Growth and Virulence of Plant Pathogenic Fungi, 2nd Edition

A special issue of Journal of Fungi (ISSN 2309-608X).

Deadline for manuscript submissions: 31 July 2026 | Viewed by 3164

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
Interests: Fusarium graminearum; Magnaporthe oryzae; protein kinase; signaling pathways; mycotoxin; plant-fungus interactions
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction By Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China
Interests: strip rust; RNAi; effector factor; fungal taxonomy; biological control; antimicrobial peptide
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xianyang 712100, China
Interests: fungal plant pathogens; biology, infection mechanisms and control of apple fungal diseases; efficient control of apple Valsa canker disease; plant-fungus interactions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fungi are among the most dominant causal agents of plant diseases. In addition to causing yield and quality losses, many fungal pathogens produce mycotoxins to contaminate crops before or after harvest, posing a threat to our food and feed safety. Understanding the regulating mechanisms of fungal pathogens’ vegetative growth, sexual/asexual reproduction, toxin biosynthesis, pathogenesis and host–pathogen interactions is critical for developing effective strategies to control plant diseases. In recent years, scientific and technological advances have significantly promoted progress in the research on plant fungal pathogens.

We welcome research and review manuscripts focused on plant diseases caused by fungi or fungal-like organisms. Topics of interest for this Special Issue of the Journal of Fungi include, but are not limited to, the following:

  1. Biology of plant fungal pathogens including vegetative growth, conidiation, and sexual development;
  2. Mycotoxin biosynthesis;
  3. Pathogenesis;
  4. Host–pathogen interactions;
  5. Effects of abiotic and biotic environmental factors.

Dr. Guanghui Wang
Prof. Dr. Dongfang Ma
Dr. Xiaofeng Liang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant pathogenic fungi
  • fungal biology
  • mycotoxin
  • pathogenesis
  • host–pathogen interactions
  • environmental factors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1290 KB  
Article
Secreted Protein VdCUE Modulates Virulence of Verticillium dahliae Without Interfering with BAX-Induced Cell Death
by Haonan Yu, Haiyuan Li, Xiaochen Zhang, Mengmeng Wei, Xiaoping Hu and Jun Qin
J. Fungi 2025, 11(9), 660; https://doi.org/10.3390/jof11090660 - 8 Sep 2025
Viewed by 228
Abstract
Verticillium wilt, caused by Verticillium dahliae, severely threatens various crops and trees worldwide. This study aimed to characterize the function of a CUE (coupling of ubiquitin conjugation to endoplasmic reticulum (ER) degradation)-domain-containing protein, VdCUE, in V. dahliae, which exhibits sequence divergence [...] Read more.
Verticillium wilt, caused by Verticillium dahliae, severely threatens various crops and trees worldwide. This study aimed to characterize the function of a CUE (coupling of ubiquitin conjugation to endoplasmic reticulum (ER) degradation)-domain-containing protein, VdCUE, in V. dahliae, which exhibits sequence divergence between the defoliating strain XJ592 and the non-defoliating strain XJ511. We generated ∆VdCUE-knockout mutants and evaluated their phenotypes in growth and virulence. Functional analyses included verifying the signal peptide activity of VdCUE, testing its ability to induce cell death or inhibit BAX-induced cell death in Nicotiana benthamiana leaves, and identifying host targets via yeast two-hybrid screening. The ∆VdCUE mutants showed reduced formation of melanized microsclerotia but no other obvious growth defects. Cotton plants infected with the ∆VdCUE mutants exhibited a significantly lower disease index and defoliation rate. VdCUE was confirmed to be secreted via a functional signal peptide, but it neither triggered cell death nor inhibited BAX-induced cell death. Three putative host targets were identified and supported by AI-based three-dimensional structural modeling, including tRNA-specific 2-thiouridylase, peptidyl-prolyl cis-trans isomerase, and 40S ribosomal protein, which may mediate VdCUE-dependent virulence regulation. These findings reveal VdCUE as a key virulence factor in V. dahliae, contributing to our understanding of its pathogenic mechanism. Full article
(This article belongs to the Special Issue Growth and Virulence of Plant Pathogenic Fungi, 2nd Edition)
Show Figures

