The Assessment of PM2.5 and PM10 Immission in Atmospheric Air in a Climate Chamber during Tests of an Electric Car on a Chassis Dynamometer
Abstract
:1. Introduction
- Brake dynamometer: This laboratory device allows the simulation of brake operation under controlled conditions. With it, brake pad particle emissions can be measured during various braking scenarios [17].
- Computer simulations: Modern technologies allow the modeling and simulation of brake pad dust emissions, which can contribute to a better understanding of the process and potential environmental impacts [21].
- Airborne particle monitoring: Some studies use air quality monitors to measure the concentration of particles in the air near roads, which can provide some idea of brake pad dust emissions [22].
2. Materials and Methods
3. Results and Discussion
3.1. Results of Dust Pollution Immission Measurements
3.2. Relation of PM10 Concentration to Vehicle Acceleration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AVL | Anstalt für Verbrennungskraftmaschinen List |
BEV | Battery electric vehicle |
CS1 | Constant speed segment 1 |
CS2 | Constant speed segment 2 |
DS1 | Dynamic speed segment 1 |
DS2 | Dynamic speed segment 2 |
PM2.5 | Atmospheric particles with aerodynamic diameter below 2.5 µm |
PM10 | Atmospheric particles with aerodynamic diameter below 10 µm |
TRWP | Tire road wear particle |
WLTP | Worldwide Harmonized Light Vehicle Test Procedure |
WLTC | Worldwide harmonized Light duty Test Cycle |
References
- Li, Y.; Muñoz-Ibañéz, F.; Maldonado-Alcaíno, A.; Jack, D.; Yan, B.; Xu, L.; Acuña, M.; Leiva-Guzman, M.; Valdés, A.; Cáceres, D. Cancer Burden Disease Attributable to PM2.5 and Health Risk by PM2.5-bound Toxic Species in Two Urban Chilean Municipalities. Aerosol Air Qual. Res. 2022, 22, 220247. [Google Scholar] [CrossRef]
- Jakovljević, I.; Smoljo, I.; Sever Štrukil, Z.; Pehnec, G. Carcinogenic Activity and Risk Assessment of PAHs in Ambient Air: PM10 Particle Fraction and Bulk Deposition. Toxics 2023, 11, 228. [Google Scholar] [CrossRef]
- Krzeszowiak, J.; Pawlas, K. Particulate matter (PM2.5 and PM10), properties and epidemiological significance in respiratory and circulatory diseases. A review of the literature on the effects of short- and long-term exposure. Med. Srod. 2018, 21, 7–13. [Google Scholar]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study. Lancet 2015, 389, 1907–1918. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Szczotka, A.; Woodburn, J. Exhaust emissions of particulate matter from light-duty vehicles—An overview and the current situation. Combust. Engines 2017, 171, 227–238. [Google Scholar] [CrossRef]
- Merkisz, J.; Kozak, M.; Molik, P.; Nijak, D.; Andrzejewski, M.; Nowak, M.; Rymaniak, Ł.; Ziółkowski, A. The analysis of the emission level from a heavy-duty truck in city traffic. Combust. Engines 2012, 150, 80–88. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Joshi, A.; Ntziachristos, L.; Dilara, P. European Regulatory Framework and Particulate Matter Emissions of Gasoline Light-Duty Vehicles: A Review. Catalysts 2019, 9, 586. [Google Scholar] [CrossRef]
- Woo, S.-H.; Jang, H.; Lee, S.-B.; Lee, S. Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: An experimental analysis. Sci. Total Environ. 2022, 842, 156961. [Google Scholar] [CrossRef]
