon dioxide emissions (CO2), economic growth (EGRO), financial development (FD), and energy dependence (EDP) using the panel regression method. This research uses data from 38 countries between 1991 and 2021 within the scope of the “Renewable Energy Attractiveness Index” (RECAI) created by Ernst & Young. As a result of the heterogeneity and cross-sectional dependency tests, the data were analyzed using the Westerlund cointegration test, the Augmented Mean Group (AMG) estimator, and the Emirmahmutoglu and Kose causality test. The findings from this study show that FD and EGRO have a positive and significant effect on REC, whereas they have a negative and significant relationship with CO2 emissions. Findings from the causality test show that FD has an impact on both CO2 and EGRO. In addition, within the scope of this study, a causality was determined between EDP and REC, and a mutual relationship between energy demand and CO2 was revealed. In light of these findings, governments should increase their investments in renewable energy to ensure sustainable economic growth and energy supply security while minimizing environmental degradation. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

12 pages, 2558 KiB  
Article
Multi-Walled Carbon Nanotube (MWCNT)-Reinforced Polystyrene (PS) Composites: Preparation, Structural Analysis, and Mechanical and Thermal Properties
by Kadir Gündoğan and Damla Karaağaç
Polymers 2025, 17(14), 1917; https://doi.org/10.3390/polym17141917 - 11 Jul 2025
Viewed by 349
Abstract
Polystyrene (PS), a thermoplastic polymer, is used in many applications due to its mechanical performance, good chemical inertness, and excellent processability. However, it is doped with different nanomaterials for reasons such as improving its electrical conductivity and mechanical properties. In this study, carbon [...] Read more.
Polystyrene (PS), a thermoplastic polymer, is used in many applications due to its mechanical performance, good chemical inertness, and excellent processability. However, it is doped with different nanomaterials for reasons such as improving its electrical conductivity and mechanical properties. In this study, carbon nanotube (CNT)-added PS composites were produced with the aim of combining the properties of CNTs, such as their low weight and high tensile strength and Young’s modulus, with the versatility, processability, and mechanical properties of PS. In this study, multi-walled carbon nanotube (MWCNT)-reinforced polystyrene (PS) composites with different percentage ratios (0.1, 0.2, and 0.3 wt%) were prepared by a plastic injection molding method. The mechanical, microstructural, and thermal properties of the fabricated PS/MWCNT composites were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) Spectroscopy, Atomic Force Microscopy (AFM) and Thermogravimetric Analysis (TGA) techniques. AFM analyses were carried out to investigate the surface properties of MWCNT-reinforced composite materials by evaluating the root mean square (RMS) values. These analyses show that the RMS value for MWCNT-reinforced composite materials decreases as the weight percentage of MWCNTs increases. The TGA results show that there is no change in the degradation temperature of the 0.1%- and 0.2%-doped MWCNT composites compared to pure polystyrene, but the degradation of the 0.3%-doped MWCNT composite is almost complete at a temperature of 539 °C. Among the PS/MWCNT composites, the 0.3%-doped MWCNT composite exhibits more thermal stability than pure PS and other composites. Similarly, the values of the percentage elongation and tensile strength of 0.3% MWCNT-doped composites was obtained as 1.91% and 12.174% mm2, respectively. These values are higher than the values of 0.1% and 0.2% MWCNT-doped composite materials. In conclusion, the mechanical and thermal properties of MWCNT-reinforced PS polymers provide promising results for researchers working in this field. Full article
Show Figures

Figure 1

21 pages, 3134 KiB  
Article
Allometric Growth and Carbon Sequestration of Young Kandelia obovata Plantations in a Constructed Urban Costal Wetland in Haicang Bay, Southeast China
by Jue Zheng, Lumin Sun, Lingxuan Zhong, Yizhou Yuan, Xiaoyu Wang, Yunzhen Wu, Changyi Lu, Shufang Xue and Yixuan Song
Forests 2025, 16(7), 1126; https://doi.org/10.3390/f16071126 - 8 Jul 2025
Viewed by 444
Abstract
The focus of this study was on young populations of Kandelia obovata within a constructed coastal wetland in Haicang Bay, Xiamen, Southeast China. The objective was to systematically examine their allometric growth characteristics and carbon sequestration potential over an 8-year monitoring period (2016–2024). [...] Read more.
The focus of this study was on young populations of Kandelia obovata within a constructed coastal wetland in Haicang Bay, Xiamen, Southeast China. The objective was to systematically examine their allometric growth characteristics and carbon sequestration potential over an 8-year monitoring period (2016–2024). Allometric equations were developed to estimate biomass, and the spatiotemporal variation in both plant and soil carbon stocks was estimated. There was a significant increase in total biomass per tree, from 120 ± 17 g at initial planting to 4.37 ± 0.59 kg after 8 years (p < 0.001), with aboveground biomass accounting for the largest part (72.2% ± 7.3%). The power law equation with D2H as an independent variable yielded the highest predictive accuracy for total biomass (R2 = 0.957). Vegetation carbon storage exhibited an annual growth rate of 4.2 ± 0.8 Mg C·ha−1·yr−1. In contrast, sediment carbon stocks did not show a significant increase throughout the experimental period, although long-term accumulation was observed. The restoration of mangroves in urban coastal constructed wetlands is an effective measure to sequester carbon, achieving a carbon accumulation rate of 21.8 Mg CO2eq·ha−1·yr−1. This rate surpasses that of traditional restoration methods, underscoring the pivotal role of interventions in augmenting blue carbon sinks. This study provides essential parameters for allometric modeling and carbon accounting in urban mangrove afforestation strategies, facilitating optimized restoration management and low-carbon strategies. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