Figure 1

15 pages, 3555 KB  
Article
First Report of Colletotrichum kahawae Causing Anthracnose on Buckwheat (Fagopyrum tataricum) in China and Biological Characterization of the Pathogen
by Xin Liu, Guang Wang, Daowang Sun, Jing Tan, Jiaxing Xie, Binxin Zhai, Chunyan Huang, Wenjie Lu and Lihua Wang
J. Fungi 2025, 11(9), 633; https://doi.org/10.3390/jof11090633 - 29 Aug 2025
Viewed by 555
Abstract
Buckwheat (Fagopyrum tataricum) is native to Yunnan, China, and as a miscellaneous grain crop with high nutritional value, it has received increased attention from farmers and enterprises in recent years. In June 2024, we observed severe anthracnose in the buckwheat cultivation [...] Read more.
Buckwheat (Fagopyrum tataricum) is native to Yunnan, China, and as a miscellaneous grain crop with high nutritional value, it has received increased attention from farmers and enterprises in recent years. In June 2024, we observed severe anthracnose in the buckwheat cultivation area in Malu Township and Jiache Township, Huize County, Qujing City, Yunnan Province, China. In this study, six isolates (SM01–SM06) of anthracnose with similar morphology were obtained using the tissue isolation method, which was due to the fact that this disease is highly pathogenic to buckwheat. The strain SM02 was selected as a representative isolate for biological characterization and molecular phylogenetic analysis, and a phylogenetic tree was constructed based on the ACT, CHS, and ITS genes to determine its taxonomic status. The selected SM02 isolate was further identified as Colletotrichum kahawae. Biological characterization showed that the representative strain SM02 exhibited optimal growth for in vitro cultivation under a photoperiod, temperature, pH, carbon source, and nitrogen source of 12L:12D, 25 °C, pH 7.0, glucose, and beef extract, respectively. Host range testing demonstrated that C. kahawae might infect important field crops, including maize, wheat, oats, and potatoes. In conclusion, C. kahawae causes buckwheat anthracnose in China, which might hinder the production of buckwheat. This study provides insight into anthracnose disease in buckwheat and provides a basis for further investigations to assess and implement effective disease management strategies. Full article
(This article belongs to the Special Issue Growth and Virulence of Plant Pathogenic Fungi, 2nd Edition)
Show Figures

Figure 1

16 pages, 4454 KB  
Article
UvPomt, an O-Methyltransferase Interacting with UvMAT1-1-3, for Regulating Growth, Stress Tolerance, and Virulence in Ustilaginoidea virens
by Zhi Li, Junjie Yu, Mina Yu, Huijuan Cao, Tianqiao Song, Shuchen Wang, Zhongqiang Qi, Yan Du, Xiayan Pan and Yongfeng Liu
J. Fungi 2025, 11(6), 426; https://doi.org/10.3390/jof11060426 - 31 May 2025
Cited by 1 | Viewed by 685
Abstract
Rice false smut (RFS), caused by Ustilaginoidea virens (teleomorph: Villosiclava virens), is a devastating fungal disease that severely impacts global rice production by reducing both yield and grain quality. While the mating-type gene UvMAT1-1-3 is known to regulate both sexual and asexual [...] Read more.
Rice false smut (RFS), caused by Ustilaginoidea virens (teleomorph: Villosiclava virens), is a devastating fungal disease that severely impacts global rice production by reducing both yield and grain quality. While the mating-type gene UvMAT1-1-3 is known to regulate both sexual and asexual reproduction in U. virens, its regulatory mechanism remains unclear. In this study, an interacting protein of UvMAT1-1-3, a putative O-methyltransferase (UvPomt), was identified using yeast two-hybrid screening, and its interaction was further confirmed by co-localization microscopy. A quantitative reverse transcription PCR (qRT-PCR) analysis showed a significant up-regulation of UvPomt expression during the early infection stage of U. virens. Functional characterization revealed that ΔUvPomt mutants exhibited reduced fungal pathogenicity, vegetative growth, conidial production, and stress adaptation. Furthermore, a Western blot analysis revealed that the UvMAT1-1-3 protein level was reduced in ΔUvPomt mutants, whereas the UvPomt protein level was elevated in ΔUvMAT1-1-3 mutants. Taken together, these findings suggest a potential reciprocal regulation between UvPomt and UvMAT1-1-3. Understanding UvPomt’s function could provide a potential molecular target for controlling RFS disease. Full article
(This article belongs to the Special Issue Growth and Virulence of Plant Pathogenic Fungi, 2nd Edition)
Show Figures