- Kovochich, M.; Parker, J.A.; Oh, S.C.; Lee, J.P.; Wagner, S.; Reemtsma, T.; Unice, K.M. Characterization of Individual Tire and Road Wear Particles in Environmental Road Dust, Tunnel Dust, and Sediment. Environ. Sci. Technol. Lett. 2021, 8, 1057–1064. [Google Scholar] [CrossRef]
- Kole, P.J.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Wang, J.; Zeng, H. VAR-tree model based spatio-temporal characterization and prediction of O3 concentration in China. Ecotoxicol. Environ. Saf. 2023, 257, 114960. [Google Scholar] [CrossRef]
- Savickas, D.; Steponavičius, D.; Domeika, R. Analysis of Telematics Data of Combine Harvesters and Evaluation of Potential to Reduce Environmental Pollution. Atmosphere 2021, 12, 674. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Zeng, H. Multi-objective optimal dispatch strategy for power systems with spatio-temporal distribution of air pollutants. Sustain. Cities Soc. 2023, 98, 104801. [Google Scholar] [CrossRef]
- Jaworski, A.; Kuszewski, H.; Lew, K.; Wojewoda, P.; Balawender, K.; Woś, P.; Longwic, R.; Boichenko, S. Assessment of the Effect of Road Load on Energy Consumption and Exhaust Emissions of a Hybrid Vehicle in an Urban Road Driving Cycle—Comparison of Road and Chassis Dynamometer Tests. Energies 2023, 16, 5723. [Google Scholar] [CrossRef]
- Council of the European Union. Regulation on Type-Approval of Motor Vehicles and Engines and of Systems, Components and Separate Technical Units Intended for Such Vehicles, with Respect to Their Emissions and Battery Durability (Euro 7); Council of the European Union: Brussels, Belgium, 2023; Available online: https://data.consilium.europa.eu/doc/document/ST-16960-2023-REV-1/en/pdf (accessed on 16 February 2023).
- Guo, D.; Wei, H.; Guo, Y.; Wang, C.; Yin, Z. Non-exhaust particulate matter emission from vehicles: A review. E3S Web Conf. 2021, 268, 01015. [Google Scholar] [CrossRef]
- Hesse, D.; Feißel, T.; Kunze, M.; Bachmann, E.; Bachmann, T.; Gramstat, S. Comparison of Methods for Sampling Particulate Emissions from Tires under Different Test Environments. Atmosphere 2022, 13, 1262. [Google Scholar] [CrossRef]
- Farwick zum Hagen, F.H.; Mathissen, M.; Grabiec, T.; Hennicke, T.; Rettig, M.; Grochowicz, J.; Vogt, R.; Benter, T. On-road vehicle measurements of brake wear particle emissions. Atmos. Environ. 2019, 217, 116943. [Google Scholar] [CrossRef]
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prévôt, A.S.H.; Baltensperger, U.; Buchmann, B.; Gehrig, R. PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos. Environ. 2010, 44, 2330–2340. [Google Scholar] [CrossRef]
- Andersson, J.; Campbell, M.; Marshall, I.; Kramer, L.; Norris, J. Measurement of Emissions from Brake and Tyre Wear; Final Report—Phase 1. T0018–TETI0037; Ricardo Energy & Environment: Harwell, UK, 2023. [Google Scholar]
- Feißel, T.; Büchner, F.; Kunze, M.; Rost, J.; Ivanov, V.; Augsburg, K.; Hesse, D.; Gramstat, S. Methodology for Virtual Prediction of Vehicle-Related Particle Emissions and Their Influence on Ambient PM10 in an Urban Environment. Atmosphere 2022, 13, 1924. [Google Scholar] [CrossRef]
- Kunze, M.; Feißel, T.; Ivanov, V.; Bachmann, T.; Hesse, D.; Gramstat, S. Analysis of TRWP Particle Distribution in Urban and Suburban Landscapes, Connecting Real Road Measurements with Particle Distribution Simulation. Atmosphere 2022, 13, 1204. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Ge, Y.; Wen, Y.; Luo, J.; Yin, D.; Wang, C.; Wang, C. Emission Characteristics of Tyre Wear Particles from Light-Duty Vehicles. Atmosphere 2023, 14, 724. [Google Scholar] [CrossRef]
