Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,267)

Search Parameters:
Keywords = yeasts pathogenicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2977 KB  
Article
Putative Transcriptional Regulation of HaWRKY33-AOA251SVV7 Complex-Mediated Sunflower Head Rot by Transcriptomics and Proteomics
by Qian Zhang, Xin Wang, Guoyu Fu, Meishan Zhang, Xueyu Leng, Zicheng Kong, Jing Wang, Yanjie Zhang, Xiaoxin Hu, Huan Yu and Zhongchen Zhang
Plants 2025, 14(19), 3018; https://doi.org/10.3390/plants14193018 - 29 Sep 2025
Abstract
HaWRKY33 is induced by salicylic acid and participates in the disease resistance signaling pathway of sunflower rust disease; however, the transcriptional regulatory mechanism of this protein against Sclerotinia sclerotiorum in sunflowers remains unclear. Given this, we conducted a survey of 426 sunflower accessions [...] Read more.
HaWRKY33 is induced by salicylic acid and participates in the disease resistance signaling pathway of sunflower rust disease; however, the transcriptional regulatory mechanism of this protein against Sclerotinia sclerotiorum in sunflowers remains unclear. Given this, we conducted a survey of 426 sunflower accessions at the natural disease nursery in Gannan County and identified a single dominant physiological race, MCG1, using simple sequence repeat methods. Additionally, we performed indoor inoculation tests using this dominant race and obtained disease-resistant varieties, W227 and BC2202-03, as well as susceptible varieties, N241 and Z155. Further, we inoculated the above resistant and susceptible combination materials with MCG1 and conducted transcriptomic analysis and RT-qPCR validation. Through KEGG analysis, we found that HaWRKY33 is involved in the plant–pathogen interaction pathway, suggesting that HaWRKY33 may regulate sunflower defense responses against Sclerotinia sclerotiorum through the plant–pathogen interaction pathway. Finally, yeast two-hybrid screening and AI prediction using AlphaFold 3 revealed strong interactions between ARG-189 and GLU-344 amino acids in the HaWRKY33-AOA251SVV7 proteins, indicating that the HaWRKY33-AOA251SVV7 pattern regulates the sunflower defense response against Sclerotinia sclerotiorum in a transcriptional complex form. In summary, these results provide new insights into the disease resistance mechanisms of sunflowers against Sclerotinia sclerotiorum and promote the development of molecular breeding for sunflower resistance to Sclerotinia sclerotiorum. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

19 pages, 5916 KB  
Article
Construction of Composite Biocontrol Agent (BCA): Developing Effective Strategies for Controlling Postharvest Blue Mold and Patulin in Apples
by Longmei Cong, Limei Li, Qian Zhang, Junyue Hu, Jingting Du and Junfeng Shi
Foods 2025, 14(19), 3378; https://doi.org/10.3390/foods14193378 - 29 Sep 2025
Abstract
Postharvest blue mold in apples, caused by Penicillium expansum, leads to fruit decay and patulin (PAT) contamination, incurring major economic and health risks. This study developed a composite biocontrol agent (BCA) by co-cultivating three antagonistic yeasts (Meyerozyma caribbica, Metschnikowia zizyphicola [...] Read more.
Postharvest blue mold in apples, caused by Penicillium expansum, leads to fruit decay and patulin (PAT) contamination, incurring major economic and health risks. This study developed a composite biocontrol agent (BCA) by co-cultivating three antagonistic yeasts (Meyerozyma caribbica, Metschnikowia zizyphicola, and Pichia rarassimilans). Mixed-culture conditions and protective additives formulation were optimized via response surface methodology. Optimal biomass production was achieved with a 1:2:3 (v/v/v) yeast ratio in medium containing sucrose (12.49 g/L), yeast extract powder (13.3 g/L), K2HPO4 (0.88 g/L), and NaCl (0.95 g/L) under pH 7.0, 1% total inoculum concentration, 24 °C, and a 60 h incubation. The liquid BCA formulation, stabilized with 0.27% gum arabic, 0.49% Tween-80, and 0.079% ascorbic acid, maintained high viability (9.15 log10 CFU/mL after 7 days). In vivo/in vitro trials all demonstrated that the composite BCA rapidly colonized, suppressed P. expansum infection, and significantly delayed pathogen spore germination and hyphal growth. Furthermore, the BCA effectively degraded 10 μg/mL PAT within 24–42 h in various fruit juices with minimal adverse effects on juice quality parameters. Storage at −20 °C preserved the highest bioactivity (7.93 × 108 CFU/mL after 5 months). This optimized composite yeast formulation provides an efficient, eco-friendly strategy for integrated apple postharvest blue mold and PAT detoxification. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

