Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio
Abstract
:1. Introduction
2. Materials and Methods
- is the measured instantaneous volumetric flow rate of diluted exhaust gas at time i (l/s);
- is the density of the pollutant (constant) (g/L) under standard conditions (273.15 K (0 °C) and 101.325 kPa);
- is the humidity correction factor applicable only to the mass emissions of NOx;
- is the measured instantaneous concentration of the pollutant in the diluted exhaust at time i (ppm);
- is the distance of the phase (km).
- is the relative uncertainty of the CVS diluted exhaust flow rate (%);
- is the relative uncertainty of the pollutant concentration (%);
- is the relative uncertainty of the distance (%).
- is the accuracy of the analyzer (%);
- is the span drift (%);
- is the analyzer noise (%);
- is the analyzer linearity (%);
- is the gas accuracy (%).
- is the actual air–fuel ratio;
- is the stoichiometric air–fuel ratio.
3. Results and Discussion
4. Conclusions
- The rapid increase in the equivalence ratio has a major impact on methane and nitrogen oxide emissions in an engine adapted to run on natural gas with a TWC catalytic converter.
- The methane emission rate for the test car was at very similar levels for the urban part of the NEDC cycle (UDC phase) and the low-speed urban part of the WLTC Class 3 cycle (Low).
- For the medium speed phase of the WLTC Class 3 cycle (Medium), the methane emission rate was lower than for the urban part of the UDC and for the Low.
- Despite higher CH4 emissions when the engine is powered by natural gas, the CO2eq equivalent emission value is, depending on the driving cycle, about 10–20% lower than when powered by gasoline.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFR | Actual Air–Fuel Ratio |
(AFR)stoich | Stoichiometric Air–Fuel Ratio |
CFC | Chlorofluorocarbon |
CH4 | Methane |
CI | Compression Ignition |
CLD | Chemiluminescense Detector |
CNG | Compressed Natural Gas |
CO | Carbon Monoxide |
CO2 | Carbon Dioxide |
CVS | Constant Volume Sampling |
EU | European Union |
FID | Flame Ionization Detector |
FTIR | Fourier Transform Infrared |
IC | Internal Combustion |
IRD | Infrared Detector |
HPDI | High-Pressure Direct Injection |
HVO | Hydrotreated Vegetable Oil |
LPG | Liquefied Petroleum Gas |
LNG | Liquefied Natural Gas |
NEDC | New European Driving Cycle |
NOx | Nitrogen Oxides |
N2O | Nitrous Oxide |
O3 | Ozone |
PAC | Petroleum Analyzer Company |
RDE | Real Driving Emissions |
SI | Spark Ignition |
THC | Total Hydrocarbons |
TWC | Three-Way Catalyst |
UDC | Urban Driving Cycle |
WLTC | Worldwide harmonized Light-duty vehicles Test Cycle |
λ | Equivalence ratio, defined as the actual air–fuel ratio to the stoichiometric air–fuel ratio |
Appendix A
Parameter | Unit | Average Value | Span |
---|---|---|---|
Research Octane Number (RON) | - | 96.00 | 0.00 |
Motor Octane Number (MON) | - | 85.55 | 0.10 |
Anti-Knock Index (AKI) | - | 90.75 | 0.10 |
Benzene | % (v/v) | 0.44 | 0.01 |
Methyl tert-Butyl Ether (MTBE) | % (v/v) | 0.52 | 0.01 |
Ethyl tert-Butyl Ether (ETBE) | % (v/v) | 2.81 | 0.02 |
Methyl tert-Amyl Ether (TAME) | % (v/v) | 0.00 | 0.00 |
Diisopropyl Ether (DIPE) | % (v/v) | 0.00 | 0.00 |
Ethanol | % (v/v) | 4.95 | 0.09 |
Methanol | % (v/v) | 0.00 | 0.00 |
tert-Buthyl Alcohol (TBA) | % (v/v) | 0.02 | 0.00 |
Olefins | % (v/v) | 11.40 | 0.20 |
Total Aromatics | % (v/v) | 29.25 | 0.30 |
C7 Aromatics | % (v/v) | 8.90 | 0.20 |
C8 Aromatics | % (v/v) | 10.70 | 0.20 |
Saturates | % (v/v) | 51.25 | 0.30 |
Methylcyclopentadienyl Manganese Tricarbonyl (MMT) | ppm (m/m) | 98.00 | 16.00 |
Manganese | ppm (m/m) | 25.00 | 4.00 |
Oxygen | % (m/m) | 2.26 | 0.03 |
Density at 15 °C | kg/m3 | 751.45 | 1.90 |
Volatility parameters | |||
