Topic Editors

Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
Prof. Dr. Archimede Forcellese
Dipartimento di Ingegneria Industriale e Scienze Matematiche (DIISM), Università Politecnica delle Marche, Italy

Advanced Carbon Fiber Reinforced Composite Materials, Volume II

Abstract submission deadline
1 May 2025
Manuscript submission deadline
31 July 2025
Viewed by
5203

Topic Information

Dear Colleagues,

This Topic, entitled “Advanced Carbon Fiber Reinforced Composite Materials, Volume II”, focuses on advanced composite materials such as carbon fiber-reinforced plastics (CFRP), which have gained the attention of different industries, such as aerospace, automotive and motorsports industries, which produce lightweight and high-performance components. Advanced composite materials, primarily governed by the properties of reinforcing fibers such as high strength and high stiffness characteristics, are characterized by their high potential in terms of stiffness/weight ratio, making them very attractive for structural applications in which low weight and high stiffness conditions have to be met. The present Topic aims to collect contributions on the advanced carbon-fiber-reinforced composite materials, as well as to review the state-of-the-art on these materials. The manuscripts of this Issue will focus on the most significant and promising manufacturing technologies, machining and joining processes, modeling, simulation, material characterization and failure mechanisms. A comprehensive overview of the most recent results and findings in the field of advanced composite materials will be provided.

Prof. Dr. Michela Simoncini
Prof. Dr. Archimede Forcellese
Topic Editors

Keywords

  • processing of short, long and continuous fiber composites
  • joining processes
  • machining processes
  • reinforced plastics
  • carbon fiber
  • modeling and simulation
  • material characterization
  • monitoring
  • structural composites
  • functional composites
  • lightweight structures
  • recyclable composites
  • sustainable composites
  • composite fabrication
  • 3D printing

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Fibers
fibers
4.0 7.0 2013 33.6 Days CHF 2000 Submit
Journal of Composites Science
jcs
3.0 5.0 2017 18.5 Days CHF 1800 Submit
Materials
materials
3.1 5.8 2008 15.5 Days CHF 2600 Submit
Polymers
polymers
4.7 8.0 2009 14.5 Days CHF 2700 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (6 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
16 pages, 5362 KiB  
Article
A Study on the Surface Oxidation Pretreatment and Nickel Plating Mechanism of Carbon Fiber
by Qinghui Wang, Xuesong Li and Dongdong Zhu
Materials 2024, 17(15), 3650; https://doi.org/10.3390/ma17153650 - 24 Jul 2024
Viewed by 298
Abstract
This study explores the effects of various temperatures on the surface modification of carbon fibers, as well as the effect of differing voltages and currents on the morphology, deposition rate, and thickness of the Ni plating layers. Post-treatment characterization of the samples was [...] Read more.
This study explores the effects of various temperatures on the surface modification of carbon fibers, as well as the effect of differing voltages and currents on the morphology, deposition rate, and thickness of the Ni plating layers. Post-treatment characterization of the samples was conducted utilizing scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods, thus facilitating a discussion on the mechanism of Ni plating. The findings demonstrate that at a temperature of 500 °C, the carbon fiber surface exhibits the highest concentration of functional groups, including hydroxyl (-OH), carboxyl (-COOH), and carbonyl (-C=O), resulting in the most efficacious modification. Specifically, exceeding 500 °C leads to significant carbon fiber mass loss, compromising the reinforcement effect. Under a stable voltage of 7.5 V, the Ni-plated layer on the carbon fibers appear smooth, fine, uniform, and complete. Conversely, at a voltage of 15 V, the instantaneous high voltage induces the continuous growth of Ni2+ ions along a singular deposition point, forming a spherical Ni-plated layer. In addition, a current of 0.6 A yields a comparatively uniform and dense carbon fiber coating. Nickel-plated layers on a carbon fiber surface with different morphologies have certain innovative significance for the structural design of composite reinforcements. Full article
Show Figures

Figure 1

16 pages, 683 KiB  
Article
Exploring Damage Patterns in CFRP Reinforcements: Insights from Simulation and Experimentation
by Youssef Bounjoum, Oumayma Hamlaoui, Mohamed Karim Hajji, Khalil Essaadaoui, Jalal Chafiq and Mohmmed Ait El Fqih
Polymers 2024, 16(14), 2057; https://doi.org/10.3390/polym16142057 - 18 Jul 2024
Viewed by 306
Abstract
Carbon Fiber Reinforced Polymers (CFRP) have become increasingly significant in real-world applications due to their superior strength-to-weight ratio, corrosion resistance, and high stiffness. These properties make CFRP an ideal material for reinforcing concrete structures, particularly in scenarios where weight reduction is crucial, such [...] Read more.
Carbon Fiber Reinforced Polymers (CFRP) have become increasingly significant in real-world applications due to their superior strength-to-weight ratio, corrosion resistance, and high stiffness. These properties make CFRP an ideal material for reinforcing concrete structures, particularly in scenarios where weight reduction is crucial, such as in bridges and high-rise buildings. The transformative potential of CFRP lies in its ability to enhance the durability and load-bearing capacity of concrete structures while minimizing maintenance costs and extending the lifespan of the infrastructure. This research explores the impact of reinforcing structural elements with advanced composite materials on the strength and durability of concrete and reinforced concrete structures. By integrating Carbon Fiber Reinforced Polymer (CFRP) reinforcements, we subjected both rectangular and T-section concrete beams to comprehensive three-point bending tests, revealing a substantial increase in flexural strength by 45% and crack resistance due to CFRP reinforcement. The study revealed that CFRP reinforcement increased the flexural strength of concrete beams by 45% and improved crack resistance significantly. Additionally, the load-bearing capacity of the beams was enhanced by 40% compared to unreinforced specimens. These improvements were validated through finite element simulations, which showed a close alignment with the experimental data. Furthermore, an innovative simulation study was conducted using a finely tuned finite element numerical model within the Abaqus calculation code. This model accurately replicated the laboratory specimens in terms of shape, dimensions, and loading conditions. The simulation results not only validated the experimental observations but also provided deeper insights into the stress distribution and failure mechanisms of the reinforced beams. Novel aspects of this study include the identification of specific failure patterns unique to CFRP-reinforced beams and the introduction of an enhanced interaction model that more accurately reflects the composite behavior under load. In CFRP-reinforced beams, specific failure patterns were identified, including flexural cracks in the tension zone and debonding of the CFRP sheets. These patterns indicate the points of maximum stress concentration and potential weaknesses in the reinforcement strategy. The study revealed that while CFRP significantly improves the overall strength and stiffness, careful attention must be given to the bonding process and the quality of the adhesive used to ensure optimal performance. These findings contribute significantly to the understanding of material interactions and structural performance, offering new pathways for the design and optimization of composite-reinforced concrete structures. This research underscores the transformative potential of composite materials in elevating the structural integrity and longevity of concrete infrastructures. Full article
Show Figures

Figure 1

14 pages, 3886 KiB  
Article
The Study of Functional Glass Fiber Veils for Composites Protection: Flame Resistance and Mechanical Performance
by Chenkai Zhu, Zhiwei Qiao, Hongwei Wang and Changyong Huang
J. Compos. Sci. 2024, 8(7), 268; https://doi.org/10.3390/jcs8070268 - 11 Jul 2024
Viewed by 462
Abstract
The flame-retardant performance of carbon fiber-reinforced composites is crucial for ensuring structural stability. Traditional additive flame-retardant methods often struggle to balance structural integrity with fire resistance. Herein, Ni(OH)2 and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were used as flame-retardant agents and mixed with glass fibers to [...] Read more.
The flame-retardant performance of carbon fiber-reinforced composites is crucial for ensuring structural stability. Traditional additive flame-retardant methods often struggle to balance structural integrity with fire resistance. Herein, Ni(OH)2 and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were used as flame-retardant agents and mixed with glass fibers to construct the flame-retardant functional fiber veil which was used as the skin layer on the composite surface for fire protection. The structure performance and flame retardancy of composites were characterized via Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and a cone calorimeter test. The results confirmed that a flame-retardant glass fiber mat could effectively improve the flame-retardant and smoke-suppressive properties of the composite material. Due to the synergistic flame-retardant mechanism of Ni(OH)2 and DOPO, the C-N3-D2 composite with the highest LOI value of 32.3% has shown significant reduction in peak heat release rate (PHRR) and total smoke production (TSP) by 31.3% and 19.5%, respectively. In addition, due to flame-retardant agents only being employed in the skin layer of the composite, the core layer of a carbon fiber-reinforced structure could be protected without structure disruption. This approach maintained consistent interlayer shear strength, highlighting the effectiveness of using a flame-retardant fiber veil as a protective skin layer. This strategy could offer a viable solution for safeguarding high-performance composite materials from fire hazards without compromising their structural integrity. Full article
Show Figures

Figure 1

26 pages, 5031 KiB  
Review
Mechanical Recycling of Carbon Fiber-Reinforced Polymer in a Circular Economy
by Salem M. Aldosari, Bandar M. AlOtaibi, Khalid S. Alblalaihid, Saad A. Aldoihi, Khaled A. AlOgab, Sami S. Alsaleh, Dham O. Alshamary, Thaar H. Alanazi, Sami D. Aldrees and Basheer A. Alshammari
Polymers 2024, 16(10), 1363; https://doi.org/10.3390/polym16101363 - 10 May 2024
Cited by 1 | Viewed by 1175
Abstract
This review thoroughly investigates the mechanical recycling of carbon fiber-reinforced polymer composites (CFRPCs), a critical area for sustainable material management. With CFRPC widely used in high-performance areas like aerospace, transportation, and energy, developing effective recycling methods is essential for tackling environmental and economic [...] Read more.
This review thoroughly investigates the mechanical recycling of carbon fiber-reinforced polymer composites (CFRPCs), a critical area for sustainable material management. With CFRPC widely used in high-performance areas like aerospace, transportation, and energy, developing effective recycling methods is essential for tackling environmental and economic issues. Mechanical recycling stands out for its low energy consumption and minimal environmental impact. This paper reviews current mechanical recycling techniques, highlighting their benefits in terms of energy efficiency and material recovery, but also points out their challenges, such as the degradation of mechanical properties due to fiber damage and difficulties in achieving strong interfacial adhesion in recycled composites. A novel part of this review is the use of finite element analysis (FEA) to predict the behavior of recycled CFRPCs, showing the potential of recycled fibers to preserve structural integrity and performance. This review also emphasizes the need for more research to develop standardized mechanical recycling protocols for CFRPCs that enhance material properties, optimize recycling processes, and assess environmental impacts thoroughly. By combining experimental and numerical studies, this review identifies knowledge gaps and suggests future research directions. It aims to advance the development of sustainable, efficient, and economically viable CFRPC recycling methods. The insights from this review could significantly benefit the circular economy by reducing waste and enabling the reuse of valuable carbon fibers in new composite materials. Full article
Show Figures

Figure 1

13 pages, 5111 KiB  
Article
Ag-MWCNT Composites for Improving the Electrical and Thermal Properties of Electronic Paste
by Yunkai Wang, Danlei Jing, Zikai Xiong, Yongqing Hu, Wei Li, Haotian Wu and Chuan Zuo
Polymers 2024, 16(8), 1173; https://doi.org/10.3390/polym16081173 - 22 Apr 2024
Viewed by 983
Abstract
With the development of microelectronics products with high density and high power, it is urgent to improve the electrical and thermal conductivity of electronic paste to achieve the new requirements of packaging materials. In this work, a new synthesis method of Ag-MWCNTs was [...] Read more.
With the development of microelectronics products with high density and high power, it is urgent to improve the electrical and thermal conductivity of electronic paste to achieve the new requirements of packaging materials. In this work, a new synthesis method of Ag-MWCNTs was designed: Firstly, carboxylated MWCNTs and stannous chloride were used as raw materials to prepare high-loading-rate Sn-MWCNT composite material to ensure the high loading rate of metal on the MWCNT surface. Then, Ag-MWCNT composite material was prepared by the chemical displacement method to solve the problem of the low loading rate of silver nanoparticles on the MWCNT surface. On the basis of this innovation, we analyzed and compared the electrical, thermal, and mechanical properties of Ag-MWCNT composite electronic paste. Compared with the electronic paste without adding Ag-MWCNTs, the resistivity was reduced by 77%, the thermal conductivity was increased by 66%, and the shear strength was increased by 15%. Therefore, the addition of Ag-MWCNTs effectively improves the electrical, thermal, and mechanical properties of the paste, making it a promising and competitive choice for new packaging materials in the future. Full article
Show Figures

Figure 1

19 pages, 25086 KiB  
Article
Biomechanical Fatigue Behavior of a Dental Implant Due to Chewing Forces: A Finite Element Analysis
by Miguel Martinez-Mondragon, Guillermo Urriolagoitia-Sosa, Beatriz Romero-Ángeles, Miguel Angel García-Laguna, Aldo Saul Laguna-Canales, Juan Carlos Pérez-Partida, Jonatan Mireles-Hernández, Francisco Carrasco-Hernández and Guillermo Manuel Urriolagoitia-Calderón
Materials 2024, 17(7), 1669; https://doi.org/10.3390/ma17071669 - 5 Apr 2024
Cited by 1 | Viewed by 1330
Abstract
The use of titanium as a biomaterial for the treatment of dental implants has been successful and has become the most viable and common option. However, in the last three decades, new alternatives have emerged, such as polymers that could replace metallic materials. [...] Read more.
The use of titanium as a biomaterial for the treatment of dental implants has been successful and has become the most viable and common option. However, in the last three decades, new alternatives have emerged, such as polymers that could replace metallic materials. The aim of this research work is to demonstrate the structural effects caused by the fatigue phenomenon and the comparison with polymeric materials that may be biomechanically viable by reducing the stress shielding effect at the bone–implant interface. A numerical simulation was performed using the finite element method. Variables such as Young’s modulus, Poisson’s coefficient, density, yield strength, ultimate strength, and the S-N curve were included. Prior to the simulation, a representative digital model of both a dental implant and the bone was developed. A maximum load of 550 N was applied, and the analysis was considered linear, homogeneous, and isotropic. The results obtained allowed us to observe the mechanical behavior of the dental implant by means of displacements and von Mises forces. They also show the critical areas where the implant tends to fail due to fatigue. Finally, this type of non-destructive analysis proves to be versatile, avoids experimentation on people and/or animals, and reduces costs, and the iteration is unlimited in evaluating various structural parameters (geometry, materials, properties, etc.). Full article
Show Figures

Figure 1

Back to TopTop