Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = world-wide harmonized light duty test cycles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1170 KiB  
Article
Effect of Sulfur Poisoning During Worldwide Harmonized Light Vehicles Test Cycle on NOx Reduction Performance and Active Sites of Selective Catalytic Reduction Filter
by Zhou Zhou, Fei Yu, Dongxia Yang, Shiying Chang, Xiaokun He, Yunkun Zhao, Jiangli Ma, Ting Chen, Huilong Lai and He Lin
Catalysts 2025, 15(7), 682; https://doi.org/10.3390/catal15070682 - 14 Jul 2025
Viewed by 429
Abstract
Selective catalytic reduction filter (SDPF) technology constitutes a critical methodology for controlling nitrogen oxide (NOx) and particulate matter emissions from light-duty diesel vehicles. A series of SDPFs with different sulfur poisoning times and concentrations were prepared using the worldwide harmonized light [...] Read more.
Selective catalytic reduction filter (SDPF) technology constitutes a critical methodology for controlling nitrogen oxide (NOx) and particulate matter emissions from light-duty diesel vehicles. A series of SDPFs with different sulfur poisoning times and concentrations were prepared using the worldwide harmonized light vehicles test cycle (WLTC). Bench testing revealed that sulfur poisoning diminished the catalyst’s NH3 storage capacity, impaired the transient NOx reduction efficiency, and induced premature ammonia leakage. After multiple sulfur poisoning incidents, the NOx reduction performance stabilized. Higher SO2 concentrations accelerated catalyst deactivation and hastened the attainment of this equilibrium state. The characterization results for the catalyst indicate that the catalyst accumulated the same sulfur content after tail gas poisoning with different sulfur concentrations and that sulfur existed in the form of SO42−. The sulfur species in low-sulfur-poisoning-concentration catalysts mainly included sulfur ammonia and sulfur copper species, while high-sulfur-poisoning-concentration catalysts contained a higher proportion of sulfur copper species. Neither species type significantly altered the zeolite coating’s crystalline structure. Sulfur ammonia species could easily lead to a significant decrease in the specific surface area of the catalyst, which could be decomposed at 500 °C to achieve NOx reduction performance regeneration. In contrast, sulfur copper species required higher decomposition temperatures (600 °C), achieving only partial regeneration. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

26 pages, 12121 KiB  
Article
Health-Conscious Energy Management for Fuel Cell Hybrid Electric Vehicles Based on Adaptive Equivalent Consumption Minimization Strategy
by Pei Zhang, Yubing Wang, Hongbo Du and Changqing Du
Appl. Sci. 2024, 14(17), 7951; https://doi.org/10.3390/app14177951 - 6 Sep 2024
Cited by 2 | Viewed by 1508
Abstract
The energy management strategy plays an essential role in improving the fuel economy and extending the energy source lifetime for fuel cell hybrid electric vehicles (FCHEVs). However, the traditional energy management strategy ignores the lifetime of the energy sources for good fuel economy. [...] Read more.
The energy management strategy plays an essential role in improving the fuel economy and extending the energy source lifetime for fuel cell hybrid electric vehicles (FCHEVs). However, the traditional energy management strategy ignores the lifetime of the energy sources for good fuel economy. In this work, an adaptive equivalent consumption minimization strategy considering performance degradation (DA-ECMS) is proposed by incorporating fuel cell and battery performance degradation models and establishing an optimal covariate predictor based on a long short-term memory (LSTM) neural network. The comparative simulations show that, compared with the adaptive equivalent consumption minimization strategy (A-ECMS), the DA-ECMS reduces the fuel cell stack voltage degradation by 17.1%, 23.2%, and 16.6% for the Worldwide Harmonized Light Vehicle Test Procedure (WLTP), the China Light-Duty Vehicle Test Cycle (CLTC), and the New European Driving Cycle (NEDC), respectively, and the corresponding battery capacity degradation is reduced by 5.1%, 11.1%, and 11.2%. The average relative error between the hardware-in-the-loop (HIL) test and simulation results of the DA-ECMS is 5%. In conclusion, the proposed DA-ECMS can effectively extend the lifetime of the fuel cell and battery compared to the A-ECMS. Full article
Show Figures