Initial Boiling Point (IBP) | °C | 37.00 | 0.00 |
T10 | °C | 49.50 | 1.00 |
T50 | °C | 83.50 | 1.00 |
T90 | °C | 150.00 | 0.00 |
Final Boiling Point (FBP) | °C | 192.00 | 0.00 |
E70 | % (v/v) | 40.30 | 0.40 |
E100 | % (v/v) | 57.65 | 0.30 |
E150 | % (v/v) | 89.40 | 0.20 |
E180 | % (v/v) | 97.25 | 0.10 |
E200 | % (v/v) | 58.65 | 0.30 |
E300 | % (v/v) | 88.95 | 0.10 |
Driveability Index | - | 481.00 | 0.00 |
Vapor Lock Index | - | 1008.50 | 15.00 |
Dry Vapor Pressure Equivalent (DVPE) | kPa | 72.70 | 1.80 |
Parameter | Unit | Average Value | Span |
---|---|---|---|
Methane | % (v/v) | 97.059 | 0.880 |
Ethane | % (v/v) | 1.478 | 0.532 |
Propane | % (v/v) | 0.436 | 0.161 |
I-Butane | % (v/v) | 0.070 | 0.021 |
N-Butane | % (v/v) | 0.066 | 0.024 |
I-Pentane | % (v/v) | 0.016 | 0.004 |
N-Pentane | % (v/v) | 0.010 | 0.004 |
C6+ | % (v/v) | 0.011 | 0.005 |
N2 | % (v/v) | 0.628 | 0.078 |
CO2 | % (v/v) | 0.227 | 0.092 |
O2 | % (v/v) | 0.000 | 0.000 |
Heat of combustion | kWh/m3 | 11.213 | 0.074 |
Calorific value | kWh/m3 | 10.112 | 0.069 |
Density | kg/m3 | 0.742 | 0.008 |
Relative density | kg/m3 | 0.574 | 0.006 |
Upper Wobbe number | kWh/m3 | 14.801 | 0.036 |
Lower Wobbe number | kWh/m3 | 13.348 | 0.034 |
Hydrogen sulfide content | mg/m3 | 0.009 | 0.017 |
Total sulfur content | mg/m3 | 0.045 | 0.050 |
Mercury content | µg/m3 | 0.000 | 0.000 |
Mercaptan sulphur | mg/m3 | 0.018 | 0.030 |
Water dew-point temp. | °C | −9.564 | 1.701 |
References
- PCC Fifth Assessment Report. 2014. Global Warming Potential Values. Available online: https://ghgprotocol.org/sites/default/files/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_0.pdf (accessed on 26 March 2024).
- Available online: https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2030-climate-targets_en (accessed on 26 March 2024).
- Jaworski, A.; Mądziel, M.; Kuszewski, H. Sustainable Public Transport Strategies—Decomposition of the Bus Fleet and Its Influence on the Decrease in Greenhouse Gas Emissions. Energies 2022, 15, 2238. [Google Scholar] [CrossRef]
- Pielecha, J.; Skobiej, K.; Kubiak, P.; Wozniak, M.; Siczek, K. Exhaust Emissions from Plug-in and HEV Vehicles in Type-Approval Tests and Real Driving Cycles. Energies 2022, 15, 2423. [Google Scholar] [CrossRef]
- Bieniek, A.; Graba, M.; Mamala, J.; Prażnowski, K.; Hennek, K. Energy consumption of a passenger car with a hybrid powertrain in real traffic conditions. Combust. Engines 2022, 191, 15–22. [Google Scholar] [CrossRef]
- Sitnik, L.J. Emissions of e-mobility. Combust. Engines 2019, 178, 135–139. [Google Scholar] [CrossRef]
- Andrych-Zalewska, M.; Sitnik, L.; Sroka, Z.; Mihaylov, V. Fuel with a higher content of bio components in greenhouse effect aspects. Combust. Engines 2023, 192, 36–42. [Google Scholar] [CrossRef]
- Longwic, R.; Sander, P.; Zdziennicka, A.; Szymczyk, K.; Jańczuk, B. Combustion Process of Canola Oil and n-Hexane Mixtures in Dynamic Diesel Engine Operating Conditions. Appl. Sci. 2020, 10, 80. [Google Scholar] [CrossRef]
- Tutak, W.; Jamrozik, A.; Grab-Rogaliński, K. Co-Combustion of Hydrogen with Diesel and Biodiesel (RME) in a Dual-Fuel Compression-Ignition Engine. Energies 2023, 16, 4892. [Google Scholar] [CrossRef]
- Stelmasiak, Z.; Larisch, J.; Pietras, D. Selection of an algorithms controlling operation of supercharged compression ignition engine with additional fueling with CNG gas. Combust. Engines 2017, 170, 42–48. [Google Scholar] [CrossRef]
- Toema, M.A. Physics-Based Characterization of Lambda Sensor Output to Control Emissions from Natural Gas Fueled Engines. Ph.D. Thesis, Department of Mechanical and Nuclear Engineering, College of Engineering, Kansas State University, Manhattan, Kansas, 2010. Available online: https://core.ac.uk/download/pdf/5170501.pdf (accessed on 26 March 2024).