23 pages, 2793 KiB  
Article
Doping Carbon Coating on Glass Fiber to Enhance Its Reinforcing Potential in a Polymer Matrix
by Siok Wei Tay, Inez Lau and Liang Hong
J. Compos. Sci. 2025, 9(7), 348; https://doi.org/10.3390/jcs9070348 - 6 Jul 2025
Viewed by 455
Abstract
This research investigates a novel hybrid E-glass fiber coated with a thin amorphous carbon (coke) layer, referred to as GF@C, designed to enhance the affinity of fiber with a polymer matrix. Acrylonitrile butadiene styrene (ABS), an engineering thermoplastic, was selected as the matrix [...] Read more.
This research investigates a novel hybrid E-glass fiber coated with a thin amorphous carbon (coke) layer, referred to as GF@C, designed to enhance the affinity of fiber with a polymer matrix. Acrylonitrile butadiene styrene (ABS), an engineering thermoplastic, was selected as the matrix to form the composite. The carbon coating was produced by pyrolyzing a lubricant oil (Lo) layer applied to the glass fiber strands. To promote the formation of graphite crystallites during carbonization, a small amount (x wt.% of Lo) of coronene (Cor) was added to Lo as a dopant. The resulting doped fibers, denoted GF@CLo-Cor(x%), were embedded in ABS at 70 wt.%, leading to significant improvements in mechanical properties. At the optimal doping level (x = 5), the composite achieved a Young’s modulus of 1.02 GPa and a tensile strength of 6.96 MPa, substantially higher than the 0.4 GPa and 3.81 MPa observed for the composite with the pristine GF. This enhancement is attributed to a distribution of graphite crystallites and their graphitization extent in the carbon coating, which improves interfacial bonding and increases chain entanglement. Additionally, GF@CLo-Cor(x%)–ABS composites (x = 0 and 5) exhibit significantly higher dielectric constant–temperature profiles than GF–ABS, attributed to the formation of diverse chain adsorption states on the C-coating. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Graphical abstract

16 pages, 2885 KiB  
Article
In Situ Synthesis, Crystallization Behavior, and Physical Properties of Biobased Poly(propyl thiophenedicarboxylate)/Multi-Walled Carbon Nanotubes Composites
by Chaoran Zhang, Shiwei Feng and Zhaobin Qiu
Macromol 2025, 5(3), 31; https://doi.org/10.3390/macromol5030031 - 3 Jul 2025
Viewed by 267
Abstract
Poly(propylene thiophenedicarboxylate) (PPTh) is a new type of fully biobased polyester with excellent thermal, mechanical, and barrier properties; however, its practical application has been seriously restricted by the relatively slow crystallization rate. To further improve the crystallization rate and broaden the potential application [...] Read more.
Poly(propylene thiophenedicarboxylate) (PPTh) is a new type of fully biobased polyester with excellent thermal, mechanical, and barrier properties; however, its practical application has been seriously restricted by the relatively slow crystallization rate. To further improve the crystallization rate and broaden the potential application field of PPTh, PPTh/multi-walled carbon nanotubes (MWCNTs) composites were successfully synthesized via an in situ melt polycondensation process in this research. Low contents of MWCNTs were well dispersed in the PPTh matrix. MWCNTs significantly increased the melt crystallization temperature and isothermal crystallization rate of PPTh, indicating the effective heterogeneous nucleating agent role. PPTh/MWCNTs composites displayed the same crystal structure as PPTh. In addition, the introduction of MWCNTs significantly enhanced both the Young’s modulus and the tensile strength of PPTh. From a sustainable viewpoint, biobased PPTh/MWCNTs composites reported in this research were of significant importance and interest as they showed remarkably improved crystallization rates and mechanical properties. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Figure 1

