Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (501)

Search Parameters:
Keywords = wood plastic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 415 KiB  
Review
Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends
by Paschalina Terzopoulou, Dimitris S. Achilias and Evangelia C. Vouvoudi
J. Compos. Sci. 2025, 9(8), 415; https://doi.org/10.3390/jcs9080415 - 4 Aug 2025
Viewed by 164
Abstract
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable [...] Read more.
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable polymers as matrix materials. The integration of waste wood particles into the production of WPCs addresses global environmental challenges, including plastic pollution and deforestation, by offering an alternative to conventional wood-based and petroleum-based products. Key topics covered in the review include raw material sources, fiber pre-treatments, compatibilizers, mechanical performance, water absorption behavior, thermal stability and end-use applications. Full article
Show Figures

Figure 1

19 pages, 5847 KiB  
Article
Parametric Analysis of Rammed Earth Walls in the Context of the Thermal Protection of Environmentally Friendly Buildings
by Piotr Kosiński, Wojciech Jabłoński and Krystian Patyna
Sustainability 2025, 17(15), 6886; https://doi.org/10.3390/su17156886 - 29 Jul 2025
Viewed by 285
Abstract
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response [...] Read more.
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response to the increasingly strict European Union (EU) regulations on carbon footprint, life cycle performance, and thermal efficiency. RE walls offer multiple benefits, including humidity regulation, thermal mass, plasticity, and structural strength. This study also draws attention to their often-overlooked ability to mitigate indoor overheating. To preserve these advantages while enhancing thermal performance, this study explores insulation strategies that maintain the vapor-permeable nature of RE walls. A parametric analysis using Delphin 6.1 software was conducted to simulate heat and moisture transfer in two main configurations: (a) a ventilated system insulated with mineral wool (MW), wood wool (WW), hemp shives (HS), and cellulose fiber (CF), protected by a jute mat wind barrier and finished with wooden cladding; (b) a closed system using MW and WW panels finished with lime plaster. In both cases, clay plaster was applied on the interior side. The results reveal distinct hygrothermal behavior among the insulation types and confirm the potential of natural, low-processed materials to support thermal comfort, moisture buffering, and the alignment with CE objectives in energy-efficient construction. Full article
Show Figures

Figure 1

36 pages, 7410 KiB  
Review
The Influence of Hydrogen Bonding in Wood and Its Modification Methods: A Review
by Ting Zhang, Yudong Hu, Yanyan Dong, Shaohua Jiang and Xiaoshuai Han
Polymers 2025, 17(15), 2064; https://doi.org/10.3390/polym17152064 - 29 Jul 2025
Viewed by 337
Abstract
Construction wood has a high economic value, and its construction waste also has multiple consumption values. Natural wood has many advantages, such as thermal, environmental, and esthetic properties; however, wood sourced from artificial fast-growing forests is found to be deficient in mechanical strength. [...] Read more.
Construction wood has a high economic value, and its construction waste also has multiple consumption values. Natural wood has many advantages, such as thermal, environmental, and esthetic properties; however, wood sourced from artificial fast-growing forests is found to be deficient in mechanical strength. This shortcoming makes it less competitive in certain applications, leading many markets to remain dominated by non-renewable materials. To address this issue, various modification methods have been explored, with a focus on enhancing the plasticity and strength of wood. Studies have shown that hydrogen bonds in the internal structure of wood have a significant impact on its operational performance. Whether it is organic modification, inorganic modification, or a combination thereof, these methods will lead to a change in the shape of the hydrogen bond network between the components of the wood or will affect the process of its breaking and recombination, while increasing the formation of hydrogen bonds and related molecular synergistic effects and improving the overall operational performance of the wood. These modification methods not only increase productivity and meet the needs of efficient use and sustainable environmental protection but also elevate the wood industry to a higher level of technological advancement. This paper reviews the role of hydrogen bonding in wood modification, summarizes the mechanisms by which organic, inorganic, and composite modification methods regulate hydrogen bond networks, discusses their impacts on wood mechanical properties, dimensional stability, and environmental sustainability, and provides an important resource for future research and development. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Polymeric Materials)
Show Figures