- Huonder, A.; Olsen, D. Methane Emission Reduction Technologies for Natural Gas Engines: A Review. Energies 2023, 16, 7054. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Woodburn, J.; Szczotka, A. An assessment of regulated emissions and CO2 emissions from a European light-duty CNG-fueled vehicle in the context of Euro 6 emissions regulations. Appl. Energy 2014, 117, 134–141. [Google Scholar] [CrossRef]
- Posada, F. CNG Bus Emissions Roadmap: From Euro III to Euro VI. The International Council on Clean Transportation. 2009. Available online: http://theicct.org/sites/default/files/publications/CNGbuses_dec09.pdf (accessed on 26 March 2024).
- Abu Bakar, R.; Semin; Bakar, R.A. A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines. Am. J. Eng. Appl. Sci. 2008, 1, 302–311. [Google Scholar]
- Merkisz, J.; Dobrzyński, M.; Kozak, M.; Lijewski, P.; Fuć, P. Environmental Aspects of the Use of CNG in Public Urban Transport; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef]
- Pan, D.; Tao, L.; Sun, K.; Golston, L.M.; Miller, D.J.; Zhu, T.; Qin, Y.; Zhang, Y.; Mauzerall, D.L.; Zondlo, M.A. Methane emissions from natural gas vehicles in China. Nat. Commun. 2020, 11, 4588. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, S.; Prasad, R.; Mishra, A.; Kalam, A.; Yadav, P. Current scenario of CNG vehicular pollution and their possible abatement technologies: An overview. Environ. Sci. Pollut. Res. 2020, 27, 39977–40000. [Google Scholar] [CrossRef]
- Yang, W.; Kim, M.-Y.; Polo-Garzon, F.; Gong, J.; Jiang, X.; Huang, Z.; Chi, M.; Yu, X.; Wang, X.; Guo, Y.; et al. CH4 combustion over a commercial Pd/CeO2-ZrO2 three-way catalyst: Impact of thermal aging and sulfur exposure. Chem. Eng. J. 2023, 451, 138930. [Google Scholar] [CrossRef]
- Clark, N.N.; McKain, D.L.; Johnson, D.R.; Wayne, W.S.; Li, H.; Akkerman, V.; Sandoval, C.; Covington, A.N.; Mongold, R.A.; Hailer, J.T.; et al. Pump-to-Wheels Methane Emissions from the Heavy-Duty Transportation Sector. Environ. Sci. Technol. 2017, 51, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, A.; Lejda, K.; Bilski, M. Effect of driving resistances on energy demand and exhaust emission in motor vehicles. Combust. Engines 2022, 189, 60–67. [Google Scholar] [CrossRef]
- Grigoratos, T.; Fontaras, G.; Giechaskiel, B.; Martini, G. Assessment of the Heavy-Duty Natural Gas Technology; European Commission Joint Research Centre; Institute for Energy and Transport; Publications Office of the European Union: Luxembourg, 2015. [Google Scholar]
- Lejda, K.; Jaworski, A.; Mądziel, M.; Balawender, K.; Ustrzycki, A.; Savostin-Kosiak, D. Assessment of Petrol and Natural Gas Vehicle Carbon Oxides Emissions in the Laboratory and On-Road Tests. Energies 2021, 14, 1631. [Google Scholar] [CrossRef]
- Tripathi, G.; Sharma, P.; Dhar, A. Effect of methane augmentations on engine performance and emissions. Alex. Eng. J. 2020, 59, 429–439. [Google Scholar] [CrossRef]
- Karczewski, M.; Szamrej, G.; Chojnowski, J. Experimental Assessment of the Impact of Replacing Diesel Fuel with CNG on the Concentration of Harmful Substances in Exhaust Gases in a Dual Fuel Diesel Engine. Energies 2022, 15, 4563. [Google Scholar] [CrossRef]
- Zarrinkolah, M.T.; Hosseini, V. Methane slip reduction of conventional dual-fuel natural gas diesel engine using direct fuel injection management and alternative combustion modes. Fuel 2023, 331, 125775. [Google Scholar] [CrossRef]
- Schramm, J. (Ed.) IEA AMF Annex 51: Methane Emission Control. IEA Advanced Motor Fuels. 2019. Available online: https://orbit.dtu.dk/en/publications/iea-amf-annex-51-methane-emission-control (accessed on 26 March 2024).