Figure 1

16 pages, 2194 KiB  
Article
Evaluating Synergies between Electric Vehicles and Photovoltaics: A Comparative Study of Urban Environments
by Renos Rotas, Petros Iliadis, Nikos Nikolopoulos and Ananias Tomboulides
World Electr. Veh. J. 2024, 15(9), 397; https://doi.org/10.3390/wevj15090397 - 2 Sep 2024
Viewed by 3032
Abstract
Electric vehicles (EVs) and photovoltaics (PVs) are expected to be broadly adopted in future power systems. However, the temporal variability of EV load and PV production presents challenges for integrating them into the power grid. This study evaluates and assesses the synergies between [...] Read more.
Electric vehicles (EVs) and photovoltaics (PVs) are expected to be broadly adopted in future power systems. However, the temporal variability of EV load and PV production presents challenges for integrating them into the power grid. This study evaluates and assesses the synergies between EVs and PV systems to maximize solar energy utilization for EV load coverage. The configurations studied include EV charging via the national grid as a reference case (Case 1) and two solar energy harvesting options: EVs powered directly by vehicle-mounted PVs (Case 2) and EV chargers connected to residential PV installations (Case 3). These cases are evaluated across different urban environments with large EV fleets and dissimilar weather conditions: Berlin and Los Angeles. A customized operation profile based on the worldwide harmonized light-duty test cycle (WLTC) and a charge-right-away (CRA) strategy is used. Energy performance analysis is conducted through dynamic simulations using the Modelica language, with environmental and economic indices derived. Key findings highlight the superior performance of residential PV systems in both cities compared to current solar EV technologies, with both solutions offering significant benefits over the reference case. Cases 2 and 3 result in a 44% and 59% reduction in annual energy consumption, greenhouse gas emissions, and charging costs in Berlin, while in Los Angeles, the reductions are 67% and 98%. The average daily solar driving range reaches 20.3% in Berlin and 30.4% in Los Angeles. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-mobility)
Show Figures

Figure 1

25 pages, 12647 KiB  
Article
Impact of Mid-to-Low-Ash, Low-Viscosity Lubricants on Aftertreatment Systems after 210,000-Kilometer Real-World Road Endurance Trials
by Heng Shao, Hua Hu, Yitao Luo, Lun Hua, Jinchong Pan, Gezhengting Zhu, Yan Jiao, Jingfeng Yan and Guangyuan Wei
Lubricants 2024, 12(7), 240; https://doi.org/10.3390/lubricants12070240 - 3 Jul 2024
Cited by 1 | Viewed by 1378
Abstract
Engine lubricants globally face the challenge of meeting the demands of new engine technologies while enhancing energy efficiency and reducing emissions. Lubricants must enhance their performance and sustainability, improve reliability in complex and harsh environments, and minimize environmental impact and health risks. This [...] Read more.
Engine lubricants globally face the challenge of meeting the demands of new engine technologies while enhancing energy efficiency and reducing emissions. Lubricants must enhance their performance and sustainability, improve reliability in complex and harsh environments, and minimize environmental impact and health risks. This study explores the influence of two different formulations of low viscosity lubricants, tested through actual road endurance trials, on a hybrid vehicle’s aftertreatment system performance and overall emission levels. The study includes 120,000 km of endurance testing in four different challenging environments in China, as well as 90,000 km of endurance testing in a typical urban and highway driving cycle in a large city. Results indicate that emissions from the test vehicles during the 120,000 km and 210,000 km durable Worldwide harmonized Light vehicle Test Cycles (WLTCs) meet China’s Stage 6 light-duty vehicle emission standards, with the 210,000 km Real Driving Emission test (RDE) results also conforming to these standards. Relative to fresh TWC, the light-off temperature increased by a mere 60 °C, and the oxygen storage capacity declined by around 19% following endurance testing. Additionally, the GPF exhibited satisfactory performance after 210,000 km of endurance testing, showing lower backpressure values compared to the fresh-coated samples, with no notable ash buildup observed in the substrate. Drawing on the outcomes of actual road endurance testing, this study illustrates that employing low-to-mid-ash-content, low-viscosity lubricants is both compatible and reliable for aftertreatment systems in present or advanced hybrid technologies. Premium lubricants facilitate vehicles in sustaining compliant and stable emission performance, even amid harsh environments and complex operating conditions. Furthermore, the tested lubricants effectively inhibit excessive aging of the aftertreatment system over prolonged mileage. Moreover, this study discusses the feasibility of rapid aging evaluation methods for aftertreatment systems based on engine test benches, juxtaposed with actual road endurance testing. These findings and conclusions offer crucial references and guidance for enhancing lubricant performance and sustainability. Subsequent studies can delve deeper into the correlation between lubricant performance and environmental impact, alongside optimization strategies for lubricants across various vehicle models and usage scenarios. Full article
Show Figures