Figure 1

27 pages, 36926 KiB  
Article
Comparison of Additive Manufacturing and Injection Molding of Biocomposites Reinforced with Alkali-Treated Wood Flour Derived from Recycled Wooden Pallets
by Mehmet Demir, Nilgül Çetin and Nasır Narlıoğlu
Polymers 2025, 17(15), 2004; https://doi.org/10.3390/polym17152004 - 22 Jul 2025
Viewed by 392
Abstract
Biodegradable polymer composites offer promising alternatives to petroleum-based plastics, supporting the principles of a zero waste and circular economy. This study investigates the reinforcing potential of alkali-treated wood flour derived from recycled pine (Pinus brutia Ten.) and poplar (Populus alba L.) [...] Read more.
Biodegradable polymer composites offer promising alternatives to petroleum-based plastics, supporting the principles of a zero waste and circular economy. This study investigates the reinforcing potential of alkali-treated wood flour derived from recycled pine (Pinus brutia Ten.) and poplar (Populus alba L.) waste wooden pallets in poly(lactic acid) (PLA) biocomposites. Wood flour was initially recovered through grinding and screening during recycling, followed by alkali treatment via a green chemistry approach to enhance interfacial bonding with the PLA matrix. The impact of alkali concentration and two fabrication methods—additive manufacturing (AM) and injection molding (IM)—on the properties of developed biocomposite materials was assessed through mechanical, physical, morphological, and thermal analyses. IM samples outperformed AM counterparts, with the IM PLA containing 30 wt% wood flour (alkali-treated with 10% solution) showing the highest mechanical gains: tensile (+71.35%), flexural (+64.74%), and hardness (+2.62%) compared to untreated samples. Moreover, the AM sample with 10 wt% wood flour and 10% alkali treatment showed a 49.37% decrease in water absorption compared to the untreated sample, indicating improved hydrophobicity. Scanning electron microscopy confirmed that alkali treatment reduced void content and enhanced morphological uniformity, while thermal properties remained consistent across fabrication methods. This work introduces a green composite using non-toxic materials and treatments, facilitating eco-friendly production aligned with zero waste and circular economy principles throughout the manufacturing lifecycle. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 594 KiB  
Article
Influence of In Situ Polymerization on the Compressive Strength of Scots Pine (Pinus sylvestris L.) Recovered from Demolition Timber and Two Forest-Sourced Species: European Beech (Fagus sylvatica) and Black Alder (Alnus glutinosa)
by Emil Żmuda and Kamil Roman
Materials 2025, 18(15), 3439; https://doi.org/10.3390/ma18153439 - 22 Jul 2025
Viewed by 167
Abstract
This study investigated the effect of in situ polymerization on the compressive strength of demolition-derived Scots pine, European beech, and black alder wood. The treatment applied was based on previously confirmed in situ polymerization systems in wood, which are known to lead to [...] Read more.
This study investigated the effect of in situ polymerization on the compressive strength of demolition-derived Scots pine, European beech, and black alder wood. The treatment applied was based on previously confirmed in situ polymerization systems in wood, which are known to lead to polymer formation and composite-like structures. In this study, we assumed similar behavior and focused on a mechanical evaluation of the modified wood. Three different polymer systems were applied to evaluate differences in performance. After modification, the compressive strength levels increased by 60% in beech, 119% in alder, and 150% in pine, with corresponding increases in density and weight percent gain (WPG). The highest relative improvement was observed in the least dense species, pine. The findings suggest that polymer treatment can significantly enhance the mechanical properties, likely due to the incorporation of polymer into the wood matrix; however, this inference is based on indirect physical evidence. Full article
Show Figures

Figure 1

13 pages, 1873 KiB  
Article
Effect of Thickness Swelling and Termite Attack Resistance in Wood–Plastic Composites Produced with Pine Wood and Recycled Thermoplastics
by Emilly Silva, Yonny Lopez, Juarez Paes, Fernanda Maffioletti, Gabrielly Souza and Fabricio Gonçalves
Biomass 2025, 5(3), 43; https://doi.org/10.3390/biomass5030043 - 21 Jul 2025
Viewed by 462
Abstract
This research aimed to evaluate the biological resistance to xylophagous organisms and the dimensional stability related to water absorption in plastic wood panels manufactured by compression molding and produced with pine wood and recycled thermoplastics. The wood–plastic composites (WPCs) were prepared from 50% [...] Read more.
This research aimed to evaluate the biological resistance to xylophagous organisms and the dimensional stability related to water absorption in plastic wood panels manufactured by compression molding and produced with pine wood and recycled thermoplastics. The wood–plastic composites (WPCs) were prepared from 50% pine sawdust and 50% recycled plastics (polyethylene terephthalate-PET, high-density polyethylene-HDPE, and polypropylene-PP). The thickness swelling test was carried out by immersing of the WPC samples in water at room temperature (25–30 °C) and evaluating the total change in WPC thickness after 1500 h (≈9 weeks or two months). In addition, the coefficient of initial swelling was evaluated to verify the variability of the swelling. For the biological resistance evaluation of the WPCs, tests were carried out with soil or arboreal termites (Nasutitermes corniger) and drywood termites (Cryptotermes brevis). The WPC loss of mass and termite mortality were evaluated. The use of PP promoted the best response to thickness swelling. The simple mathematical model adopted offers real predictions to evaluate the thickness of the swelling of the compounds in a given time. For some variables there were no statistical differences. It was shown that treatment 3 (T3) presented visual damage values between 0.4 for drywood termites and 9.4 for soil termites, in addition to 26% termite mortality, represented by the lowest survival time of 12 days. The developed treatments have resistance to termite attacks; these properties can be an important starting point for its use on a larger scale by the panel industries. Full article
Show Figures