- Rašić, D.; Oprešnik, S.R.; Seljak, T.; Vihar, R.; Baškovič, U.Ž.; Wechtersbach, T.; Katrašnik, T. RDE-based assessment of a factory bi-fuel CNG/gasoline light-duty vehicle. Atmos. Environ. 2017, 167, 523–541. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A. The potential of current European light duty CNG-fuelled vehicles to meet Euro 6 requirements. Combust. Engines 2012, 151, 20–33. [Google Scholar] [CrossRef]
- Smigins, R. Ecological impact of CNG/gasoline bi-fuelled vehicles. Engineering for Rural Development. In Book Series: Engineering for Rural Development, Proceedings of the 16th International Scientific Conference: Engineering for Rural Development, Jelgava, Latvia, 24–26 May 2017; Faculty of Engineering and Information Technologies, Latvia University of Life Sciences and Technologies: Jelgava, Latvia, 2017. [Google Scholar] [CrossRef]
- AVL AMA i60, CVS i60 Exhaust Measurement System Specification; AVL List GmbH: Graz, Austria, 2013.
- Jaworski, A.; Kuszewski, H.; Ustrzycki, A.; Balawender, K.; Lejda, K.; Woś, P. Analysis of the repeatability of the exhaust pollutants emission research results for cold and hot starts under controlled driving cycle conditions. Environ. Sci. Pollut. Res. 2018, 25, 17862–17877. [Google Scholar] [CrossRef] [PubMed]
- Giechaskiel, B.; Clairotte, M.; Valverde-Morales, V.; Bonnel, P.; Kregar, Z.; Franco, V.; Dilara, P. Framework for the assessment of PEMS (Portable Emissions Measuremet Systems) uncertainty. Environ. Res. 2018, 166, 251–260. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EU) 2017/1151 of 1 June 2017 supplementing Regulation (EC) No. 715/2007 of the European Parliament and of the Council on type-approval of motor vehicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and maintenance information, amending Directive 2007/46/EC of the European Parliament and of the Council, Commission Regulation (EC) No. 692/2008 and Commission Regulation (EU) No. 1230/2012 and repealing Commission Regulation (EC) No. 692/2008. Off. J. Eur. Union 2017, L175, 1–643. [Google Scholar]
- Giechaskiel, B.; Lähde, T.; Clairotte, M.; Suarez-Bertoa, R.; Valverde, V.; Melas, A.D.; Selleri, T.; Bonnel, P. Emissions of Euro 6 Mono- and Bi-Fuel Gas Vehicles. Catalysts 2022, 12, 651. [Google Scholar] [CrossRef]
- Lee, S.; Yi, U.H.; Jang, H.; Park, C.; Kim, C. Evaluation of emission characteristics of a stoichiometric natural gas engine fueled with compressed natural gas and biomethane. Energy 2021, 220, 119766. [Google Scholar] [CrossRef]
- Ferri, D.; Elsener, M.; Kröcher, O. Methane oxidation over a honeycomb Pd-only three-way catalyst under static and periodic operation. Appl. Catal. B Environ. 2018, 220, 67–77. [Google Scholar] [CrossRef]
Parameter | Data |
---|---|
Year of production | 2001 |
Emission standard | Euro 3 |
Engine displacement (cm3) | 2435 |
Compression ratio | 10:1 |
Engine working principle | Positive ignition/4 stroke |
Fuel type | Petrol/CNG |
Maximum net power (kW)/at (rpm) | 103/4500 |
Maximum engine torque (Nm)/at (rpm) | 220/3750 |
Odometer (km × 1000) | 275 |
Transmission type/number of gears | Manual/5 |
Fuel system—petrol | Multi-point indirect injection |
Fuel system—CNG | Multi-point gaseous-phase indirect injection |
After-treatment system | TWC |
Kerb weight (kg) | 1660 |
Purpose | Instrument Data |
---|---|
Chassis dynamometer | AVL-Zöllner, ROADSIM 48″, single roller; rated power: 150 kW; maximum speed: 200 km/h Dyno load force: F0 = 7.9 N; F1 = 0 N/(km/h); F2 = 0.0536 N/(km/h)2 Maximum continuous tractive force: 5987 N Maximum instantaneous tractive force: 10,096 N Tractive Force measurement error: ≤0.1% Speed measurement error: ≤0.02 km/h Distance measurement error: 0.001%/m |