Figure 1

26 pages, 31759 KiB  
Article
Rule-Based Operation Mode Control Strategy for the Energy Management of a Fuel Cell Electric Vehicle
by Jokin Uralde, Oscar Barambones, Asier del Rio, Isidro Calvo and Eneko Artetxe
Batteries 2024, 10(6), 214; https://doi.org/10.3390/batteries10060214 - 19 Jun 2024
Cited by 12 | Viewed by 3067
Abstract
Hydrogen, due to its high energy density, stands out as an energy storage method for the car industry in order to reduce the impact of the automotive sector on air pollution and global warming. The fuel cell electric vehicle (FCEV) emerges as a [...] Read more.
Hydrogen, due to its high energy density, stands out as an energy storage method for the car industry in order to reduce the impact of the automotive sector on air pollution and global warming. The fuel cell electric vehicle (FCEV) emerges as a modification of the electric car by adding a proton exchange membrane fuel cell (PEMFC) to the battery pack and electric motor, that is capable of converting hydrogen into electric energy. In order to control the energy flow of so many elements, an optimal energy management system (EMS) is needed, where rule-based strategies represent the smallest computational burden and are the most widely used in the industry. In this work, a rule-based operation mode control strategy for the EMS of an FCEV validated by different driving cycles and several tests at the strategic points of the battery state of charge (SOC) is proposed. The results obtained in the new European driving cycle (NEDC) show the 12 kW battery variation of 2% and a hydrogen consumption of 1.2 kg/100 km compared to the variation of 1.42% and a consumption of 1.08 kg/100 km obtained in the worldwide harmonized light-duty test cycle (WLTC). Moreover, battery tests have demonstrated the optimal performance of the proposed EMS strategy. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

32 pages, 26330 KiB  
Article
Brake Wear and Airborne Particle Mass Emissions from Passenger Car Brakes in Dynamometer Experiments Based on the Worldwide Harmonized Light-Duty Vehicle Test Procedure Brake Cycle
by Hiroyuki Hagino
Lubricants 2024, 12(6), 206; https://doi.org/10.3390/lubricants12060206 - 5 Jun 2024
Cited by 2 | Viewed by 2534
Abstract
Brake wear particles, as the major component of non-exhaust particulate matter, are known to have different emissions, depending on the type of brake assembly and the specifications of the vehicle. In this study, brake wear and wear particle mass emissions were measured under [...] Read more.
Brake wear particles, as the major component of non-exhaust particulate matter, are known to have different emissions, depending on the type of brake assembly and the specifications of the vehicle. In this study, brake wear and wear particle mass emissions were measured under realistic vehicle driving and full friction braking conditions using current commercial genuine brake assemblies. Although there were no significant differences in either PM10 or PM2.5 emissions between the different cooling air flow rates, brake wear decreased and ultrafine particle (PM0.12) emissions increased with the increase in the cooling air flow rate. Particle mass measurements were collected on filter media, allowing chemical composition analysis to identify the source of brake wear particle mass emissions. The iron concentration in the brake wear particles indicated that the main contribution was derived from disc wear. Using a systematic approach that measured brake wear and wear particle emissions, this study was able to characterize correlations with elemental compositions in brake friction materials, adding to our understanding of the mechanical phenomena of brake wear and wear particle emissions. Full article
(This article belongs to the Special Issue Emission and Transport of Wear Particles)
Show Figures