Figure 1

16 pages, 17023 KB  
Article
Fungal Species Associated with Tuber Rot of Foshou Yam (Dioscorea esculenta) in China
by Haifeng Liu, Aye Aye Htun, Sein Lai Lai Aung, Hyunkyu Sang, Jianxin Deng and Yaqun Tao
J. Fungi 2025, 11(5), 380; https://doi.org/10.3390/jof11050380 - 16 May 2025
Viewed by 561
Abstract
Foshou yam (Dioscorea esculenta) is a tuber food crop in China. It is a rare species of the yam family and known for its high nutritional value. From 2019 to 2021, tuber rot was observed in Foshou yam in Wuxue, Hubei [...] Read more.
Foshou yam (Dioscorea esculenta) is a tuber food crop in China. It is a rare species of the yam family and known for its high nutritional value. From 2019 to 2021, tuber rot was observed in Foshou yam in Wuxue, Hubei Province, China. Fungal strains were isolated from diseased tubers, and ten representative strains were identified based on microscopical characterization and multi-locus phylogenetic analysis. A total of five different species were identified, including Curvularia geniculata, Curvularia muehlenbeckiae, Fusarium commune, Penicillium oxalicum, and Penicillium sclerotigenum. Pathogenicity test revealed that these fungi are the pathogens of tuber rot in Foshou yam. Among them, P. oxalicum exhibited the strongest pathogenicity. To our knowledge, this is the first report of tuber rot in D. esculenta caused by these five species worldwide. This study provides important information for the future management of tuber rot in Foshou yam. Full article
(This article belongs to the Special Issue Growth and Virulence of Plant Pathogenic Fungi, 2nd Edition)
Show Figures

Figure 1

17 pages, 2912 KB  
Article
Protein Phosphatases MoPtc5, MoPtc1, and MoPtc2 Contribute to the Vegetative Growth, Stress Adaptation, and Virulence of Magnaporthe oryzae
by Jules Biregeya, Frankline Jagero Otieno, Meilian Chen, Anjago Wilfred Mabeche, Abah Felix, Nsanzinshuti Aimable, Yakubu Saddeeq Abubakar, Osakina Aron, Guodong Lu, Zonghua Wang, Yonghe Hong and Wei Tang
J. Fungi 2025, 11(3), 231; https://doi.org/10.3390/jof11030231 - 18 Mar 2025
Viewed by 610
Abstract
Protein phosphatases are crucial enzymes that regulate key cellular processes such as the cell cycle, gene transcription, and translation in eukaryotes. Seven PP2C protein phosphatases have been identified in Magnaporthe oryzae. However, their synergistic roles in the pathology and physiology of M. [...] Read more.
Protein phosphatases are crucial enzymes that regulate key cellular processes such as the cell cycle, gene transcription, and translation in eukaryotes. Seven PP2C protein phosphatases have been identified in Magnaporthe oryzae. However, their synergistic roles in the pathology and physiology of M. oryzae remain poorly investigated. By qRT-PCR analysis, we found that PTC1 and PTC2 are significantly upregulated in the PTC5 deletion mutant. The double deletion of the MoPTC5/MoPTC1 and MoPTC5/MoPTC2 genes significantly reduced hyphal growth, conidiophore formation, sporulation, and virulence in M. oryzae. In addition, the double-knockout mutants were increasingly sensitive to different osmotic, oxidative, and cell wall stresses. Western blot analysis revealed that MoPtc5 plays a synergistic function with MoPtc1 and MoPtc2 in the regulation of MoMps1 and MoOsm1 phosphorylation levels. Lastly, appressorium formation and turgor generation were remarkably affected in the ΔMoptc5ΔMoptc1 and ΔMoptc5ΔMoptc2 double-deletion mutants. These findings demonstrate the overlapping roles of PP2c protein phosphatase in the fungal development and pathogenesis of M. oryzae. Full article
(This article belongs to the Special Issue Growth and Virulence of Plant Pathogenic Fungi, 2nd Edition)
Show Figures

Figure 1

Back to TopTop