Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,798)

Search Parameters:
Keywords = wound-healing promoters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2041 KiB  
Article
Tuning Corn Zein-Chitosan Biocomposites via Mild Alkaline Treatment: Structural and Physicochemical Property Insights
by Nagireddy Poluri, Creston Singer, David Salas-de la Cruz and Xiao Hu
Polymers 2025, 17(15), 2161; https://doi.org/10.3390/polym17152161 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning [...] Read more.
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Both untreated and sodium hydroxide (NaOH)-treated films were evaluated to assess changes in physicochemical properties. FTIR analysis revealed that NaOH treatment promoted deprotonation of chitosan’s amine groups, partial removal of ionic residues, and increased deacetylation, collectively enhancing hydrogen bonding and resulting in a denser molecular network. Simultaneously, partial unfolding of zein’s α-helical structures improved conformational flexibility and strengthened interactions with chitosan. These molecular-level changes led to improved thermal stability, reduced degradation, and the development of porous microstructures. Controlled NaOH treatment thus provides an effective strategy to tailor the physicochemical properties of zein–chitosan composite films, supporting their potential in sustainable food packaging, wound healing, and drug delivery applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
18 pages, 914 KiB  
Article
Microvascular, Biochemical, and Clinical Impact of Hyperbaric Oxygen Therapy in Recalcitrant Diabetic Foot Ulcers
by Daniela Martins-Mendes, Raquel Costa, Ilda Rodrigues, Óscar Camacho, Pedro Barata Coelho, Vítor Paixão-Dias, Carla Luís, Ana Cláudia Pereira, Rúben Fernandes, Jorge Lima and Raquel Soares
Cells 2025, 14(15), 1196; https://doi.org/10.3390/cells14151196 - 4 Aug 2025
Viewed by 181
Abstract
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study [...] Read more.
Background: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study aimed to evaluate the impact of HBOT on systemic biomarkers, local microvasculature, and clinical outcomes in patients with DFUs. Methods: In this non-randomized prospective study, 20 patients with ischemic DFUs were followed over a 36-month period. Fourteen received HBOT in addition to standard care, while six received standard care alone. Clinical outcomes—including DFU resolution, recurrence, lower extremity amputation (LEA), and mortality—were assessed alongside systemic inflammatory and angiogenic biomarkers and wound characteristics at baseline and at 3, 6, 12, and 36 months. CD31 immunostaining was performed on available tissue samples. Results: The two groups were comparable at baseline (mean age 62 ± 12 years; diabetes duration 18 ± 9 years). At 3 months, the HBOT group showed significant reductions in erythrocyte sedimentation rate and DFU size (p < 0.05), with downward trends observed in C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF), and an increase in stromal-derived factor-1 alpha (SDF1-α). No significant changes were observed in the control group. CD31+ microvessel density appeared to increase in HBOT-treated DFU tissue after one month, although the sample size was limited. Patients receiving HBOT had lower rates of LEA and mortality, improved wound healing, and sustained outcomes over three years. DFU recurrence rates were similar between groups. Conclusions: HBOT was associated with improved wound healing and favorable biomarker profiles in patients with treatment-resistant ischemic DFUs. While these findings are encouraging, the small sample size and non-randomized design limit their generalizability, highlighting the need for larger, controlled studies. Full article
Show Figures

Figure 1

10 pages, 277 KiB  
Systematic Review
Autologous Fat Grafting for the Treatment of Non-Enteric Cutaneous Fistulas: A Systematic Literature Review
by Francesca Bonomi, Ettore Limido, Yves Harder, Ken Galetti and Marco De Monti
Surg. Tech. Dev. 2025, 14(3), 26; https://doi.org/10.3390/std14030026 - 4 Aug 2025
Viewed by 137
Abstract
Background: Autologous fat grafting is increasingly used in daily clinical practice across various surgical fields, including the treatment of chronic wounds, scars, burns, and non-healing perianal fistulas. Recently, some studies have shown that non-enteric cutaneous fistulas can also benefit from adipose tissue injections, [...] Read more.
Background: Autologous fat grafting is increasingly used in daily clinical practice across various surgical fields, including the treatment of chronic wounds, scars, burns, and non-healing perianal fistulas. Recently, some studies have shown that non-enteric cutaneous fistulas can also benefit from adipose tissue injections, but the efficacy remains unclear. This study aims to systematically review the literature on fat grafting in the context of non-enteric cutaneous fistulas and to assess treatment outcomes. Methods: A comprehensive search of the PubMed/Medline database was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines up to January 2024 without restrictions on the time period or the language of publication. Results: Seven studies meeting the inclusion criteria were analyzed, encompassing 13 patients with non-healing cutaneous fistulas treated with injections of autologous fat. The mean age of the patients was 58 ± 3 years, of which 85% had comorbidities. Fat grafting resulted in complete healing in 92% of the cases, with a mean fistula persistence of 158 days before treatment. Treatment protocols varied among patients, including preparation of the fistulous tract, fat processing techniques, and suturing of the fistulous orifice. Conclusions: The results highlight the potential of autologous fat grafting in promoting tissue regeneration and healing of non-enteric cutaneous fistulas. Standardized protocols are essential to confirm and optimize treatment efficacy and, eventually, improve patient outcomes. Further research with a larger sample size and standardization is needed to confirm fat graft efficacy. Full article
Show Figures

Figure 1

20 pages, 11379 KiB  
Article
Silk Fibroin–Alginate Aerogel Beads Produced by Supercritical CO2 Drying: A Dual-Function Conformable and Haemostatic Dressing
by Maria Rosaria Sellitto, Domenico Larobina, Chiara De Soricellis, Chiara Amante, Giovanni Falcone, Paola Russo, Beatriz G. Bernardes, Ana Leite Oliveira and Pasquale Del Gaudio
Gels 2025, 11(8), 603; https://doi.org/10.3390/gels11080603 - 2 Aug 2025
Viewed by 276
Abstract
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity [...] Read more.
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity in the form of conformable aerogel beads. This dual-functional formulation is designed to absorb exudate, promote clotting, and provide localized antimicrobial action, all essential for accelerating wound repair in high-risk scenarios within a single biocompatible system. Aerogel beads were obtained by supercritical drying of a silk fibroin–sodium alginate blend, resulting in highly porous, spherical structures measuring 3–4 mm in diameter. The formulations demonstrated efficient ciprofloxacin encapsulation (42.75–49.05%) and sustained drug release for up to 12 h. Fluid absorption reached up to four times their weight in simulated wound fluid and was accompanied by significantly enhanced blood clotting, outperforming a commercial haemostatic dressing. These findings highlight the potential of silk-based aerogel beads as a multifunctional wound healing platform that combines localized antimicrobial delivery, efficient fluid and exudate management, biodegradability, and superior haemostatic performance in a single formulation. This work also shows for the first time how the prilling encapsulation technique with supercritical drying is able to successfully produce silk fibroin and sodium alginate composite aerogel beads. Full article
(This article belongs to the Special Issue Aerogels and Composites Aerogels)
Show Figures

Figure 1

23 pages, 5771 KiB  
Article
Photobiomodulation of 450 nm Blue Light on Human Keratinocytes, Fibroblasts, and Endothelial Cells: An In Vitro and Transcriptomic Study on Cells Involved in Wound Healing and Angiogenesis
by Jingbo Shao, Sophie Clément, Christoph Reissfelder, Patrick Téoule, Norbert Gretz, Feng Guo, Sabina Hajizada, Stefanie Uhlig, Katharina Mößinger, Carolina de la Torre, Carsten Sticht, Vugar Yagublu and Michael Keese
Biomedicines 2025, 13(8), 1876; https://doi.org/10.3390/biomedicines13081876 - 1 Aug 2025
Viewed by 191
Abstract
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human [...] Read more.
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human umbilical vein endothelial cells (HUVECs) after light treatment at 450 nm were analyzed by kinetic assays on cell viability, proliferation, ATP quantification, migration assay, and apoptosis assay. Gene expression was evaluated by transcriptome analysis. Results: A biphasic effect was observed on HaCaTs, NHDFs, and HUVECs. Low-fluence (4.5 J/cm2) irradiation stimulated cell viability, proliferation, and migration. mRNA sequencing indicated involvement of transforming growth factor beta (TGF-β), ErbB, and vascular endothelial growth factor (VEGF) pathways. High-fluence (18 J/cm2) irradiation inhibited these cellular activities by downregulating DNA replication, the cell cycle, and mismatch repair pathways. Conclusions: HaCaTs, NHDFs, and HUVECs exhibited a dose-dependent pattern after BL irradiation. These findings broaden the view of PBM following BL irradiation of these three cell types, thereby promoting their potential application in wound healing and angiogenesis. Our data on low-fluence BL at 450 nm indicates clinical potential for a novel modality in wound therapy. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

16 pages, 2742 KiB  
Article
miRNA408 from Camellia japonica L. Mediates Cross-Kingdom Regulation in Human Skin Recovery
by Soll Jin, Jae-Goo Kim, Hye Jin Kim, Ji Young Kim, Sang Hoon Kim, Hee Cheol Kang and Mi Jung Kim
Biomolecules 2025, 15(8), 1108; https://doi.org/10.3390/biom15081108 - 1 Aug 2025
Viewed by 223
Abstract
Wound healing is a complex and dynamic process involving several stages of tissue repair. This study has shown that extracellular vesicles (EVs) derived from the callus of Camellia japonica L. and their associated microRNAs (miRNAs) possess significant wound healing activities. In human fibroblasts, [...] Read more.
Wound healing is a complex and dynamic process involving several stages of tissue repair. This study has shown that extracellular vesicles (EVs) derived from the callus of Camellia japonica L. and their associated microRNAs (miRNAs) possess significant wound healing activities. In human fibroblasts, EVs from C. japonica L. stimulated wound healing and upregulated collagen gene expression. The EVs also decreased inflammation levels in human keratinocytes, supporting wound healing. Among the miRNAs identified, miR408, one of the abundant miRNAs in the EVs, also showed similar wound healing efficacy. These findings suggest that both EVs and miR408 from the callus of C. japonica L. play a pivotal role in promoting wound healing. Additionally, this study shows that the regulation of miRNAs between different kingdoms can be achieved and suggests a new direction for the utilization of plant-derived components. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

16 pages, 4215 KiB  
Article
Ag/TA@CNC Reinforced Hydrogel Dressing with Enhanced Adhesion and Antibacterial Activity
by Jiahao Yu, Junhao Liu, Yicheng Liu, Siqi Liu, Zichuan Su and Daxin Liang
Gels 2025, 11(8), 591; https://doi.org/10.3390/gels11080591 - 31 Jul 2025
Viewed by 254
Abstract
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) [...] Read more.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.4 kPa to pigskin, 122% improvement over pure system) through dynamic hydrogen bonding and coordination interactions. TA served as a green reducing agent for uniform AgNPs loading, with CNC negative charges preventing particle aggregation. Antibacterial studies revealed synergistic effects between TA-induced membrane disruption and Ag+-triggered reactive oxygen species generation, achieving >99.5% inhibition against Staphylococcus aureus and Escherichia coli. The TA@CNC-regulated porous structure balanced swelling performance and water vapor transmission, facilitating wound exudate management and moist healing. This composite hydrogel successfully integrates mechanical toughness, tissue adhesion, antibacterial activity, and biocompatibility, providing a novel strategy for advanced wound dressing development. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Figure 1

19 pages, 10625 KiB  
Article
SZC-6 Promotes Diabetic Wound Healing in Mice by Modulating the M1/M2 Macrophage Ratio and Inhibiting the MyD88/NF-χB Pathway
by Ang Xuan, Meng Liu, Lingli Zhang, Guoqing Lu, Hao Liu, Lishan Zheng, Juan Shen, Yong Zou and Shengyao Zhi
Pharmaceuticals 2025, 18(8), 1143; https://doi.org/10.3390/ph18081143 - 31 Jul 2025
Viewed by 310
Abstract
Background/Objectives: The prolonged M1-like pro-inflammatory polarization of macrophages is a key factor in the delayed healing of diabetic ulcers (DU). SIRT3, a primary mitochondrial deacetylase, has been identified as a regulator of inflammation and represents a promising new therapeutic target for DU [...] Read more.
Background/Objectives: The prolonged M1-like pro-inflammatory polarization of macrophages is a key factor in the delayed healing of diabetic ulcers (DU). SIRT3, a primary mitochondrial deacetylase, has been identified as a regulator of inflammation and represents a promising new therapeutic target for DU treatment. Nonetheless, the efficacy of existing SIRT3 agonists remains suboptimal. Methods: Here, we introduce a novel compound, SZC-6, demonstrating promising activity levels. Results: SZC-6 treatment down-regulated the expression of inflammatory factors in LPS-treated RAW264.7 cells and reduced the proportion of M1 macrophages. Mitosox, IF, and JC-1 staining revealed that SZC-6 preserved cellular mitochondrial homeostasis and reduced the accumulation of reactive oxygen species. In vivo experiments demonstrated that SZC-6 treatment accelerated wound healing in diabetic mice. Furthermore, HE and Masson staining revealed increased neovascularization at the wound site with SZC-6 treatment. Tissue immunofluorescence results indicated that SZC-6 effectively decreased the proportion of M1-like cells and increased the proportion of M2-like cells at the wound site. We also found that SZC-6 significantly reduced MyD88, p-IκBα, and NF-χB p65 protein levels and inhibited the nuclear translocation of P65 in LPS-treated cells. Conclusions: The study concluded that SZC-6 inhibited the activation of the NF-χB pathway, thereby reducing the inflammatory response and promoting skin healing in diabetic ulcers. SZC-6 shows promise as a small-molecule compound for promoting diabetic wound healing. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

19 pages, 3826 KiB  
Article
Circular RNA circ_0001591 Contributes to Melanoma Cell Migration Through AXL and FRA1 Proteins by Targeting miR-20a-3p and miR-34a-5p
by Elisa Orlandi, Elisa De Tomi, Francesca Belpinati, Marta Menegazzi, Macarena Gomez-Lira, Maria Grazia Romanelli and Elisabetta Trabetti
Genes 2025, 16(8), 921; https://doi.org/10.3390/genes16080921 - 30 Jul 2025
Viewed by 279
Abstract
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma [...] Read more.
Background/Objectives: Different risk factors are involved in the initiation and progression of melanoma. In particular, genetic and epigenetic pathways are involved in all stages of melanoma and are exploited in therapeutic approaches. This study investigated the role of circular RNA circ_0001591 in melanoma cell migration. Methods: Three different melanoma cell lines were transfected with siRNA targeting circ_0001591 and with mimic or inhibitor molecules for miR-20a-3p and miR-34a-5p. Gene and protein expression levels were analyzed by RT-qPCR and Western blot, respectively. Dual luciferase reporter assays were performed to confirm the direct interaction of miR-20a-3p and miR-34a-5p with circ_0001591, as well as with the 3’UTRs of AXL (for both miRNAs) and FOSL1 (miR-34a-5p only). Wound healing assays were conducted to assess cell migration velocity. Results: The silencing of circ_0001591 significantly reduces the migration ability of melanoma cell lines. This downregulation was associated with an increased expression of miR-20a-3p and miR-34a-5p. Dual luciferase reporter assays confirmed the direct binding of both miRNAs to circ_0001591, supporting its role as a molecular sponge. The same assays also verified that miR-20a-3p directly targets the 3’UTR of AXL, while miR-34a-5p binds the 3’UTRs of both AXL and FOSL1. Western blot analysis showed that the modulation of this axis affects the expression levels of the AXL and FRA1 oncoproteins. Conclusions: Our findings demonstrate that circ_0001591 promotes melanoma migration by sponging miR-20a-3p and miR-34a-5p, thereby indirectly modulating the expression of AXL and FRA1 oncoprotein. Further investigations of this new regulatory network are needed to better understand its role in melanoma progression and to support the development of targeted therapies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3786 KiB  
Review
Topical Oxygen Therapy (blue®m) for Post-Surgical Care Protocols to Promote Wound Healing in Periodontology and Dental Implants: A Case-Based Literature Review
by Cristian Scognamiglio, Alessandro Perucchi, Chalini Sundar, Tatiana Miranda Deliberador and Hamdan Alghamdi
Oral 2025, 5(3), 53; https://doi.org/10.3390/oral5030053 - 29 Jul 2025
Viewed by 407
Abstract
Background: Stable post-surgical wound healing surrounding teeth and dental implants is essential for achieving excellent clinical outcomes, both during the initial phases of treatment and over the long term. Objectives: This work follows the new emerging trend of case-based literature reviews. The aim [...] Read more.
Background: Stable post-surgical wound healing surrounding teeth and dental implants is essential for achieving excellent clinical outcomes, both during the initial phases of treatment and over the long term. Objectives: This work follows the new emerging trend of case-based literature reviews. The aim of this review includes providing clinical findings from case series that demonstrate the efficacy of using blue®m oxygen treatment to promote post-surgical wound healing in patients that underwent periodontal and dental implant surgeries. In addition, a systematic review of the literature aimed to answer the focused research question: “In periodontal and implant surgeries, what are the aftercare protocols used to maintain optimal wound healing?” Case Presentation: One clinical case report involved the presentation of complex periodontal surgery. The other two cases focused on advanced implant surgeries. All patients were treated post-surgically with the local application of an oxygen-based therapy (blue®m) gel. This therapy was further emphasized during the wound-healing phase by instructing patients to maintain thorough dental hygiene using toothpaste and mouthwash containing a similar oxygen-release formulation (blue®m). Patients achieved satisfactory treatment outcomes. Systematic Review: PubMed and EMBASE were used in order to search for relevant studies in the scientific literature published up until June 2025. Only human clinical studies that used a specific protocol in regard to aftercare wound healing after periodontal or dental implant surgeries were included. As a result, 27 clinical studies were included. The outcome data were categorized and summarized. Conclusions: The use of local oxygen-based therapy showed a positive effect as a conventionally used aftercare modality in maintaining optimal post-surgical wound healing, following periodontal and implant surgeries. Further clinical studies are needed. Full article
Show Figures

Figure 1

19 pages, 946 KiB  
Review
The Promotion of Cell Proliferation by Food-Derived Bioactive Peptides: Sources and Mechanisms
by Yuhao Yan, Yinuo Liu, Xinwei Zhang, Liting Zan and Xibi Fang
Metabolites 2025, 15(8), 505; https://doi.org/10.3390/metabo15080505 - 29 Jul 2025
Viewed by 384
Abstract
Cell proliferation plays a pivotal role in multiple physiological processes, including osteoporosis alleviation, wound healing, and immune enhancement. Numerous novel peptides with cell proliferation-promoting activity have been identified. These peptides exert their functions by modulating key cellular signaling pathways, thereby regulating diverse biological [...] Read more.
Cell proliferation plays a pivotal role in multiple physiological processes, including osteoporosis alleviation, wound healing, and immune enhancement. Numerous novel peptides with cell proliferation-promoting activity have been identified. These peptides exert their functions by modulating key cellular signaling pathways, thereby regulating diverse biological processes related to cell proliferation. This work summarizes peptides derived from animals and plants that stimulate cell proliferation, focusing on their amino acid composition, physicochemical properties, and preparation techniques. Furthermore, we highlight the major signaling pathways—such as the PI3K/Akt, MAPK/ERK, and Wnt/β-catenin pathways—that have been implicated in the mechanistic studies of food-derived peptides. Through the analysis and summary of previous studies, we observe a notable lack of in vivo animal models and clinical trials, indicating that these may represent promising directions for future research on food-derived bioactive peptides. Meanwhile, the potential safety concerns of proliferation-enhancing peptides—such as immunogenicity, appropriate dosage, and gastrointestinal stability—warrant greater attention. In summary, this review provides a comprehensive overview of the sources and mechanisms of cell proliferation-promoting peptides and addresses the challenges in industrializing bioactive peptide-based functional foods; therefore, further research in this area is encouraged. Full article
Show Figures

Graphical abstract

33 pages, 4819 KiB  
Review
Hydrogels Modulating the Microbiome: Therapies for Tissue Regeneration with Infection Control
by Germán Reynaldo Jiménez-Gastelum, Carlos Esteban Villegas-Mercado, Juan Luis Cota-Quintero, Silvia Ivonne Arzola-Rodríguez, Rosalío Ramos-Payán and Mercedes Bermúdez
Gels 2025, 11(8), 584; https://doi.org/10.3390/gels11080584 - 29 Jul 2025
Viewed by 445
Abstract
This review explores the emerging role of functionalized hydrogels in modulating the microbiome for therapeutic applications in tissue regeneration and infection control. The skin and gut microbiomes play crucial roles in maintaining tissue homeostasis, regulating immune responses, and influencing the healing process. Disruptions [...] Read more.
This review explores the emerging role of functionalized hydrogels in modulating the microbiome for therapeutic applications in tissue regeneration and infection control. The skin and gut microbiomes play crucial roles in maintaining tissue homeostasis, regulating immune responses, and influencing the healing process. Disruptions in microbial balance—such as those observed in chronic wounds, autoimmune conditions, or post-surgical environments—can impair regeneration and increase susceptibility to infection. Hydrogels, due to their tunable physical and chemical properties, serve as versatile platforms for delivering probiotics, prebiotics, antimicrobials, and immune-modulatory agents. The encapsulation of beneficial bacteria, such as Lactobacillus plantarum or Prevotella histicola, within hydrogels could enhance bacterial viability, targeted delivery, and immune tolerance. Additionally, hydrogels functionalized with silver nanoparticles, nitric oxide donors, and bacteriocins have demonstrated effective biofilm disruption and pathogen clearance. These systems also promote favorable immune responses, such as M2 macrophage polarization and the induction of regulatory T cells, which are essential for tissue repair. Innovative approaches, including 3D bioprinting, self-healing materials, and photothermal-responsive hydrogels, expand the clinical versatility of these systems. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
Show Figures

Figure 1

19 pages, 6644 KiB  
Article
HGF Overexpression in Mesenchymal Stromal Cell-Based Cell Sheets Enhances Autophagy-Dependent Cytoprotection and Proliferation to Guard the Epicardial Mesothelium
by Konstantin Dergilev, Irina Beloglazova, Zoya Tsokolaeva, Ekaterina Azimova, Aleria Dolgodvorova, Yulia Goltseva, Maria Boldyreva, Mikhail Menshikov, Dmitry Penkov and Yelena Parfyonova
Int. J. Mol. Sci. 2025, 26(15), 7298; https://doi.org/10.3390/ijms26157298 - 28 Jul 2025
Viewed by 220
Abstract
Epicardial mesothelial cells (EMCs), which form the epicardium, play a crucial role in cardiac homeostasis and repair. Upon damage, EMCs reactivate embryonic development programs, contributing to wound healing, progenitor cell amplification, and regulation of lymphangiogenesis, angiogenesis, and fibrosis. However, the mechanisms governing EMC [...] Read more.
Epicardial mesothelial cells (EMCs), which form the epicardium, play a crucial role in cardiac homeostasis and repair. Upon damage, EMCs reactivate embryonic development programs, contributing to wound healing, progenitor cell amplification, and regulation of lymphangiogenesis, angiogenesis, and fibrosis. However, the mechanisms governing EMC activation and subsequent regulation remain poorly understood. We hypothesized that hepatocyte growth factor (HGF), a pleiotropic regulator of various cellular functions, could modulate EMC activity. To verify this hypothesis, we developed HGF-overexpressing mesenchymal stromal cell sheets (HGF-MSC CSs) and evaluated their effects on EMCs in vitro and in vivo. This study has revealed, for the first time, that EMCs express the c-Met (HGF receptor) on their surface and that both recombinant HGF and HGF-MSC CSs secretome cause c-Met phosphorylation, triggering downstream intracellular signaling. Our findings demonstrate that the HGF-MSC CSs secretome promotes cell survival under hypoxic conditions by modulating the level of autophagy. At the same time, HGF-MSC CSs stimulate EMC proliferation, promoting their amplification in the damage zone. These data demonstrate that HGF-MSC CSs can be considered a promising regulator of epicardial cell activity involved in heart repair after ischemic damage. Full article
Show Figures

Figure 1

17 pages, 339 KiB  
Review
Protein and Aging: Practicalities and Practice
by Stephanie Harris, Jessica DePalma and Hope Barkoukis
Nutrients 2025, 17(15), 2461; https://doi.org/10.3390/nu17152461 - 28 Jul 2025
Viewed by 772
Abstract
Dietary protein is an essential macronutrient derived from both plant and animal sources required for muscle building, immune function, and wound healing. However, in the United States, protein consumption worsens as individuals age, with 30% of men and 50% of women over 71 [...] Read more.
Dietary protein is an essential macronutrient derived from both plant and animal sources required for muscle building, immune function, and wound healing. However, in the United States, protein consumption worsens as individuals age, with 30% of men and 50% of women over 71 consuming inadequate dietary protein due to a variety of factors, including changes in gut function, loss of appetite, tooth loss, financial concerns, and social isolation. The aim of this review is to underscore the need for increased protein requirements in aging populations, highlight potential barriers, synthesize these protein requirements, and also recommend strategies to meet these increased protein needs. Achieving adequate protein status, especially when facing chronic or acute health concerns, is essential to promote muscle and bone strength (because aging is associated with significant decreases in postprandial muscle protein synthesis), to support immune health (due to immunosenescence), and to maintain a good quality of life. For older adults, the literature suggests that a dietary protein intake of at least 1.0–1.2 g/kg/day is required in healthy, aging populations, and intakes of 1.2–1.5 g/kg/day are necessary for those with chronic or acute conditions. These protein intake recommendations can increase to 2.0 g/kg/day in more severe cases of illness, malnutrition, and chronic conditions. The reviewed literature also suggests that evenly balanced protein distributions of 25–30 g of dietary protein (0.4 g/kg) per meal from animal and plant protein sources alike are sufficient to maximize muscle protein synthesis (MPS) rates in older populations. Additionally, pre-sleep protein feeds of 40 g/night may be another strategy to improve daily MPS and amino acid utilization. Full article
49 pages, 8322 KiB  
Review
Research Progress on the Application of Novel Wound Healing Dressings in Different Stages of Wound Healing
by Lihong Wang, Xinying Lu, Yikun Wang, Lina Sun, Xiaoyu Fan, Xinran Wang and Jie Bai
Pharmaceutics 2025, 17(8), 976; https://doi.org/10.3390/pharmaceutics17080976 - 28 Jul 2025
Viewed by 433
Abstract
The complex microenvironment of wounds, along with challenges such as microbial infections, tissue damage, and inflammatory responses during the healing process, renders wound repair a complex medical issue. Owing to their ease of administration, effective outcomes, and painless application, biomacromolecule-based wound dressings have [...] Read more.
The complex microenvironment of wounds, along with challenges such as microbial infections, tissue damage, and inflammatory responses during the healing process, renders wound repair a complex medical issue. Owing to their ease of administration, effective outcomes, and painless application, biomacromolecule-based wound dressings have become a focal point in current clinical research. In recent years, hydrogels, microneedles, and electrospun nanofibers have emerged as three novel types of wound dressings. By influencing various stages of healing, they have notably enhanced chronic wound healing outcomes and hold considerable potential for wound repair applications. This review describes the preparation methods, classification, and applications of hydrogels, microneedles, and electrospun nanofibers around the various stages of wound healing, clarifying the healing-promoting mechanisms and characteristics of the three methods in different stages of wound healing. Building upon this foundation, we further introduce smart responsiveness, highlighting the application of stimuli-responsive wound dressings in dynamic wound management, aiming to provide insights for future research. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

Back to TopTop