Figure 1

18 pages, 4693 KiB  
Article
Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio
by Artur Jaworski, Hubert Kuszewski, Krzysztof Balawender, Paweł Woś, Krzysztof Lew and Mirosław Jaremcio
Energies 2024, 17(9), 2095; https://doi.org/10.3390/en17092095 - 27 Apr 2024
Cited by 2 | Viewed by 1547
Abstract
The results of diagnostic tests under steady-state speed conditions of an unloaded engine do not fully reflect the emissivity of vehicles adapted to run on natural gas. Therefore, it is reasonable to pay attention to the emissions performance of these vehicles under dynamic [...] Read more.
The results of diagnostic tests under steady-state speed conditions of an unloaded engine do not fully reflect the emissivity of vehicles adapted to run on natural gas. Therefore, it is reasonable to pay attention to the emissions performance of these vehicles under dynamic conditions. In this regard, the tests were carried out on a chassis dynamometer with the engine fueled by gasoline and natural gas. Due to the area of operation of natural gas vehicles being usually limited to urban areas, the urban phases of the NEDC (New European Driving Cycle) and WLTC (Worldwide harmonized Light-duty vehicles Test Cycle) were adapted. While CO2 emissions are lower when fueled by natural gas, CH4 emissions can be high, which is related to momentary changes in the composition of the combustible mixture. Although CH4 emissions are higher when the engine runs on natural gas, the CO2eq value is, depending on the driving cycle, about 15–25% lower than when running on petrol. Additionally, studies have shown that in engines adapted to run on CNG (compressed natural gas), it is advisable to consider the use of catalytic converters optimized to run on natural gas, as is the case with vehicles which are factory–adapted to run on CNG. Full article
(This article belongs to the Special Issue Internal Combustion Engine: Research and Application—2nd Edition)
Show Figures

Figure 1

12 pages, 3059 KiB  
Article
The Assessment of PM2.5 and PM10 Immission in Atmospheric Air in a Climate Chamber during Tests of an Electric Car on a Chassis Dynamometer
by Artur Jaworski, Krzysztof Balawender, Hubert Kuszewski and Mirosław Jaremcio
Atmosphere 2024, 15(3), 270; https://doi.org/10.3390/atmos15030270 - 23 Feb 2024
Cited by 5 | Viewed by 1610
Abstract
Electric cars, like internal combustion vehicles, emit particulate pollution from non-exhaust systems, i.e., tires and brakes, which is included in the Euro 7 emission standard planned for implementation. Tests conducted on chassis dynamometers are accompanied by particulate emissions from non-exhaust systems, which are [...] Read more.
Electric cars, like internal combustion vehicles, emit particulate pollution from non-exhaust systems, i.e., tires and brakes, which is included in the Euro 7 emission standard planned for implementation. Tests conducted on chassis dynamometers are accompanied by particulate emissions from non-exhaust systems, which are introduced into the ambient air on the test bench. Particulate emissions tests from non-engine systems on chassis dynamometers are mainly aimed at measuring the mass or number of particulates from tires and brakes. In contrast, little attention is paid to the immission of particulate matter from tires and brakes on the dynamometer during tests, which in the case of electric cars include, for example, measurements of energy consumption or range. Therefore, in order to draw attention to the problem of these emissions, the authors carried out measurements of PM2.5 and PM10 immissions into the air in the climatic chamber during tests of an electric car on a chassis dynamometer. The car tests were carried out in accordance with the WLTC (Worldwide harmonized Light duty Test Cycle) and at constant speed. Based on the test results, a model was proposed for the immission of particulate matter in laboratory air from tire and brake abrasion, taking traffic parameters into account. The results and the developed model show that air quality, in terms of particulate content, deteriorates significantly during testing. Full article
(This article belongs to the Special Issue Numerical Simulation of Aerosol Microphysical Processes)
Show Figures

Figure 1

15 pages, 15125 KiB  
Article
Experimental Validation of a Permanent Magnets Magnetorheological Device under a Standardized Worldwide Harmonized Light-Duty Test Cycle
by Claudia Simonelli, Luca Sani, Nicolò Gori, Miguel Fernández-Muñoz, Antonino Musolino and Rocco Rizzo
Actuators 2023, 12(10), 375; https://doi.org/10.3390/act12100375 - 29 Sep 2023
Cited by 2 | Viewed by 2030
Abstract
In this paper, the experimental validation of an innovative clutch based on magnetorheological fluids (MRFs) excited by permanent magnets is described. The device, used in automotive applications to engage and disengage the vacuum pump, is tested using a standardized Worldwide harmonized Light-duty Test [...] Read more.
In this paper, the experimental validation of an innovative clutch based on magnetorheological fluids (MRFs) excited by permanent magnets is described. The device, used in automotive applications to engage and disengage the vacuum pump, is tested using a standardized Worldwide harmonized Light-duty Test Cycle (WLTC). A test bench is built, and the system is observed in its operation for one hour, considering two consecutive WLTCs. The temperature increase slightly impacts the clutch’s behavior; in particular, the on-state performance of the device, mainly determined by the magnetic field-induced torque, remains largely unaffected by the temperature increase. The results showed that the performance of the proposed MRF-based device is only marginally affected by the phenomena that take place during the actual operation (e.g., temperature increase, shaft slip), confirming the effectiveness of the design. Full article
(This article belongs to the Special Issue Electromagnetic Actuators)
Show Figures