15 pages, 2316 KiB  
Article
Enhancement of Ethylene-Butene Terpolymer Performance via Carbon Nanotube-Induced Nanodispersion of Montmorillonite Layers
by Li Zhang, Jianming Liu, Duanjiao Li, Wenxing Sun, Zhi Li, Yongchao Liang, Qiang Fu, Nian Tang, Bo Zhang, Fei Huang, Xuelian Fan, Yuansi Wei, Pengxiang Bai and Yuqi Wang
Crystals 2025, 15(7), 612; https://doi.org/10.3390/cryst15070612 - 30 Jun 2025
Viewed by 250
Abstract
In this study, the enhancement mechanism of the nano-dispersion of stearic acid-modified montmorillonite (SMMT) induced by carbon nanotubes (CNTs) in ethylene-butene terpolymer (EBT) was comprehensively investigated, and the regulation effect of composite fillers on EBT properties was revealed. Scanning electron microscopy (SEM) confirmed [...] Read more.
In this study, the enhancement mechanism of the nano-dispersion of stearic acid-modified montmorillonite (SMMT) induced by carbon nanotubes (CNTs) in ethylene-butene terpolymer (EBT) was comprehensively investigated, and the regulation effect of composite fillers on EBT properties was revealed. Scanning electron microscopy (SEM) confirmed that SMMT achieved homogeneous nanoscale dispersion after CNT addition, and the size of aggregates was greatly reduced. Four-cycle strain-scanning analysis revealed a 200% increase in rubber–filler (R-F) interaction strength due to CNT incorporation. At the optimal CNT/SMMT ratio of 1:5, the EBT composites exhibited a 40.4% increase in Young’s modulus, 71.4% enhancement in tensile strength, and maintained 250% elongation at break, effectively addressing the strength–toughness trade-off of traditional rigid fillers. Thermogravimetric analysis (TGA) showed near 20 °C elevation in EBT composites’ maximum decomposition temperature, while water contact angle measurements indicated a hydrophobicity increase to 117.5° and water absorption rate below 0.2%. The quantitative improvement in thermal oxidation stability and hydrophobic barrier performance was achieved simultaneously. Full article
Show Figures

Figure 1

20 pages, 2206 KiB  
Article
Application of Carbon Materials Derived from Nocino Walnut Liqueur Pomace Residue for Chlorpyrifos Removal from Water
by Milena Zlatković, Rialda Kurtić, Igor A. Pašti, Tamara Tasić, Vedran Milanković, Nebojša Potkonjak, Christoph Unterweger and Tamara Lazarević-Pašti
Materials 2025, 18(13), 3072; https://doi.org/10.3390/ma18133072 - 28 Jun 2025
Viewed by 453
Abstract
This study explores the use of carbon materials derived from Nocino walnut liqueur pomace residue for the removal of chlorpyrifos, a widely used organophosphate pesticide, from water. Carbon adsorbents were synthesized from young walnut biomass under different thermal and chemical treatment conditions, and [...] Read more.
This study explores the use of carbon materials derived from Nocino walnut liqueur pomace residue for the removal of chlorpyrifos, a widely used organophosphate pesticide, from water. Carbon adsorbents were synthesized from young walnut biomass under different thermal and chemical treatment conditions, and their structural and surface properties were characterized using BET analysis, FTIR, SEM-EDX, Boehm titration, and zeta potential measurements. The materials exhibited distinct textural and chemical features, including high surface areas and varied surface functionalizations. Batch adsorption studies revealed that the chlorpyrifos removal followed pseudo-second-order kinetics and was best described by the Freundlich and Langmuir isotherms, indicating a combination of pore filling and physisorption via π-π and van der Waals interactions. The highest adsorption capacity of 45.2 ± 0.2 mg g−1 was achieved at 30 °C. Thermodynamic analysis confirmed the process to be endothermic, spontaneous, and entropy-driven, with desolvation effects enhancing the performance at elevated temperatures. Dynamic filtration experiments validated the practical applicability of the materials, while moderate reusability was achieved through ethanol-based regeneration. These findings demonstrate the potential of walnut pomace-derived carbons as low-cost, renewable, and effective adsorbents for sustainable water decontamination. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Graphical abstract

