molecules-logo

Journal Browser

Journal Browser

Natural Products Biosynthesis: Present and Perspectives

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 880

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
Interests: biopolymers (sporopollenin); spore/pollen wall formation; plant evolution; enzyme mechanism; enzyme evolution; phylogenomics

Special Issue Information

Dear Colleagues,

Natural products (secondary metabolites) produced by plants and microorganisms continue to be the most important resources for pharmaceuticals, flavors, dyes, and other valuable substances. Natural products are synthesized, in response to biotic or abiotic stresses, by an array of specialized biosynthetic enzymes. In the early years of natural products research, the focus was mostly on bioactivity-guided isolation and structure determination of natural products and discovery and mechanistic studies of biosynthetic enzymes. Recent advances in genomics and bioinformatics have provided researchers with new omics-based approaches to elucidate biosynthetic pathways and study the evolution of the pathways. This Special Issue aims to showcase the whole spectrum of research on natural products biosynthesis from traditional mechanistic studies to more recent omics studies.

Prof. Dr. Dae-Yeon Suh
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products biosynthesis
  • secondary metabolism
  • biosynthetic pathway
  • enzyme mechanism
  • synthetic biology
  • bioinformatics
  • phylogenomics
  • genome mining

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 8100 KiB  
Article
Integrative Metabolome and Transcriptome Analyses Reveal the Effects of Plucking Flower on Polysaccharide Accumulation in the Rhizomes of Polygonatum cyrtonema Hua
by Huidong Yang, Hua Li, Jiahui Huang, Xincheng Liu, Zhongdong Hu and Yi Liu
Molecules 2025, 30(3), 670; https://doi.org/10.3390/molecules30030670 - 3 Feb 2025
Viewed by 646
Abstract
Polysaccharides are the major bioactive components of Polygonatum cyrtonema Hua, and their biosynthesis and accumulation are influenced by many agronomic practices. In this study, we applied integrative metabolome and transcriptome analyses to investigate the accumulation of bioactive components in one-year-old (1Y) and six-year-old [...] Read more.
Polysaccharides are the major bioactive components of Polygonatum cyrtonema Hua, and their biosynthesis and accumulation are influenced by many agronomic practices. In this study, we applied integrative metabolome and transcriptome analyses to investigate the accumulation of bioactive components in one-year-old (1Y) and six-year-old (6Y) rhizomes of P. cyrtonema Hua treated with a plucking flower. The compound content analysis suggested that six-year-old treated rhizomes (T6) accumulated the highest polysaccharide content compared to that of one-year-old treated rhizomes (T1), one-year-old untreated rhizomes (C1), and six-year-old untreated rhizomes (C6). Metabolomics analysis showed that 4-O-galactopyranosylxylose, 6-O-α-l-arabinopyranosyl-d-glucopyranose, d-arabinose and dl-xylose significantly accumulated in T6 rhizomes. Carbohydrate metabolic pathways, including “glycolysis/gluconeogenesis”, “pentose and glucoronate interconversions” and “amino sugar and nucleotide sugar metabolism” were highly correlated with polysaccharide biosynthesis and accumulation. The transcriptome data indicated that UPG2, GPI, and GALE were positively upregulated in T6_vs_C6. In parallel, RHM and PEI were down-regulated in T6_vs_C6. Taken together, this study not only indicates that the candidate metabolites/metabolic pathways and genes affected by plucking flowers may influence the accumulation of polysaccharides in the rhizomes but also provides an easy and feasible agronomic practice to facilitate the accumulation of polysaccharides in the rhizomes of P. cyrtonema Hua. Full article
(This article belongs to the Special Issue Natural Products Biosynthesis: Present and Perspectives)
Show Figures

Figure 1

Back to TopTop