25 pages, 1085 KB  
Article
Supercritical CO2 Extracts for Food Preservation: Efficacy and Interaction with Black Soldier Fly Larvae Fat in Food Matrixes
by Aelita Zabulionė and Antanas Šarkinas
Int. J. Mol. Sci. 2025, 26(19), 9536; https://doi.org/10.3390/ijms26199536 - 29 Sep 2025
Abstract
This study investigated the antimicrobial efficacy of supercritical carbon dioxide (SC-CO2) plant extracts as a natural preservative, prolonging food shelf-life. The research evaluated the performance of 10 different extracts, including cinnamon, thyme, clove, and dashi, in low-fat food matrices. The results [...] Read more.
This study investigated the antimicrobial efficacy of supercritical carbon dioxide (SC-CO2) plant extracts as a natural preservative, prolonging food shelf-life. The research evaluated the performance of 10 different extracts, including cinnamon, thyme, clove, and dashi, in low-fat food matrices. The results showed that these extracts significantly prolonged the shelf life of a plant-based and animal-based matrixes, with cinnamon and dashi extracts proving highly effective in plant-based matrix against mould and yeast growth for up to 65 days. A key part of the study focused on the interaction between these lipophilic extracts and black soldier fly larvae (BSFL) fat as a potential carrier system. While fats were expected to improve the extracts’ sensory properties and act as a delivery system, in vitro tests revealed an antagonistic effect. The lipophilic nature of the extracts’ active compounds caused them to be trapped within the fat phase, rendering them unavailable to interact with pathogens. These findings highlight the challenges and potential of using lipophilic natural antimicrobials in food systems and underscore the need for new strategies to optimize their efficacy. Full article
Show Figures

Figure 1

23 pages, 748 KB  
Review
Polyamine Induction of Secondary Metabolite Biosynthetic Genes in Fungi Is Mediated by Global Regulator LaeA and α-NAC Transcriptional Coactivator: Connection to Epigenetic Modification of Histones
by Juan F. Martín
Molecules 2025, 30(19), 3903; https://doi.org/10.3390/molecules30193903 - 27 Sep 2025
Abstract
Polyamines are polycationic compounds present in all living cells that exert functions at different levels in the metabolism. They bind to DNA and RNA and modulate DNA replication and gene expression. Some of these regulatory effects are exerted by promoting condensation of nucleosomes, [...] Read more.
Polyamines are polycationic compounds present in all living cells that exert functions at different levels in the metabolism. They bind to DNA and RNA and modulate DNA replication and gene expression. Some of these regulatory effects are exerted by promoting condensation of nucleosomes, a mechanism closely connected with epigenetic modification by histone methylation and acetylation. The polyamines 1,3-diaminopropane and spermidine induce expression of the global regulator LaeA and increase by several folds the formation of the α-NAC transcriptional co-activator, a subunit of the nascent polypeptide-associated complex. The global regulator LaeA controls the switch from primary growth to secondary metabolite production and differentiation when an essential nutrient in the growth medium becomes limiting. α-NAC exerts significant control over the biosynthesis of secondary metabolites and fungal pathogenicity on plants. When purified α-NAC protein is added to a tomato host plant, it induces plant resistance to fungal infections and triggers the development of system-acquired resistance in other plants. Spermidine extends the life of yeast cells and prolongs the half-life of penicillin gene transcripts in Penicillium chrysogenum. This article discusses advances in the basis of understanding the mechanism of plant–fungi interaction and the effect of small fungal metabolites and epigenetic modifiers in this interaction. Full article
(This article belongs to the Special Issue Natural Products Biosynthesis: Present and Perspectives)
Show Figures

Figure 1

17 pages, 966 KB  
Article
Insight into the Roles of Albumin—Alone and in Combination with Either Voriconazole or Antimicrobial Peptides Derived from Chromogranin A—In the Growth of Different Microbial Species
by Francis Schneider, Sophie Hellé, Jean-Marc Strub, François-Xavier von Hunolstein, Pierre Schaaf, Philippe Lavalle, Francesco Scavello and Marie-Hélène Metz-Boutigue
Antibiotics 2025, 14(10), 974; https://doi.org/10.3390/antibiotics14100974 - 26 Sep 2025
Abstract
Background: Whether therapeutic albumin (ThHSA) can serve as a defense tool in Candida species (spp.) infections is still a matter of debate, although many physicians are in the habit of infusing ThHSA to restore the physiological concentration of endogenous human serum albumin (HSA). [...] Read more.
Background: Whether therapeutic albumin (ThHSA) can serve as a defense tool in Candida species (spp.) infections is still a matter of debate, although many physicians are in the habit of infusing ThHSA to restore the physiological concentration of endogenous human serum albumin (HSA). Given the need for innovative anti-Candida strategies, we assessed in vitro the role of ThHSA alone or in combination with voriconazole (VCZ) in combating Candida spp. growth and the role of bovine serum albumin (BSA)—used as a substitute for HSA—with two endogenous bovine antimicrobial peptides in combating C. albicans and other microbes. Results: The combination of ThHSA with VCZ enhanced the antifungal effect on C. albicans, sensitive C. tropicalis, sensitive C. glabrata, and C. lusitaniae. However, for resistant C. tropicalis, the combination of ThHSA with VCZ promoted yeast growth, and VCZ tended to suppress the antimicrobial effect of ThHSA on resistant C. glabrata. As to the possible transposition of ThHSA-type properties to BSA (as regards the growth inhibition of other pathogens), we tested combinations of BSA with two physiological chromogranin A-derived antimicrobial peptides (catestatin and cateslytin). BSA enhanced significantly the activity of catestatin (but not cateslytin) in combating C. albicans, A. fumigatus, and M. luteus, but was inactive against S. aureus and E. coli. Conclusions: Our experiments support the fact that albumins display intrinsic antimicrobial properties, with an unpredictable growth inhibitory effect on various microbes. ThHSA can thus be an adjunctive tool for more efficient care of some, though not all, infections. The interaction of BSA with catestatin and cateslytin is related to their structure, with BSA significantly enhancing the effect of catestatin but not that of cateslytin. Full article
(This article belongs to the Special Issue Bioactive Peptides and Their Antibiotic Activity)
19 pages, 2101 KB  
Article
Infantile Anemia and Iron Treatments Affect the Gut Microbiome of Young Rhesus Monkeys
by Christopher L. Coe, Gabriele R. Lubach, Wellington Z. Amaral, Gregory J. Phillips, Mark Lyte, Michael K. Georgieff, Raghavendra B. Rao and James R. Connor
Microorganisms 2025, 13(10), 2256; https://doi.org/10.3390/microorganisms13102256 - 26 Sep 2025
Abstract
The influence of iron deficiency anemia and iron treatments on the gut microbiome was evaluated in young rhesus monkeys. First, the hindgut bacterial profiles of 12 iron-deficient anemic infants were compared to those of 9 iron-sufficient infants at 6 months of age, a [...] Read more.
The influence of iron deficiency anemia and iron treatments on the gut microbiome was evaluated in young rhesus monkeys. First, the hindgut bacterial profiles of 12 iron-deficient anemic infants were compared to those of 9 iron-sufficient infants at 6 months of age, a time when the risk of anemia is high due to rapid growth. After this screening, the anemic monkeys were treated with either parenteral or enteral iron. Seven monkeys were injected intramuscularly with iron dextran, the typical weekly treatment used in veterinary practice. Four other anemic infants were treated with a novel oral supplement daily: yeast genetically modified to express ferritin. Fecal specimens were analyzed using 16S ribosomal RNA (rRNA) gene amplicon sequencing. Bacterial species richness in anemic infants was not different from that of iron-sufficient infants, but beta diversity and LEfSe analyses of bacterial composition indicated that the microbiota profiles were associated with iron status. Both systemic and oral iron increased alpha and beta diversity metrics. The relative abundance of Ruminococcaceae and other Firmicutes shifted in the direction of an iron-sufficient host, but many different bacteria, including Mollicutes, Tenericutes, and Archaea, were also enriched. Collectively, the findings affirm the important influence of the host’s iron status on commensal bacteria in the gut and concur with clinical concerns about the possibility of adverse consequences after iron supplementation in low-resource settings where children may be carriers of iron-responsive bacterial pathogens. Full article
(This article belongs to the Special Issue Gut Microbiome in Homeostasis and Disease, 3rd Edition)
Show Figures

Graphical abstract

12 pages, 747 KB  
Article
Evaluation of the Antifungal Activity of Microgramma vacciniifolia Frond Lectin (MvFL) Against Pathogenic Yeasts
by Rayanne Maria Vitória Vasconcelos de Oliveira, Alexsander Rodrigues Carvalho Junior, Pollyanna Michelle da Silva, Gustavo Ramos Salles Ferreira, Poliana Karla Amorim, Patrícia Maria Guedes Paiva, Luís Cláudio Nascimento da Silva, Leydianne Leite de Siqueira Patriota, Emmanuel Viana Pontual and Thiago Henrique Napoleão
Macromol 2025, 5(4), 44; https://doi.org/10.3390/macromol5040044 - 23 Sep 2025
Viewed by 116
Abstract
The rise in antifungal resistance among Candida species has prompted the search for alternative therapies, including plant-derived lectins with antimicrobial properties. This study evaluated the antifungal activity of Microgramma vacciniola frond lectin (MvFL) against clinically relevant Candida species and Nakaseomyces glabratus. MvFL [...] Read more.
The rise in antifungal resistance among Candida species has prompted the search for alternative therapies, including plant-derived lectins with antimicrobial properties. This study evaluated the antifungal activity of Microgramma vacciniola frond lectin (MvFL) against clinically relevant Candida species and Nakaseomyces glabratus. MvFL exhibited fungistatic activity, with the lowest minimum inhibitory concentrations (MICs) of 0.625 μg/mL for N. glabratus and 1.25 μg/mL for Candida krusei. The minimal fungicidal concentrations (MFC) were not detected, indicating they are above 80 µg/mL. MvFL significantly reduced N. glabratus proliferation, disrupted lysosomal integrity, and affected mitochondrial membrane potential, indicating interference with key cellular processes. MvFL showed minimal activity against biofilm formation, only reducing Candida tropicalis biofilms at a subinhibitory concentration. Combination assays revealed additive or synergistic effects with fluconazole for C. krusei, C. tropicalis, and notably Candida parapsilosis, while antagonism was observed against Candida albicans and N. glabratus. These findings underscore the species-specific nature of lectin-drug interactions and the importance of evaluating such combinations carefully. Overall, MvFL demonstrates significant antifungal potential, particularly as an adjuvant to existing treatments. Its ability to inhibit growth and disrupt cellular function in yeasts supports the development of plant lectins as novel, safer antifungal agents in response to the growing challenge of antifungal resistance. Full article
Show Figures

Figure 1

23 pages, 2338 KB  
Article
Candida intermedia Supplementation Enhances Immune Response and Modulates the Gut Microbiome in SARS-CoV-2 Vaccinated Mice
by Renan E. A. Piraine, Neida L. Conrad, Vitória S. Gonçalves, Jeferson V. Ramos, Júlia L. Froldi, Fausto Almeida and Fábio P. L. Leite
J. Fungi 2025, 11(9), 685; https://doi.org/10.3390/jof11090685 - 20 Sep 2025
Viewed by 198
Abstract
Non-Saccharomyces yeasts are emerging as promising new probiotics with a beneficial effect equal to or greater than the reference probiotic yeast, Saccharomyces boulardii. Candida intermedia, a non-albicans species not considered a common human pathogen, previously demonstrated probiotic potential. In [...] Read more.
Non-Saccharomyces yeasts are emerging as promising new probiotics with a beneficial effect equal to or greater than the reference probiotic yeast, Saccharomyces boulardii. Candida intermedia, a non-albicans species not considered a common human pathogen, previously demonstrated probiotic potential. In this work, our objective was to evaluate the immunomodulatory effects of C. intermedia ORQ001 in mice vaccinated with inactivated SARS-CoV-2, seeking further evidence of its probiotic activity. Murine macrophages were stimulated with C. intermedia, followed by mRNA transcription analysis via qPCR. Mice were supplemented with C. intermedia prior to SARS-CoV-2 vaccination. Antibody production was assessed by ELISA, and fecal microbiomes were analyzed using next-generation sequencing. C. intermedia significantly increased Il4 and Il13 expression while decreasing Stat3 in macrophages. Splenocytes from supplemented mice exhibited elevated transcription levels of Tnf, Ifng, Il4, Bcl6, and Stat3 after exposure to stimulatory molecules. These mice showed increased levels of anti-SARS-CoV-2 IgG and sIgA isotypes, along with higher abundances of Bacteroides spp. and Clostridium spp. in their gut microbiome. In conclusion, C. intermedia supplementation modulated the expression of key immune-related genes and enhanced humoral responses in mice. Furthermore, its influence on gastrointestinal microbiota suggests a synergistic effect on vaccine immunogenicity. These findings support the potential of C. intermedia as a novel probiotic candidate with immunomodulatory properties applicable to vaccine adjuvanticity. Full article
(This article belongs to the Special Issue Fungal Cell Biology)
Show Figures

Figure 1

20 pages, 2671 KB  
Article
Role of NaCl and Glutamine on Biofilm Production from Pseudomonas aeruginosa
by Laura Maria De Plano, Antonella Iaconis, Salvatore Papasergi, Francesco Mediati, Daniele Caruso, Salvatore Pietro Paolo Guglielmino and Domenico Franco
Microorganisms 2025, 13(9), 2198; https://doi.org/10.3390/microorganisms13092198 - 19 Sep 2025
Viewed by 254
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of forming antibiotic-resistant biofilms, contributing to persistent infections and treatment failure. Environmental factors such as osmolarity and nutrient availability are known to influence biofilm formation and virulence. In this study, we investigated the effects of NaCl [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogen capable of forming antibiotic-resistant biofilms, contributing to persistent infections and treatment failure. Environmental factors such as osmolarity and nutrient availability are known to influence biofilm formation and virulence. In this study, we investigated the effects of NaCl depletion and glutamine supplementation on biofilm production in three P. aeruginosa strains: the laboratory strain ATCC 27853 and two clinical isolates with distinct antibiotic resistance profiles and phenazine production patterns (P. aeruginosa Pr, pyorubrin-producing, and P. aeruginosa Pc, pyocyanin-producing). Bacteria were cultured in standard Luria–Bertani (LB) medium, LB without NaCl, and LB in which yeast extract was replaced by glutamine. For each strain and condition, we assessed growth kinetics, phenazine production, and biofilm formation. Biofilm development was quantified via XTT assays and compared to secondary metabolite profiles. NaCl removal did not substantially affect growth, whereas glutamine supplementation reduced growth, especially in the laboratory strain. Both conditions modulated secondary metabolite production and biofilm formation in a strain-specific manner. In P. aeruginosa ATCC 27853, NaCl depletion significantly increased pyoverdine, pyocyanin, and QS gene expression, while biofilm formation showed significant differences only at 72 h; in contrast, glutamine supplementation affected only pyoverdine. A similar trend was observed in the clinical strain P. aeruginosa Pc, although NaCl depletion did not significantly impact pyoverdine production but already enhanced biofilm formation at 48 h. In P. aeruginosa Pr, only glutamine appeared to alter the considered parameters, increasing pyoverdine production while reducing pyocyanin and biofilm levels, although the absence of NaCl also negatively impacted biofilm formation. These findings highlight the impact of osmotic and nutritional signals on P. aeruginosa virulence traits. Full article
Show Figures

Figure 1

16 pages, 1199 KB  
Article
Peach Buds’ Microbiome Profiling Reveals Cultivar-Specific Signatures Associated with TCSB Susceptibility
by Antonella Cardacino, Taner Tastekin, Federico Brugneti, Marco Cirilli, Angelo Mazzaglia and Silvia Turco
Stresses 2025, 5(3), 60; https://doi.org/10.3390/stresses5030060 - 19 Sep 2025
Cited by 1 | Viewed by 233
Abstract
The plant microbiome plays a pivotal role in host development and resilience against biotic and abiotic stresses. In perennial crops like peach, microbial communities inhabiting dormant buds—critical yet vulnerable organs—may influence disease outcomes and plant fitness. This study characterized the bacterial and fungal [...] Read more.
The plant microbiome plays a pivotal role in host development and resilience against biotic and abiotic stresses. In perennial crops like peach, microbial communities inhabiting dormant buds—critical yet vulnerable organs—may influence disease outcomes and plant fitness. This study characterized the bacterial and fungal communities associated with the buds of three peach cultivars differing in susceptibility to Twig Canker and Shoot Blight (TCSB). Amplicon-based profiling revealed distinct microbiome signatures across cultivars, shaped by host genotype. The highly tolerant ‘Catherina’ harbored a structured and relatively diverse community enriched in beneficial bacterial genera such as Pseudomonas, Sphingomonas, and Curtobacterium, alongside protective yeasts including Aureobasidium and Cladosporium. In contrast, the susceptible cultivar ‘Pavoro®-Pav 1605’ hosted a less balanced microbiome, marked by enrichment of opportunistic pathogens such as Alternaria and Diaporthe, as well as the bacterial lineage 1174-901-12. The intermediate cultivar ‘Lami®.COM’ displayed a transitional profile enriched in Sphingomonas, Pelomonas, and Vishniacozyma. Differential abundance analyses confirmed cultivar-specific enrichment patterns, underscoring the influence of genotype in shaping microbiota composition and potential disease outcomes. These findings support the integration of microbiome-based approaches into sustainable disease management via beneficial microbial promotion, early detection of harmful consortia, and microbiome-informed breeding to foster resilient, low-input peach cultivation systems. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

28 pages, 1414 KB  
Review
The Role of Skin Microbiota in Facial Dermatoses and Related Factors: A Narrative Review
by Iva Ferček, Petar Ozretić, Lucija Zanze, Zoran Zoričić, Lorena Dolački, Rok Čivljak and Liborija Lugović-Mihić
Int. J. Mol. Sci. 2025, 26(18), 8857; https://doi.org/10.3390/ijms26188857 - 11 Sep 2025
Viewed by 727
Abstract
Inflammatory facial dermatoses (atopic dermatitis [AD], acne vulgaris, contact dermatitis, seborrheic dermatitis, rosacea, perioral dermatitis, and demodicosis, etc.) often profoundly impact patients’ appearance and psychological well-being. In this narrative review, we wanted to present the current knowledge on the role of skin microbiota [...] Read more.
Inflammatory facial dermatoses (atopic dermatitis [AD], acne vulgaris, contact dermatitis, seborrheic dermatitis, rosacea, perioral dermatitis, and demodicosis, etc.) often profoundly impact patients’ appearance and psychological well-being. In this narrative review, we wanted to present the current knowledge on the role of skin microbiota in common facial dermatoses. Skin keratinocytes are the primary producers of antimicrobial peptides (AMPs) and express Toll-like receptors (TLRs), which stimulate the T helper (Th1) immune response, with the production of interferon (IFN). They can also produce certain pro-inflammatory cytokines, namely IL-1β, IL-18, IL-6, IL-10, and the tumor necrosis factor (TNF). In healthy infants, the bacterial skin microbiota is predominantly composed of Firmicutes (genera Staphylococcus and Streptococcus), as well as Actinobacteria, Proteobactera, and Bacteroidota. The genera Cutibacterium and Staphylococcus, which have antimicrobial effects and compete with pathogens for nutrients/ecological niches, coexist symbiotically on the skin and can reduce the expression of TLR2 and TLR4. In patients with AD, lesional/non-lesional skin was found to have increased colonization by Staphylococcus aureus which reduces effector T lymphocytes’ ability to produce cytokines, such as IL-17A and IFN-γ, leading to decreased AMP production and impaired skin microbiota immune functionality. In patients with rosacea, the overexpression of TLR2 may stimulate elevated pro-inflammatory cytokine production (IL-8, IL-1β, and TNF-α, etc.), exacerbating the inflammatory response. Also, increased colonization by Malassezia yeasts triggers a Th2 immune response and cytokine secretion (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, TNF-α, beta-defensin, IFN-γ, nitric oxide, and histamine), and participates in signaling pathways. Insight into these factors may further improve clinical approaches to patients with facial dermatoses. Full article
Show Figures

Figure 1

12 pages, 281 KB  
Article
Assessment of the Impact of Antimicrobial Photodynamic Therapy Using a 635 nm Diode Laser and Toluidine Blue on the Susceptibility of Selected Strains of Candida and Staphylococcus aureus: An In Vitro Study
by Marcin Tkaczyk, Anna Mertas, Anna Kuśka-Kiełbratowska, Jakub Fiegler-Rudol, Elżbieta Bobela, Maria Cisowska, Dariusz Skaba and Rafał Wiench
Microorganisms 2025, 13(9), 2126; https://doi.org/10.3390/microorganisms13092126 - 11 Sep 2025
Viewed by 333
Abstract
Yeasts of the genus Candida (C.) and the bacterium Staphylococcus aureus (S. aureus) are among the most common pathogens responsible for infections that are difficult to treat, including those resistant to standard therapy. In recent decades, this has become [...] Read more.
Yeasts of the genus Candida (C.) and the bacterium Staphylococcus aureus (S. aureus) are among the most common pathogens responsible for infections that are difficult to treat, including those resistant to standard therapy. In recent decades, this has become an increasing clinical problem. In response to the limitations of traditional procedures, antimicrobial photodynamic therapy (aPDT), which combines light, a photosensitizer, and oxygen, is gaining growing interest. The aim of this study was to evaluate the in vitro effectiveness of aPDT using a 635 nm diode laser in combination with toluidine blue O (TBO) against Candida spp. and S. aureus. Reference strains of C. albicans, C. glabrata, C. krusei, and S. aureus were subjected to aPDT. In phase I of this study, the optimal TBO incubation time was assessed with constant laser parameters. In phase II, the impact of the physical parameters of the laser, irradiation time, and output power, was analyzed, with the TBO incubation time set based on the phase I results, to evaluate the degree of microbial reduction (CFU/mL). Statistical analyses were then conducted to assess significance. TBO-mediated aPDT significantly reduced microbial viability, depending on incubation time and laser settings. The minimal effective incubation times were 10 min for Candida spp. and 5 min for S. aureus. The highest pathogen inactivation efficacy was observed at an output power of 400 mW and an irradiation time of 120 s. The use of the photosensitizer or laser alone did not result in significant antimicrobial effects. TBO-mediated aPDT may serve as an effective complement to conventional antimicrobial therapy and, in selected cases (e.g., drug resistance), has the potential to partially or fully replace it. The observed minimal effective incubation times provide a practical baseline, but further statistical comparisons are required to determine whether these durations are truly optimal. Full article
12 pages, 1622 KB  
Article
First Record of Clonostachys rosea as an Entomopathogenic Fungus of the Cephus fumipennis (Hymenoptera: Cephidae) in China
by Meiqi Li, Jingling Li, Zehao An, Shasha Wang and Youpeng Lai
Biology 2025, 14(9), 1240; https://doi.org/10.3390/biology14091240 - 10 Sep 2025
Viewed by 294
Abstract
Cephus fumipennis, a significant pest of highland spring wheat, damages crops through larval boring and feeding within wheat stalks. This activity disrupts nutrient and water transport, causing severe yield reductions. To find microbial biocontrol agents targeting this pest, primary entomopathogenic microorganisms were [...] Read more.
Cephus fumipennis, a significant pest of highland spring wheat, damages crops through larval boring and feeding within wheat stalks. This activity disrupts nutrient and water transport, causing severe yield reductions. To find microbial biocontrol agents targeting this pest, primary entomopathogenic microorganisms were isolated and identified from naturally infected, deceased C. fumipennis larvae. Morphological examination and ITS-based phylogenetic analysis tentatively identified the isolate as the entomopathogenic fungus Clonostachys sp. (strain CF01). Third-instar larvae of C. fumipennis were inoculated with conidial suspensions of the CF01 strain at concentrations of 1 × 105, 1 × 106, 1 × 107, and 1 × 108 spores/mL. Spore suspensions of different concentrations demonstrated pathogenicity against third-instar larvae of C. fumipennis. The optimal growth conditions for strain CF01 were identified as follows: PPDA medium, 25 °C, fructose as the carbon source, and yeast extract as the nitrogen source. Photoperiod exhibited no significant effect on either mycelial growth or sporulation. These findings indicate that the CF01 strain possesses considerable potential for the biocontrol of C. fumipennis. Full article
Show Figures

Figure 1

19 pages, 2627 KB  
Article
Monitoring Sublethal Injury in Listeria monocytogenes During Heat Treatment of Pork Frankfurter-Type Sausages: A Single-Cell vs. Population Level Approach
by Marianna Arvaniti, Eleni Vlachou, Maria Kourteli, Anastasia E. Kapetanakou and Panagiotis N. Skandamis
Foods 2025, 14(17), 3144; https://doi.org/10.3390/foods14173144 - 8 Sep 2025
Viewed by 1409
Abstract
Listeria monocytogenes is a foodborne pathogen capable of contaminating ready-to-eat meat products, e.g., frankfurters. Post-packaging mild heat treatment via water immersion is commonly employed; however, this may be sublethal to cells located in protected niches or beneath the product surface. The objectives of [...] Read more.
Listeria monocytogenes is a foodborne pathogen capable of contaminating ready-to-eat meat products, e.g., frankfurters. Post-packaging mild heat treatment via water immersion is commonly employed; however, this may be sublethal to cells located in protected niches or beneath the product surface. The objectives of this study were to evaluate thermal injury of L. monocytogenes on frankfurters at single-cell versus population level and to comparatively estimate pathogens’ physiological status. Pork frankfurter-type sausages were inoculated (ca. 7.0–7.5 log CFU/cm2) with L. monocytogenes strain EGDE-e. Heat treatment was performed at 61 °C (max. 60 min) and 64 °C (max. 12 min). To determine the injured subpopulation from the total, tryptic soy agar with 0.6% yeast extract (TSAYE), supplemented or not with 5% NaCl, was used. Plating-based quantification of injured cells was compared to CFDA/PIstained cells analysed by fluorescence microscopy and quantified with Fiji software. Injury was recorded mainly after 2 and 4 min at 64 °C, whereas no injury was detected at 61 °C, at population level. Following exposure to 61 °C for 60 min, culturable cells dropped below the enumeration limit (0.3 log CFU/cm2), while a considerable number of CFDA+/PI and CFDA+/PI+ cells indicated viable-but-non-culturable induction and sublethal injury, respectively. These findings suggest that non-culturability may limit the accuracy of solely culture-based enumeration methods. Full article
Show Figures

Figure 1

14 pages, 1290 KB  
Article
Secreted Protein VdCUE Modulates Virulence of Verticillium dahliae Without Interfering with BAX-Induced Cell Death
by Haonan Yu, Haiyuan Li, Xiaochen Zhang, Mengmeng Wei, Xiaoping Hu and Jun Qin
J. Fungi 2025, 11(9), 660; https://doi.org/10.3390/jof11090660 - 8 Sep 2025
Viewed by 341
Abstract
Verticillium wilt, caused by Verticillium dahliae, severely threatens various crops and trees worldwide. This study aimed to characterize the function of a CUE (coupling of ubiquitin conjugation to endoplasmic reticulum (ER) degradation)-domain-containing protein, VdCUE, in V. dahliae, which exhibits sequence divergence [...] Read more.
Verticillium wilt, caused by Verticillium dahliae, severely threatens various crops and trees worldwide. This study aimed to characterize the function of a CUE (coupling of ubiquitin conjugation to endoplasmic reticulum (ER) degradation)-domain-containing protein, VdCUE, in V. dahliae, which exhibits sequence divergence between the defoliating strain XJ592 and the non-defoliating strain XJ511. We generated ∆VdCUE-knockout mutants and evaluated their phenotypes in growth and virulence. Functional analyses included verifying the signal peptide activity of VdCUE, testing its ability to induce cell death or inhibit BAX-induced cell death in Nicotiana benthamiana leaves, and identifying host targets via yeast two-hybrid screening. The ∆VdCUE mutants showed reduced formation of melanized microsclerotia but no other obvious growth defects. Cotton plants infected with the ∆VdCUE mutants exhibited a significantly lower disease index and defoliation rate. VdCUE was confirmed to be secreted via a functional signal peptide, but it neither triggered cell death nor inhibited BAX-induced cell death. Three putative host targets were identified and supported by AI-based three-dimensional structural modeling, including tRNA-specific 2-thiouridylase, peptidyl-prolyl cis-trans isomerase, and 40S ribosomal protein, which may mediate VdCUE-dependent virulence regulation. These findings reveal VdCUE as a key virulence factor in V. dahliae, contributing to our understanding of its pathogenic mechanism. Full article
(This article belongs to the Special Issue Growth and Virulence of Plant Pathogenic Fungi, 2nd Edition)
Show Figures

Figure 1

Back to TopTop