34 pages, 4957 KiB  
Article
Influence of Cooling Lubricants and Structural Parameters on the Tensile Properties of FFF 3D-Printed PLA and PLA/Carbon Fiber Composites
by Aljaž Rogelj, David Liović, Elvis Hozdić, Marina Franulović and Budimir Mijović
Polymers 2025, 17(13), 1797; https://doi.org/10.3390/polym17131797 - 27 Jun 2025
Viewed by 337
Abstract
This study addresses the lack of comprehensive understanding regarding how both structural printing parameters and environmental factors influence the mechanical properties of additively manufactured polymer and composite materials. The main problem stems from insufficient data on the combined effects of infill density, number [...] Read more.
This study addresses the lack of comprehensive understanding regarding how both structural printing parameters and environmental factors influence the mechanical properties of additively manufactured polymer and composite materials. The main problem stems from insufficient data on the combined effects of infill density, number of perimeters, layer height, and exposure to cooling lubricants on the tensile performance of 3D-printed products, which is crucial for their reliable application in demanding environments. In this research, the influence of four critical parameters—infill density, number of perimeters, layer height, and exposure to cooling lubricants—on the tensile properties of specimens produced by fused filament fabrication (FFF), also known as fused deposition modeling (FDM), from polylactic acid (PLA) and polylactic acid reinforced with carbon fibers (PLA+CF) was investigated. Tensile tests were performed in accordance with ISO 527-2 on specimens printed with honeycomb infill structures under controlled process conditions. The results show that increasing infill density from 40% to 100% led to an approximately 60% increase in tensile strength for both PLA (from 30.75 MPa to 49.11 MPa) and PLA reinforced with carbon fibers (PLA+CF; from 17.75 MPa to 28.72 MPa). Similarly, increasing the number of perimeters from 1 to 3 resulted in a 51% improvement in tensile strength for PLA and 50% for PLA+CF. Reducing layer height from 0.40 mm to 0.20 mm improved tensile strength by 5.4% for PLA and 3.1% for PLA+CF, with more pronounced gains in stiffness observed in the composite material. Exposure to cooling lubricants led to mechanical degradation: after 30 days, PLA exhibited a 15.2% decrease in tensile strength and a 3.4% reduction in Young’s modulus, while PLA+CF showed an 18.6% decrease in strength and a 19.5% drop in modulus. These findings underscore the significant impact of both structural printing parameters and environmental exposure on tailoring the mechanical properties of FFF-printed materials, particularly when comparing unfilled PLA with carbon fiber-reinforced PLA. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Figure 1

22 pages, 4058 KiB  
Article
Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite
by Francesca Aliberti, Luigi Vertuccio, Raffaele Longo, Andrea Sorrentino, Roberto Pantani, Liberata Guadagno and Marialuigia Raimondo
Nanomaterials 2025, 15(13), 994; https://doi.org/10.3390/nano15130994 - 26 Jun 2025
Viewed by 379
Abstract
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) [...] Read more.
This paper presents a comparative study examining the effects of carbon nanotubes (CNTs) and expanded graphite (EG) on the thermal, mechanical, morphological, electrical, and piezoresistive properties of poly(ethylene-co-methacrylic acid) (EMAA) nanocomposites. To this end, different amounts of carbonaceous fillers (EG and CNTs separately) were added to the EMAA thermoplastic matrix, and the relative electrical percolation thresholds (EPTs) were determined. The effect of filler concentration on thermo-oxidative degradation and the EMAA crystallinity was investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. Dynamic mechanical analysis (DMA) demonstrated that both fillers enhance the Young’s and storage moduli, as well as the glass transition temperature, with a greater improvement for the bidimensional nanofiller, most likely due to the cumulative effect of more extensive EG-matrix interactions. In tensile tests, a very relevant difference was detected in the Gauge Factor (G.F.) and the elongation at break of the two typologies of nanocomposites. The G.F. of EMAA 10% CNT and EMAA 15% EG were found to be 0.5 ± 0.08 and 165 ± 14, respectively, while elongation at break was about 68% for EMAA 10% CNT and 8% for EMAA 15% EG. Emission Scanning Electron Microscopy (FESEM) and Tunneling Atomic Force Microscopy (TUNA) have contributed to explaining the differences between EG- and CNT-based nanocomposites from a morphological point of view, underlying the pivotal role of the filler aspect ratio and its structural features in determining different mechanical and piezoresistive performance. The comprehensive analysis of EMAA-EG and EMAA-CNT nanocomposites provides a guide for selecting the best self-sensing system for the specific application. More specifically, EMAA-CNT nanocomposites with high elongation at break and lower sensitivity to small strains are suitable for movement sensors in the soft robotic field, where high deformation has to be detected. On the other hand, the high sensitivity at a low strain of EMAA-EG systems makes them suitable for integrated sensors in more rigid composite structures, such as aeronautical and automotive components or wind turbines. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop