Application of Carbon Materials Derived from Nocino Walnut Liqueur Pomace Residue for Chlorpyrifos Removal from Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Synthesis and Physicochemical Characterization
2.2. Adsorption Studies and Material Regeneration
2.3. Toxicity Assessment
3. Results and Discussion
3.1. Insight into the Physicochemical Nature of the Materials
3.2. Adsorption Experiments Under Static Conditions
3.2.1. Adsorption Kinetics
3.2.2. Adsorption Isotherm Studies
3.2.3. Thermodynamic Parameters
3.3. Dynamic Adsorption Testing and Regeneration Evaluation
3.4. Assessment of CHP Toxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-Onazi, W.A.; Algarni, T.S.; Almarri, A.H.; Al-Mohaimeed, A.M. Pesticides in Drinking Water-A Review. Int. J. Environ. Res. Public Health 2021, 18, 468. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.A.; Nadeem, M.A.; Nawaz, H.; Amin, M.M.; Abbasi, G.H.; Nadeem, M.; Ali, M.; Ameen, M.; Javaid, M.M.; Maqbool, R.; et al. Pesticides: Impacts on Agriculture Productivity, Environment, and Management Strategies. In Emerging Contaminants and Plants: Interactions, Adaptations and Remediation Technologies; Aftab, T., Ed.; Springer International Publishing: Cham, Swizerland, 2023; pp. 109–134. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Nandi, N.K.; Vyas, A.; Akhtar, M.J.; Kumar, B. The growing concern of chlorpyrifos exposures on human and environmental health. Pestic. Biochem. Physiol. 2022, 185, 105138. [Google Scholar] [CrossRef]
- Wołejko, E.; Łozowicka, B.; Jabłońska-Trypuć, A.; Pietruszyńska, M.; Wydro, U. Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. Int. J. Environ. Res. Public Health 2022, 19, 12209. [Google Scholar] [CrossRef]
- Scharf, M.E. Neurological Effects of Insecticides and the Insect Nervous System. In Encyclopedia of Entomology; Capinera, J.L., Ed.; Springer: Dordrecht, Netherlands, 2008; pp. 2596–2605. [Google Scholar] [CrossRef]
- Mladenović, M.; Arsić, B.B.; Stanković, N.; Mihović, N.; Ragno, R.; Regan, A.; Milićević, J.S.; Trtić-Petrović, T.M.; Micić, R. The Targeted Pesticides as Acetylcholinesterase Inhibitors: Comprehensive Cross-Organism Molecular Modelling Studies Performed to Anticipate the Pharmacology of Harmfulness to Humans In Vitro. Molecules 2018, 23, 2192. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Yang, L.; Wang, L.; Jia, L.; Gu, L.; Li, H.; Peng, W.; Yu, Q.; Ruan, H.; Li, Q.; et al. Environmental and Human Health Hazards from Chlorpyrifos, Pymetrozine and Avermectin Application in China under a Climate Change Scenario: A Comprehensive Review. Agriculture 2023, 13, 1683. [Google Scholar] [CrossRef]
- Giddings, J.M.; Williams, W.M.; Solomon, K.R.; Giesy, J.P. Risks to Aquatic Organisms from Use of Chlorpyrifos in the United States. In Ecological Risk Assessment for Chlorpyrifos in Terrestrial and Aquatic Systems in the United States; Giesy, J.P., Solomon, K.R., Eds.; Springer International Publishing: Cham, Swizerland, 2014; pp. 119–162. [Google Scholar] [CrossRef]
- Saunders, M.; Magnanti, B.L.; Correia Carreira, S.; Yang, A.; Alamo-Hernández, U.; Riojas-Rodriguez, H.; Calamandrei, G.; Koppe, J.G.; Krayer von Krauss, M.; Keune, H.; et al. Chlorpyrifos and neurodevelopmental effects: A literature review and expert elicitation on research and policy. Environ. Health 2012, 11 (Suppl. S1), S5. [Google Scholar] [CrossRef]