Figure 1

20 pages, 6241 KiB  
Article
Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests
by Artur Jaworski, Hubert Kuszewski, Krzysztof Lew, Paweł Wojewoda, Krzysztof Balawender, Paweł Woś, Rafał Longwic and Sergii Boichenko
Energies 2023, 16(15), 5723; https://doi.org/10.3390/en16155723 - 31 Jul 2023
Cited by 9 | Viewed by 2002
Abstract
Differences between the results obtained in laboratory and road tests of vehicles depend on a number of factors. Among the most important of these are driving cycle and road load. These parameters also affect the hybrid drive control, including the combustion engine operation [...] Read more.
Differences between the results obtained in laboratory and road tests of vehicles depend on a number of factors. Among the most important of these are driving cycle and road load. These parameters also affect the hybrid drive control, including the combustion engine operation or driving in electric mode. In most studies, tests carried out on chassis dynamometers concern type approval cycles (NEDC—New European Driving Cycle, WLTC—World-wide harmonized Light duty Test Cycle, FTP— Federal Test Procedure), which differ from real on-road tests. Consequently, the different driving cycles do not allow for results similar to those obtained during on-road driving, especially as the actual cycles on the road are unrepeatable. It is also important to determine the effect of the motion resistance function adopted for chassis dynamometer tests on exhaust emissions and fuel consumption. For this purpose, the authors tested a hybrid car under road and laboratory conditions for the same driving cycle. The analysis was conducted for an example urban road cycle in Rzeszow (URRC). The purpose of the study was to determine the differences in the results of gaseous emissions (THC, CO, CO2, NOx) and fuel consumption (energy) of a hybrid car under road conditions, with the results of tests conducted on a chassis dynamometer, for the same cycle and three functions of resistance. Full article
(This article belongs to the Special Issue New Trends in Hybrid Electric Vehicles)
Show Figures

Figure 1

13 pages, 3265 KiB  
Article
Evaluating the Measurement Uncertainty of On-Road NOx Using a Portable Emission Measurement System (PEMS) Based on Real Testing Data in China
by Sheng Su, Pan Hou, Xin Wang, Liqun Lyu, Yang Ge, Tao Lyu, Yitu Lai, Wanyou Luo and Yachao Wang
Atmosphere 2023, 14(4), 702; https://doi.org/10.3390/atmos14040702 - 11 Apr 2023
Cited by 7 | Viewed by 2625
Abstract
An evaluation of the measurement uncertainty of on-road NOx emissions using portable emission measurement system (PEMS) based on real local testing data collected in China was carried out as per the type B method defined in the EN 17507 standard. The aim of [...] Read more.
An evaluation of the measurement uncertainty of on-road NOx emissions using portable emission measurement system (PEMS) based on real local testing data collected in China was carried out as per the type B method defined in the EN 17507 standard. The aim of this work was to quantify the “absolute” measurement uncertainty of PEMSs, which excluded “PEMS relative to laboratory constant volume sampler (CVS)” uncertainty from the calculation of on-road NOx measurement uncertainty using PEMSs. PEMS instruments from three mainstream manufacturers were employed. The zero drift of the NOx analyzers was evaluated periodically during the real driving emissions (RDE) test, and it was noticed that there was neither a linear nor step model of zero drift, with no correlation with the boundary conditions or measurement principle. Additionally, from the 256 valid RDE tests, the zero drift always ranged from 3.8 ppm to −3.8 ppm, and more than 95% of the span drifts were within a range of 1.5%. Based on the laboratory testing of ten vehicles using the worldwide harmonized light-duty vehicle test cycle (WLTC), the type B uncertainty of PEMS NOx measurements corresponding to China-6a and China-6b limits was assessed. An uncertainty of 26.5% for China-6a was found (NOx limit = 60 mg/km over the WLTC), which is very close to the 22.5% from the EU evaluation results (NOx limit = 80 mg/km over the WLTC); the uncertainty with respect to China-6b was found to be 42.8% because the type-I limit was tuned down to 35 mg/km. This result indicates that, with the ever-tightening regulatory limits of vehicle NOx emissions, big challenges will be posed in terms of the reliability of PEMS measurements, which requires PEMS manufacturers to improve the performance of the instruments and policymakers to refine the test procedures and/or result calculation method to minimize the impacts. Full article
(This article belongs to the Special Issue Traffic Related Emission)
Show Figures

Figure 1

14 pages, 3289 KiB  
Article
Research on Multifractal Characteristics of Vehicle Driving Cycles
by Mengting Yuan, Wenguang Luo, Hongli Lan and Yongxin Qin
Machines 2023, 11(4), 423; https://doi.org/10.3390/machines11040423 - 26 Mar 2023
Cited by 3 | Viewed by 1887
Abstract
Vehicle driving cycles have complex characteristics, but there are few publicly reported methods for their quantitative characterization. This paper innovatively investigates their multifractal characteristics using the fractal theory to characterize their complex properties, laying the foundation for applications such as vehicle driving cycle [...] Read more.
Vehicle driving cycles have complex characteristics, but there are few publicly reported methods for their quantitative characterization. This paper innovatively investigates their multifractal characteristics using the fractal theory to characterize their complex properties, laying the foundation for applications such as vehicle driving cycle feature identification, vehicle energy management strategies (EMS), and so on. To explore the scale-invariance of the vehicle driving cycles, the four vehicle driving cycles were analyzed using the Multifractal Detrended Fluctuation Analysis (MF-DFA) method, three of which are standard vehicle test cycles: the New European Driving Cycle (NEDC), the World-wide harmonized Light-duty Test Cycle (WLTC) and the China Light-duty Vehicle Test Cycle for Passenger Car (CLTC-P), and the other is the Urban Road Real Driving Cycle (URRDC), which was obtained by analyzing and processing vehicle driving data collected in actual urban driving conditions. The fluctuation functions, the generalized Hurst exponents, the mass exponent spectra, the multifractal singularity spectra, and the multifractal characteristic parameters were calculated to verify the multifractal characteristics, and to quantify the fluctuation singularities of different driving cycles as the time series. The results show that the fluctuations of all four driving cycles have long-range anticorrelations and exhibit significant multifractal characteristics. The results can provide a basis for the analysis of the complexity of the vehicle driving cycles. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

13 pages, 965 KiB  
Article
Comparison of Gasoline Engine Exhaust Emissions of a Passenger Car through the WLTC and RDE Type Approval Tests
by Monika Andrych-Zalewska, Zdzislaw Chlopek, Jerzy Merkisz and Jacek Pielecha
Energies 2022, 15(21), 8157; https://doi.org/10.3390/en15218157 - 1 Nov 2022
Cited by 15 | Viewed by 2152
Abstract
The article presents a comparison of exhaust emission test results from a passenger car with a spark-ignition engine examined with the WLTC (Worldwide Harmonized Light-Duty Vehicles Test Cycle) test, which was carried out on a chassis dynamometer, and examined with a RDE (Real [...] Read more.
The article presents a comparison of exhaust emission test results from a passenger car with a spark-ignition engine examined with the WLTC (Worldwide Harmonized Light-Duty Vehicles Test Cycle) test, which was carried out on a chassis dynamometer, and examined with a RDE (Real Driving Emissions) test, which was conducted in real vehicle operating conditions. The exhaust emissions and the emitted particle number in the individual phases of both tests were determined. Large disparities were found in the results of the two tests. The cold start-up had a particularly significant impact on the test results in the case of the WLTC test. This impact is much greater than in the RDE test, mainly due to the fact that the RDE test is much longer than the WLTC test. Moreover, the engine load in the RDE test was greater than in the WLTC test. As a result of the conducted analyses, it was postulated that the research should be continued in stochastic conditions for the vehicle speed function, e.g., in the implementation of the speed function determined for the real conditions of the vehicle operation. Full article
(This article belongs to the Special Issue Internal Combustion Engine: Research and Application)
Show Figures

Figure 1

41 pages, 11256 KiB  
Article
Modeling and Simulation of Extended-Range Electric Vehicle with Control Strategy to Assess Fuel Consumption and CO2 Emission for the Expected Driving Range
by Paweł Krawczyk, Artur Kopczyński and Jakub Lasocki
Energies 2022, 15(12), 4187; https://doi.org/10.3390/en15124187 - 7 Jun 2022
Cited by 9 | Viewed by 5935
Abstract
Extended-Range Electric Vehicles (EREVs) are intended to improve the range of battery electric vehicles and thus eliminate drivers’ concerns about running out of energy before reaching the desired destination. This paper gives an insight into EREV’s performance operating according to the proposed control [...] Read more.
Extended-Range Electric Vehicles (EREVs) are intended to improve the range of battery electric vehicles and thus eliminate drivers’ concerns about running out of energy before reaching the desired destination. This paper gives an insight into EREV’s performance operating according to the proposed control strategy over various driving cycles, including the Worldwide Harmonized Light-duty Test Cycle Class 3b (WLTC 3b), Federal Test Procedure (FTP-75), and China Light-Duty Vehicle Test Cycle (CLTC-P). Simulation runs were performed in Matlab-Simulink® for different cases of drive range, electricity mix, and vehicle mass. The control strategy goal was to aim at a specified value of battery state of charge at the targeted range value. The obtained test results included: pure electric drive range, acceleration times, EREV range tests, control strategy range errors, Range Extender (REX) utilization metric and distribution of its engagement instances, fuel consumption, total equivalent CO2 emission, powertrain efficiency, and specific energy consumption. The control strategy operated on average with a range error of −1.04% and a range mean square error of 2.13%. Fuel consumption (in range extension mode) varied between 1.37 dm3/100 km (FTP-75) and 6.85 dm3/100 km (WLTC 3b Extra-High 3). CO2eq emission was 95.3–244.2 g/km for Poland, 31.0–160.5 g/km for EU-27, and 1.2–147.6 g/km for Sweden. This paper is a valuable source of information for scientists and engineers seeking to learn the advantages and shortcomings of EREV drives with a proposed control strategy, based on various sets of results. Full article
(This article belongs to the Special Issue Frontiers in Hybrid Vehicles)
Show Figures

Figure 1

12 pages, 2615 KiB  
Article
NH3 and CO Emissions from Fifteen Euro 6d and Euro 6d-TEMP Gasoline-Fuelled Vehicles
by Tommaso Selleri, Anastasios Melas, Pierre Bonnel and Ricardo Suarez-Bertoa
Catalysts 2022, 12(3), 245; https://doi.org/10.3390/catal12030245 - 22 Feb 2022
Cited by 16 | Viewed by 3255
Abstract
Ammonia (NH3) plays a key role in atmospheric chemistry and largely contributes to the PM2.5 measured in urban areas around the globe. For that reason, the National Emission Ceilings directive, Gothenburg Protocol under the United Nations Convention on Long-Range Transboundary [...] Read more.
Ammonia (NH3) plays a key role in atmospheric chemistry and largely contributes to the PM2.5 measured in urban areas around the globe. For that reason, the National Emission Ceilings directive, Gothenburg Protocol under the United Nations Convention on Long-Range Transboundary Air Pollution, and International Panel for Climate Change (IPCC) directive required a reduction of the emissions of NH3. Nonetheless, the European Environment Agency (EEA) indicated that road transport emissions of NH3 have increased. Moreover, recent studies reported that, not only vehicle NH3 emissions are greater than agricultural emissions in areas that gather > 40% of the U.S. population, but urban emissions of NH3 for passenger cars are underestimated by a factor of 17 in UK. In this study, fifteen gasoline-fuelled vehicles, meeting the most recent European emission standards, Euro 6d or Euro 6d-TEMP, were investigated in laboratory tests over the type-approval worldwide-harmonized light-duty vehicles test cycle (WLTC), at 23 °C and −7 °C, as well as over the motorway cycle Bundesautobahn (BAB). Results show that all the vehicles tested emitted NH3 over the different duty cycles, and presented emissions level that are comparable to those previously reported for Euro 4–Euro 6b vehicles. Finally, good agreement between the CO and the NH3 emissions was registered during the acceleration events, and, in general, a fair correlation, with R2 > 0.75, was obtained, when comparing the CO and NH3 emissions of the studied vehicles. Full article
Show Figures

Figure 1

Back to TopTop