Automation system | iGem AVL |
Constant volume sampling system | AVL CVS i60 |
Exhaust emission analyzer | AVL AMA i60 |
Parameter/Analyser | FID i60 LCD | IRD i60 CO2 L | IRD i60 L | CLD i60 LD |
---|---|---|---|---|
Measured components | THC and CH4 | CO2 | CO | NO and NOX |
Noise | ≤0.5% of full-scale range | ≤1% of full-scale range | ≤1% of full-scale range | ≤1% of full-scale range |
Drift | ≤1% of full-scale range/24 h | ≤1% of full-scale range/24 h | ≤1% of full-scale range/24 h | ≤1% of full-scale range/24 h |
Reproducibility | ≤0.5% of full-scale range | ≤0.5% of full-scale range | ≤0.5% of full-scale range | ≤0.5% of full-scale range |
Linearity | ≤2% of measured value (10–100% of full-scale range) ≤1% of full-scale range whichever is smaller | ≤2% of measured value (10–100% of full-scale range) ≤1% of full-scale range whichever is smaller | ≤2% of measured value (10–100% of full-scale range) ≤1% of full-scale range whichever is smaller | ≤2% of measured value (10–100% of full-scale range) ≤1% of full-scale range whichever is smaller |
Parameter | Unit | UDC | WLTC Class 3 Low | WLTC Class 3 Medium |
---|---|---|---|---|
Distance | km | 3.976 | 3.095 | 4.756 |
Total time | s | 780 | 589 | 433 |
Idle (standing) time | s | 228 | 156 | 48 |
Average speed (incl. stops) | km/h | 18.35 | 18.9 | 39.5 |
Average driving speed (excl. stops) | km/h | 25.93 | 25.7 | 44.5 |
Maximum speed | km/h | 50 | 56.5 | 76.6 |
Maximum acceleration | m/s2 | 1.042 | 1.47 | 1.57 |
Fuel | Test | Component | UDC | WLTC Class 3 Low | WLTC Class 3 Medium |
---|---|---|---|---|---|
Gasoline | 1 | CO2 | 274.64 | 252.65 | 202.70 |
CO | 3.36 | 3.00 | 2.27 | ||
NOx | 0.76 | 0.72 | 0.69 | ||
THC | 0.38 | 0.13 | 0.04 | ||
CH4 | 0.062 | 0.026 | 0.061 | ||
2 | CO2 | 273.77 | 250.00 | 206.35 | |
CO | 1.57 | 3.42 | 2.33 | ||
NOx | 0.71 | 0.51 | 0.55 | ||
THC | 0.10 | 0.05 | 0.03 | ||
CH4 | 0.011 | 0.006 | 0.003 | ||
Natural gas | 1 | CO2 | 206.49 | 197.97 | 162.59 |
CO | 1.058 | 0.716 | 0.392 | ||
NOx | 2.139 | 2.266 | 2.886 | ||
THC | 1.423 | 1.199 | 0.515 | ||
CH4 | 1.309 | 0.902 | 0.390 | ||
2 | CO2 | 208.94 | 192.96 | 164.82 | |
CO | 0.556 | 0.849 | 0.678 | ||
NOx | 1.799 | 2.505 | 2.737 | ||
THC | 1.162 | 2.488 | 0.635 | ||
CH4 | 0.859 | 1.873 | 0.482 |
Greenhouse Gas | GWP Values for 100-Year Horizon | ||
---|---|---|---|
Second Assessment Report | Fourth Assessment Report | Fifth Assessment Report | |
CO2 | 1 | 1 | 1 |
CH4 | 21 | 25 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworski, A.; Kuszewski, H.; Balawender, K.; Woś, P.; Lew, K.; Jaremcio, M. Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio. Energies 2024, 17, 2095. https://doi.org/10.3390/en17092095
Jaworski A, Kuszewski H, Balawender K, Woś P, Lew K, Jaremcio M. Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio. Energies. 2024; 17(9):2095. https://doi.org/10.3390/en17092095
Chicago/Turabian StyleJaworski, Artur, Hubert Kuszewski, Krzysztof Balawender, Paweł Woś, Krzysztof Lew, and Mirosław Jaremcio. 2024. "Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio" Energies 17, no. 9: 2095. https://doi.org/10.3390/en17092095
APA StyleJaworski, A., Kuszewski, H., Balawender, K., Woś, P., Lew, K., & Jaremcio, M. (2024). Assessment of CH4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio. Energies, 17(9), 2095. https://doi.org/10.3390/en17092095