- John, E.M.; Shaike, J.M. Chlorpyrifos: Pollution and remediation. Environ. Chem. Lett. 2015, 13, 269–291. [Google Scholar] [CrossRef]
- Lee, W.J.; Blair, A.; Hoppin, J.A.; Lubin, J.H.; Rusiecki, J.A.; Sandler, D.P.; Dosemeci, M.; Alavanja, M.C.R. Cancer Incidence Among Pesticide Applicators Exposed to Chlorpyrifos in the Agricultural Health Study. JNCI J. Natl. Cancer Inst. 2004, 96, 1781–1789. [Google Scholar] [CrossRef]
- Khanam, Z.; Sultana, F.M.; Mushtaq, F. Environmental Pollution Control Measures and Strategies: An Overview of Recent Developments. In Geospatial Analytics for Environmental Pollution Modeling: Analysis, Control and Management; Mushtaq, F., Farooq, M., Mukherjee, A.B., Ghosh Nee Lala, M., Eds.; Springer: Cham, Switzerland, 2023; pp. 385–414. [Google Scholar] [CrossRef]
- Awewomom, J.; Dzeble, F.; Takyi, Y.D.; Ashie, W.B.; Ettey, E.N.Y.O.; Afua, P.E.; Sackey, L.N.A.; Opoku, F.; Akoto, O. Addressing global environmental pollution using environmental control techniques: A focus on environmental policy and preventive environmental management. Discov. Environ. 2024, 2, 8. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Hassani, A.; Vaccari, M.; Franzetti, A.; Prasad, S.; Formicola, F.; Rosatelli, A.; Rehman, M.Z.U.; Mohanakrishna, G.; Ganachari, S.V.; et al. Emerging technologies for the removal of pesticides from contaminated soils and their reuse in agriculture. Chemosphere 2024, 362, 142433. [Google Scholar] [CrossRef]
- National Pesticide Information Center. Available online: https://npic.orst.edu/factsheets/archive/chlorptech.html (accessed on 5 June 2025).
- Malakootian, M.; Shahesmaeili, A.; Faraji, M.; Amiri, H.; Silva Martinez, S. Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: A systematic review and meta-analysis. Process Saf. Environ. Prot. 2020, 134, 292–307. [Google Scholar] [CrossRef]
- Goh, P.S.; Ahmad, N.A.; Wong, T.W.; Yogarathinam, L.T.; Ismail, A.F. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward. Chemosphere 2022, 307, 136018. [Google Scholar] [CrossRef]
- Bosu, S.; Rajamohan, N.; Al Salti, S.; Rajasimman, M.; Das, P. Biodegradation of chlorpyrifos pollution from contaminated environment—A review on operating variables and mechanism. Environ. Res. 2024, 248, 118212. [Google Scholar] [CrossRef] [PubMed]
- Hadibarata, T.; Kristanti, R.A.; Bilal, M.; Yilmaz, M.; Sathishkumar, P. Biodegradation mechanism of chlorpyrifos by halophilic bacterium Hortaea sp. B15. Chemosphere 2023, 312, 137260. [Google Scholar] [CrossRef]
- Dai, W.; Luo, P.; Xu, B.; Lan, G.; Qiu, H.; Zhang, T. Efficient removal of chlorpyrifos from water using acrylic resin P(MA-SMA-St): Adsorption behavior, kinetics, thermodynamics, molecular simulations, and DFT calculations. J. Environ. Chem. Eng. 2025, 13, 115924. [Google Scholar] [CrossRef]
- Sheikhi, S.; Dehghanzadeh, R.; Aslani, H. Advanced oxidation processes for chlorpyrifos removal from aqueous solution: A systematic review. J. Environ. Health Sci. Eng. 2021, 19, 1249–1262. [Google Scholar] [CrossRef]
- Zgolli, A.; Fizer, M.; Mariychuk, R.; Dhaouadi, H. Insights into the adsorption mechanism of chlorpyrifos on activated carbon derived from prickly pear seeds waste: An experimental and DFT modeling study. Environ. Res. 2024, 263, 120221. [Google Scholar] [CrossRef]
- Sun, D.; Zhao, L.; Sun, P.; Zhao, K.; Sun, Y.; Zhang, Q.; Li, Z.; Ma, Z.; Zheng, F.; Yang, Y.; et al. Rationally Regulating Closed Pore Structures by Pitch Coating to Boost Sodium Storage Performance of Hard Carbon in Low-voltage Platforms. Adv. Funct. Mater. 2024, 34, 2403642. [Google Scholar] [CrossRef]
- Li, S.; Yang, Z.; Wu, M.; Xu, C.; Zhang, X.; Lin, R.; Wang, X.; Zhao, L.; Sun, D.; Ma, X.; et al. Extraordinary Compatibility to Mass Loading and Rate Capability of Hierarchically Porous Carbon Nanorods Electrode Derived from the Waste Tire Pyrolysis Oil. ENERGY Environ. Mater. 2022, 5, 1238–1250. [Google Scholar] [CrossRef]
- Yang, Y.; Du, H.; Sun, D.; Lu, C.; Lu, C.; Gao, J.; Xu, C.; Ma, X. Boosting Capacitive Performance of S-Doped Carbon Fibers via Substrate-Oriented Activation Methodology. Ind. Eng. Chem. Res. 2025, 64, 2745–2757. [Google Scholar] [CrossRef]
- Yang, Y.; Du, H.; Wang, A.; Lu, C.; Sun, D.; Lu, C.; Wang, X.; Xiao, Z.; Ma, X. Excellent capacitive storage performance of N-doped porous carbon derived from the orientation-guidance coupled with in-situ activation methodology. J. Colloid. Interface Sci. 2024, 673, 657–668. [Google Scholar] [CrossRef]
- Liu, H.; Long, J.; Zhang, K.; Li, M.; Zhao, D.; Song, D.; Zhang, W. Agricultural biomass/waste-based materials could be a potential adsorption-type remediation contributor to environmental pollution induced by pesticides-A critical review. Sci. Total Environ. 2024, 946, 174180. [Google Scholar] [CrossRef]
- Karić, N.; Maia, A.S.; Teodorović, A.; Atanasova, N.; Langergraber, G.; Crini, G.; Ribeiro, A.R.L.; Đolić, M. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. Chem. Eng. J. Adv. 2022, 9, 100239. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comprehensive Review on the Chemical Constituents and Functional Uses of Walnut (Juglans spp.) Husk. Int. J. Mol. Sci. 2019, 20, 3920. [Google Scholar] [CrossRef]
- Guo, Z.; Han, X.; Zhang, C.; He, S.; Liu, K.; Hu, J.; Yang, W.; Jian, S.; Jiang, S.; Duan, G. Activation of biomass-derived porous carbon for supercapacitors: A review. Chin. Chem. Lett. 2024, 35, 109007. [Google Scholar] [CrossRef]
- Ukanwa, K.; Patchigolla, K.; Sakrabani, R.; Anthony, B.; Mandavgane, S. A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass. Sustainability 2019, 11, 6204. [Google Scholar] [CrossRef]
- Gayathiri, M.; Pulingam, T.; Lee, K.T.; Sudesh, K. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere 2022, 294, 133764. [Google Scholar] [CrossRef]
- Katnić, Đ.B.; Porobić, S.J.; Vujčić, I.; Kojić, M.M.; Lazarević-Pašti, T.; Milanković, V.; Marinović-Cincović, M.; Živojinović, D.Z. Irradiated fig pomace pyrochar as a promising and sustainable sterilized sorbent for water pollutant removal. Radiat. Phys. Chem. 2024, 214, 111277. [Google Scholar] [CrossRef]
- Jagadeesh, N.; Sundaram, B. Adsorption of Pollutants from Wastewater by Biochar: A Review. J. Hazard. Mater. Adv. 2023, 9, 100226. [Google Scholar] [CrossRef]
- Janu, R.; Mrlik, V.; Ribitsch, D.; Hofman, J.; Sedláček, P.; Bielská, L.; Soja, G. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon. Resour. Convers. 2021, 4, 36–46. [Google Scholar] [CrossRef]
- Malini, K.; Selvakumar, D.; Kumar, N.S. Activated carbon from biomass: Preparation, factors improving basicity and surface properties for enhanced CO2 capture capacity—A review. J. CO2 Util. 2023, 67, 102318. [Google Scholar] [CrossRef]
- Osterrieth, J.W.M.; Rampersad, J.; Madden, D.; Rampal, N.; Skoric, L.; Connolly, B.; Allendorf, M.D.; Stavila, V.; Snider, J.L.; Ameloot, R.; et al. How Reproducible are Surface Areas Calculated from the BET Equation? Adv. Mater. 2022, 34, e2201502. [Google Scholar] [CrossRef] [PubMed]
- Jocić, A.; Breitenbach, S.; Pašti, I.A.; Unterweger, C.; Fürst, C.; Lazarević-Pašti, T. Viscose-derived activated carbons as adsorbents for malathion, dimethoate, and chlorpyrifos-screening, trends, and analysis. Environ. Sci. Pollut. Res. Int. 2022, 29, 35138–35149. [Google Scholar] [CrossRef] [PubMed]
- Lazarević-Pašti, T.D.; Bondžić, A.M.; Pašti, I.A.; Vasić, V.M. Indirect electrochemical oxidation of organophosphorous pesticides for efficient detection via acetylcholinesterase test. Pestic. Biochem. Physiol. 2012, 104, 236–242. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Korus, A.; Gutierrez, J.-P.; Szlęk, A.; Jagiello, J.; Hornung, A. Pore development during CO2 and H2O activation associated with the catalytic role of inherent inorganics in sewage sludge char and its performance during the reforming of volatiles. Chem. Eng. J. 2022, 446, 137298. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Tsai, W.-T. Optimization of Physical Activation Process by CO2 for Activated Carbon Preparation from Honduras Mahogany Pod Husk. Materials 2023, 16, 6558. [Google Scholar] [CrossRef]
- Serafin, J.; Dziejarski, B.; Cruz Junior, O.F.; Sreńscek-Nazzal, J. Design of highly microporous activated carbons based on walnut shell biomass for H2 and CO2 storage. Carbon 2023, 201, 633–647. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Brković, S.; Potkonjak, N.; Unterweger, C.; Pašti, I.; Lazarević-Pašti, T. Sustainable carbon materials from biowaste for the removal of organophosphorus pesticides, dyes, and antibiotics. J. Environ. Manag. 2025, 376, 124463. [Google Scholar] [CrossRef] [PubMed]
- Lazarević-Pašti, T.; Jocić, A.; Milanković, V.; Tasić, T.; Batalović, K.; Breitenbach, S.; Unterweger, C.; Fürst, C.; Pašti, I.A. Investigating the Adsorption Kinetics of Dimethoate, Malathion and Chlorpyrifos on Cellulose-Derived Activated Carbons: Understanding the Influence of Physicochemical Properties. C 2023, 9, 103. [Google Scholar] [CrossRef]
- Katnić, Đ.; Porobić, S.J.; Lazarević-Pašti, T.; Kojić, M.; Tasić, T.; Marinović-Cincović, M.; Živojinović, D. Sterilized plum pomace biochar as a low-cost effective sorbent of environmental contaminants. J. Water Process Eng. 2023, 56, 104487. [Google Scholar] [CrossRef]
- Mahmoud, E.R.I.; Aly, H.M.; Hassan, N.A.; Aljabri, A.; Khan, A.L.; El-Labban, H.F. Enhanced Removal of Chlorpyrifos, Cu(II), Pb(II), and Iodine from Aqueous Solutions Using Ficus Nitida and Date Palm Biochars. ChemEngineering 2024, 8, 105. [Google Scholar] [CrossRef]
- Pandey, P.; Kenchannavar, P.; Surenjan, A. Exploring the potential of cashew nut shell biochar for chlorpyrifos pesticide removal. Chem. Eng. Process.-Process Intensif. 2025, 213, 110307. [Google Scholar] [CrossRef]
- Wang, P.; Yin, Y.; Guo, Y.; Wang, C. Removal of chlorpyrifos from waste water by wheat straw-derived biochar synthesized through oxygen-limited method. RSC Adv. 2015, 5, 72572–72578. [Google Scholar] [CrossRef]
- Tasić, T.; Milanković, V.; Potkonjak, N.; Unterweger, C.; Pašti, I.; Lazarević-Pašti, T. Valorization of viscose textile waste for the adsorptive removal of organophosphate pesticides from water. J. Water Process Eng. 2025, 69, 106793. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Brković, S.; Potkonjak, N.; Unterweger, C.; Pašti, I.; Lazarević-Pašti, T. The adsorption of chlorpyrifos and malathion under environmentally relevant conditions using biowaste carbon materials. J. Hazard. Mater. 2024, 480, 135940. [Google Scholar] [CrossRef]
- Jacob, M.M.; Ponnuchamy, M.; Kapoor, A.; Sivaraman, P. Adsorptive decontamination of organophosphate pesticide chlorpyrifos from aqueous systems using bagasse-derived biochar alginate beads: Thermodynamic, equilibrium, and kinetic studies. Chem. Eng. Res. Des. 2022, 186, 241–251. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Sheng, J. Preparation of Magnetic Molecularly Imprinted Polymer for Chlorpyrifos Adsorption and Enrichment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 269, 012061. [Google Scholar] [CrossRef]
Material | Precursor | Pre-Treatment | Post-Treatment |
---|---|---|---|
W900 | Young walnuts | / | / |
WLP900 | Walnut liqueur pomace | Ethanol and saccharose | / |
WLP900CO2 | Walnut liqueur pomace | Ethanol and saccharose | CO2 |
Sample | SBET (m2 g−1) | Vtot (cm3 g−1) | dav/nm |
---|---|---|---|
W900 | 303 | 0.139 | 2.08 |
WLP900 | 737 | 0.332 | 1.93 |
WLP900CO2 | 652 | 0.301 | 1.95 |
Sample | C (at.%) | O (at.%) | N (at.%) | K (at.%) | Mg (at.%) | P (at.%) | Ca (at.%) | Na (at.%) | S (at.%) | Cl (at.%) | Si (at.%) | I (at.%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
WLP900 | 85.35 | 7.27 | 6.55 | 0.38 | 0.12 | 0.11 | 0.08 | 0.05 | 0.03 | 0.02 | 0.02 | 0.01 |
WLP900CO2 | 68.66 | 18.48 | 11.60 | 0.07 | 0.12 | 0.02 | 0.00 | 0.17 | 0.00 | 0.00 | 0.86 | 0.00 |
WLP900 | WLP900CO2 | |
Pseudo-first-order model | ||
qe (mg g−1) | 11.1 ± 0.9 | 10 ± 1 |
k1 (min−1) | 0.873 ± 0.007 | 0.67 ± 0.01 |
χ2 | 1.607 | 1.655 |
R2 | 0.915 | 0.899 |
Pseudo-second-order model | ||
qe (mg g−1) | 11.8 ± 0.3 | 10.9 ± 0.4 |
k2 (mg min−1 g−1) | 0.089 ± 0.004 | 0.072 ± 0.003 |
χ2 | 0.528 | 0.641 |
R2 | 0.972 | 0.961 |
Elovich kinetic model | ||
A (mg g−1 min−1) | 323 ± 1 | 90.6 ± 0.1 |
Β (g mg−1) | 0.797 ± 0.002 | 0.746 ± 0.001 |
χ2 | 0.163 | 0.101 |
R2 | 0.991 | 0.994 |
Intraparticle diffusion model | ||
Phase I | ||
C (mg g−1) | 0 | 0.63 ± 0.02 |
kid (mg g−1 min−0.5) | 6.785 | 3.7 ± 0.2 |
R2 | / | 0.891 |
Phase II | ||
C (mg g−1) | 5.05 ± 0.01 | 7.19 ± 0.03 |
kid (mg g−1 min−0.5) | 1.68 ± 0.02 | 0.492 ± 0.002 |
R2 | 0.992 | 0.980 |
Phase III | - | |
C (mg g−1) | 9.8 ± 0.8 | - |
kid (mg g−1 min−0.5) | 0.27 ± 0.06 | - |
R2 | 0.822 | - |
WLP900 | WLP900CO2 | |||||
T (°C) | 20 | 25 | 30 | 20 | 25 | 30 |
Freundlich isotherm | ||||||
KF ((dm3 mg−1)1/n) | 5.83 ± 0.08 | 4.85 ± 0.05 | 4.82 ± 0.03 | 3.5 ± 0.5 | 3.84 ± 0.05 | 4.69 ± 0.06 |
n | 3.71 ± 0.09 | 2.46 ± 0.06 | 2.41 ± 0.03 | 4.0 ± 0.4 | 2.44 ± 0.05 | 2.32 ± 0.05 |
χ2 | 4.416 | 7.886 | 4.853 | 2.308 | 4.619 | 8.934 |
R2 | 0.924 | 0.949 | 0.971 | 0.855 | 0.955 | 0.952 |
Langmuir isotherm | ||||||
KL (dm3 mg−1) | 0.103 ± 0.002 | 0.039 ± 0.002 | 0.035 ± 0.003 | 0.186 ± 0.001 | 0.034 ± 0.003 | 0.034 ± 0.001 |
qmax (mg g−1) | 21.9 ± 0.1 | 40.1 ± 0.2 | 42.9 ± 0.2 | 11.2 ± 0.1 | 33.6 ± 0.3 | 45.2 ± 0.2 |
χ2 | 0.901 | 1.807 | 2.966 | 0.095 | 1.924 | 1.674 |
R2 | 0.985 | 0.988 | 0.982 | 0.994 | 0.981 | 0.991 |
Temkin isotherm | ||||||
KT (dm3 mg−1) | 2.41 ± 0.03 | 1.61 ± 0.09 | 2.2 ± 0.2 | 4.22 ± 0.04 | 1.63 ± 0.09 | 1.42 ± 0.01 |
bT (J g mol−1 mg−1) | 669 ± 5 | 436 ± 9 | 470 ± 30 | 1340 ± 50 | 542 ± 9 | 400 ± 10 |
χ2 | 1.275 | 13.832 | 19.587 | 50.61 | 10.070 | 19.547 |
R2 | 0.978 | 0.911 | 0.882 | 0.961 | 0.902 | 0.894 |
D-R isotherm | ||||||
qDR (mg g−1) | 18.8 ± 0.7 | 33 ± 4 | 34 ± 5 | 9.69 ± 0.09 | 27 ± 5 | 35 ± 1 |
KDR (mol2 J−2) | (9.16 ± 0.08) × 10−6 | (4.5 ± 0.5) × 10−5 | (5.2 ± 0.5) × 10−5 | (9.45 ± 0.09) × 10−7 | (5.8 ± 0.6) × 10−5 | (4.7 ± 0.2) × 10−5 |
E (J mol−1) | 234 ± 7 | 110 ± 40 | 98 ± 6 | 728 ± 9 | 92 ± 6 | 100 ± 2 |
χ2 | 4.011 | 21.351 | 24.903 | 1.560 | 16.103 | 20.123 |
R2 | 0.931 | 0.863 | 0.850 | 0.902 | 0.843 | 0.891 |
Material | qmax (mg g−1) | SBET (m2 g−1) | Vtot (cm3 g−1) | dav/nm | Reference |
---|---|---|---|---|---|
Pyrolyzed plum pomace | 0.2 | Not provided | Not provided | Not provided | [48] |
Date palm biochar | 7.0 | Not provided | Not provided | Not provided | [49] |
Ficus nitida biochar | 12.5 | Not provided | Not provided | Not provided | [49] |
Cashew nutshell biochar | 31.3 | 112 | 0.075 | 0.14 | [50] |
Wheat straw-derived biochar | 16.0 | 467 | 0.260 | 2.19 | [51] |
WLP900 | 42.9 | 737 | 0.332 | 1.93 | This work |
WLP900CO2 | 45.2 | 652 | 0.301 | 1.95 | This work |
Material | T (oC) | ΔH0 (kJ mol−1) | ΔS0 (J mol−1 K−1) | ΔG0 (kJ mol−1) | R2 |
---|---|---|---|---|---|
WLP900 | 20 | 46.7 ± 0.6 | 200 ± 5 | −12.0 ± 0.6 | 0.971 |
25 | −13.0 ± 0.6 | ||||
30 | −14.0 ± 0.6 | ||||
WLP900CO2 | 20 | 101 ± 7 | 379 ± 8 | −10.3 ± 0.7 | 0.987 |
25 | −12.2 ± 0.7 | ||||
30 | −14.1 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlatković, M.; Kurtić, R.; Pašti, I.A.; Tasić, T.; Milanković, V.; Potkonjak, N.; Unterweger, C.; Lazarević-Pašti, T. Application of Carbon Materials Derived from Nocino Walnut Liqueur Pomace Residue for Chlorpyrifos Removal from Water. Materials 2025, 18, 3072. https://doi.org/10.3390/ma18133072
Zlatković M, Kurtić R, Pašti IA, Tasić T, Milanković V, Potkonjak N, Unterweger C, Lazarević-Pašti T. Application of Carbon Materials Derived from Nocino Walnut Liqueur Pomace Residue for Chlorpyrifos Removal from Water. Materials. 2025; 18(13):3072. https://doi.org/10.3390/ma18133072
Chicago/Turabian StyleZlatković, Milena, Rialda Kurtić, Igor A. Pašti, Tamara Tasić, Vedran Milanković, Nebojša Potkonjak, Christoph Unterweger, and Tamara Lazarević-Pašti. 2025. "Application of Carbon Materials Derived from Nocino Walnut Liqueur Pomace Residue for Chlorpyrifos Removal from Water" Materials 18, no. 13: 3072. https://doi.org/10.3390/ma18133072
APA StyleZlatković, M., Kurtić, R., Pašti, I. A., Tasić, T., Milanković, V., Potkonjak, N., Unterweger, C., & Lazarević-Pašti, T. (2025). Application of Carbon Materials Derived from Nocino Walnut Liqueur Pomace Residue for Chlorpyrifos Removal from Water. Materials, 18(13), 3072. https://doi.org/10.3390/ma18133072