- Bondorf, L.; Köhler, L.; Grein, T.; Epple, F.; Philipps, F.; Aigner, M.; Schripp, T. Airborne Brake Wear Emissions from a Battery Electric Vehicle. Atmosphere 2023, 14, 488. [Google Scholar] [CrossRef]
- Jayashree, P.; Sinha, A.; Gialanella, S.; Straffelini, G. Dry Sliding Behavior and Particulate Emissions of a SiC-graphite Composite Friction Material Paired with HVOF-Coated Counterface. Atmosphere 2022, 13, 296. [Google Scholar] [CrossRef]
- Tonegawa, Y.; Sasaki, S. Development of Tire-Wear Particle Emission Measurements for Passenger Vehicles. Emiss. Control Sci. Technol. 2021, 7, 56–62. [Google Scholar] [CrossRef]
- Beddows, D.C.S.; Harrison, R.M.; Gonet, T.; Maher, B.A.; Odling, N. Measurement of road traffic brake and tyre dust emissions using both particle composition and size distribution data. Environ. Pollut. 2023, 331, 121830. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Deng, S.; Li, G.; Li, J.; Xu, K.; Lu, Z. Spatial Distribution of Primary and Secondary PM2.5 Concentrations Emitted by Vehicles in the Guanzhong Plain, China. Atmosphere 2022, 13, 347. [Google Scholar] [CrossRef]
- Grigoratos, T.; Gustafsson, M.; Eriksson, O.; Martini, G. Experimental investigation of tread wear and particle emission from tyres with different treadwear marking. Atmos. Environ. 2018, 182, 200–212. [Google Scholar] [CrossRef]
- Beji, A.; Deboudt, K.; Khardi, S.; Muresan, B.; Flament, P.; Fourmentin, M.; Lumière, L. Non-exhaust particle emissions under various driving conditions: Implications for sustainable mobility. Transp. Res. Part D Transp. Environ. 2020, 81, 102290. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe 2022; Report No. 05/2022; EEA: Copenhagen, Denmark, 2022. [Google Scholar]
- Schläfle, S.; Unrau, H.-J.; Gauterin, F. Influence of Longitudinal and Lateral Forces on the Emission of Tire–Road Particulate Matter and Its Size Distribution. Atmosphere 2023, 14, 1780. [Google Scholar] [CrossRef]
- Kühlwein, J. The Impact of Official Versus Real-World Road Loads on CO2 Emissions and Fuel Consumption of European Passenger Cars. The International Council on a Clean Transportation White Paper. 2016. Available online: https://www.theicct.org/sites/default/files/publications/ICCT_Coastdowns-EU_201605.pdf (accessed on 12 April 2023).
- Jaworski, A.; Mądziel, M.; Kuszewski, H.; Lejda, K.; Balawender, K.; Jaremcio, M.; Jakubowski, M.; Woś, P.; Lew, K. The Impact of Driving Resistances on the Emission of Exhaust Pollutants from Vehicles with the Spark Ignition Engine Fuelled by Petrol and LPG; SAE Technical Paper No. 2020-01-2206; SAE: Warrendale, PA, USA, 2020. [Google Scholar]
- Jaworski, A.; Mądziel, M.; Lew, K.; Campisi, T.; Woś, P.; Kuszewski, H.; Wojewoda, P.; Ustrzycki, A.; Balawender, K.; Jakubowski, M. Evaluation of the Effect of Chassis Dynamometer Load Setting on CO2 Emissions and Energy Demand of a Full Hybrid Vehicle. Energies 2022, 15, 122. [Google Scholar] [CrossRef]
- Oroumiyeh, F.; Zhu, Y. Brake and tire particles measured from on-road vehicles: Effects of vehicle mass and braking intensity. Atmos. Environ. X 2021, 12, 100121. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Grigoratos, T.; Mathissen, M.; Quik, J.; Tromp, P.; Gustafsson, M.; Franco, V.; Dilara, P. Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution. Sustainability 2024, 16, 522. [Google Scholar] [CrossRef]
- Perricone, G.; Wahlstrom, J.; Olofsson, U. Towards a test stand for standardized measurements of the brake emissions. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2016, 230, 1521–1528. [Google Scholar] [CrossRef]
- Cunha-Lopes, I.; Alves, C.A.; Rienda, I.C.; Lucarelli, F.; Diapouli, E.; Almeida, S.M. Characterisation of vehicle emissions in a road tunnel in Lisbon. Atmos. Res. 2023, 295, 106995. [Google Scholar] [CrossRef]
- Hagino, H.; Oyama, M.; Sasaki, S. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles. Atmos. Environ. 2016, 131, 269–278. [Google Scholar] [CrossRef]
Parameter | Data |
---|---|
Year of production | 2015 |
Maximum net power (kW) | 107 |
Total torque (Nm) | 250 |
Odometer (km × 1000) | 34.3 |
Drive Transmission type | Front One-speed automatic 44H |
Electric motor (traction) | Synchronous with permanent magnet |
Maximum power of the electric motor (kW) | 45 |
Maximum torque of the electric motor (Nm) | 169 |
Traction battery | Lithium-ion Nominal Capacity 23.0 kWh |
Test weight (kg) | 1860 |
Tires: Triangle SporteX TH201 for summer season | 215/55 R17 94Y |
Tire tread depth (mm) | Front left 6.5 Front right 6.6 |
Tire pressure (bar) | 2.5 |
Tires date of production | 44th week of 2021 |
Tire mileage (km) | 4600 |
Standard front-ventilated brake discs | 287 × 25 mm |
Brake pads | FORD standard |
Road load force | |
F0 (N) | 260.365 |
F1 (N/km/h) | 0 |
F2 (N/(km/h)2) | 0.05064 |
Analyzed Parameter | Value |
---|---|
Type of PM2.5 Sensor | Laser |
Resolution | ±1 µg/m3 |
Uncertainty | ±10 µg/m3 |
Measuring range | 1–500 µg/m3 |
Type of PM10 Sensor | Laser |
Resolution | ±1 µg/m3 |
Uncertainty | ±10 µg/m3 |
Measuring range | 1–500 µg/m3 |
Analyzed Parameter | Value |
---|---|
Type of Particle Sensors | Laser |
Channel | 0.3, 0.5, 1.0,2.5, 5.0, 10 μm |
Flow Rate | 0.1ft3 (2.83 L/min) controlled by internal pump |
Mass Concentration Channel | PM2.5: 0~500 μg/m³; PM10: 0~500 μg/m³ |
Uncertainty | ±10 μg/m³ |
Counting Efficiency | 50% @ 0.3 μm; 100% for particles > 0.45 μm |
Count Modes | Cumulative, Differential, Concentration |
Analyzed Parameter | Value |
---|---|
Response Type | Lowpass |
Design Method | FIR Equiripple |
Frequency Specifications | |
Units | Hz |
Fs | 1 |
Fpass | 0.01 |
Magnitude Specifications | |
Units | Linear |
Dpass | 0.05 |
Dstop | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworski, A.; Balawender, K.; Kuszewski, H.; Jaremcio, M. The Assessment of PM2.5 and PM10 Immission in Atmospheric Air in a Climate Chamber during Tests of an Electric Car on a Chassis Dynamometer. Atmosphere 2024, 15, 270. https://doi.org/10.3390/atmos15030270
Jaworski A, Balawender K, Kuszewski H, Jaremcio M. The Assessment of PM2.5 and PM10 Immission in Atmospheric Air in a Climate Chamber during Tests of an Electric Car on a Chassis Dynamometer. Atmosphere. 2024; 15(3):270. https://doi.org/10.3390/atmos15030270
Chicago/Turabian StyleJaworski, Artur, Krzysztof Balawender, Hubert Kuszewski, and Mirosław Jaremcio. 2024. "The Assessment of PM2.5 and PM10 Immission in Atmospheric Air in a Climate Chamber during Tests of an Electric Car on a Chassis Dynamometer" Atmosphere 15, no. 3: 270. https://doi.org/10.3390/atmos15030270
APA StyleJaworski, A., Balawender, K., Kuszewski, H., & Jaremcio, M. (2024). The Assessment of PM2.5 and PM10 Immission in Atmospheric Air in a Climate Chamber during Tests of an Electric Car on a Chassis Dynamometer. Atmosphere, 15(3), 270. https://doi.org/10.3390/atmos15030270