Figure 1

17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 381
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

8 pages, 880 KiB  
Proceeding Paper
An Algorithm for Assessment of Time Series Data Related to the Materials Used for Packaging in the Market
by Delyana Dimova
Eng. Proc. 2025, 100(1), 23; https://doi.org/10.3390/engproc2025100023 - 8 Jul 2025
Viewed by 144
Abstract
This article presents an algorithm for the assessment of time series data related to the materials used for packaging in the market in Bulgaria for the period 2010–2023. The considered elements include the quantities of the following types of materials: paper/cardboard, plastic, wood, [...] Read more.
This article presents an algorithm for the assessment of time series data related to the materials used for packaging in the market in Bulgaria for the period 2010–2023. The considered elements include the quantities of the following types of materials: paper/cardboard, plastic, wood, metal, glass, and others. They are extracted from the built relational database and subsequently processed and summarized. In this regard, relevant criteria (rules) are formed and applied and certain variables are calculated. In addition, analysis of variance (Anova) and Tukey’s test are also used for these data. The results show that one of the materials (paper/cardboard) in 2010–2018 has relatively higher quantities compared to the rest materials. A similar situation occurs for the element plastic, in 2019–2023. The calculated relative shares of the respective quantities of packaging materials show that more than half of them in the market are made of paper/cardboard and plastic. Some dynamic changes are observed in the quantities for the materials metal and wood. The indicator values for the other materials are significantly lower than the rest. The developed algorithm can be applied to study other time series data in fields such as ecology, finance, etc. Full article
Show Figures

Figure 1

26 pages, 4950 KiB  
Article
Study on Comprehensive Benefit Evaluation of Rural Houses with an Additional Sunroom in Cold Areas—A Case Study of Hebei Province, China
by Xinyu Zhu, Tiantian Duan, Yang Yang and Chaohong Wang
Buildings 2025, 15(13), 2343; https://doi.org/10.3390/buildings15132343 - 3 Jul 2025
Viewed by 226
Abstract
To address the issues of poor thermal performance and high energy consumption in rural dwellings in cold regions of China, this study investigates multi-type energy-efficient retrofitting strategies for rural houses in the Hebei–Tianjin region. By utilizing a two-step cluster analysis method, 458 rural [...] Read more.
To address the issues of poor thermal performance and high energy consumption in rural dwellings in cold regions of China, this study investigates multi-type energy-efficient retrofitting strategies for rural houses in the Hebei–Tianjin region. By utilizing a two-step cluster analysis method, 458 rural dwellings from 32 villages were classified based on household demographics, architectural features, and energy consumption patterns, identifying three typical categories: pre-1980s adobe dwellings, 1980s–1990s brick–wood structures, and post-1990s brick–concrete houses. Tailored sunspace design strategies were proposed through simulation: low-cost plastic film sunspaces for adobe dwellings (dynamic payback period: 2.8 years; net present value: CNY 2343), 10 mm hollow polycarbonate (PC) panels for brick–wood structures (cost–benefit ratio: 1.72), and high-efficiency broken bridge aluminum Low-e sunspaces for brick–concrete houses (annual natural gas savings: 345.24 m3). Economic analysis confirmed the feasibility of the selected strategies, with positive net present values and cost–benefit ratios exceeding 1. The findings demonstrate that classification-based retrofitting strategies effectively balance energy-saving benefits with economic costs, providing a scientific hierarchical implementation framework for rural residential energy efficiency improvements in cold regions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 2217 KiB  
Article
Prediction of Thermomechanical Behavior of Wood–Plastic Composites Using Machine Learning Models: Emphasis on Extreme Learning Machine
by Xueshan Hua, Yan Cao, Baoyu Liu, Xiaohui Yang, Hailong Xu, Lifen Li and Jing Wu
Polymers 2025, 17(13), 1852; https://doi.org/10.3390/polym17131852 - 2 Jul 2025
Viewed by 308
Abstract
The dynamic thermomechanical properties of wood–plastic composites (WPCs) are influenced by various factors, such as the selection of raw materials and processing parameters. To investigate the effects of different wood fiber content ratios and temperature on the loss modulus of WPCs, seven different [...] Read more.
The dynamic thermomechanical properties of wood–plastic composites (WPCs) are influenced by various factors, such as the selection of raw materials and processing parameters. To investigate the effects of different wood fiber content ratios and temperature on the loss modulus of WPCs, seven different proportions of Masson pine (Pinus massoniana Lamb.) and Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] mixed-fiber-reinforced HDPE composites were prepared using the extrusion molding method. Their dynamic thermomechanical properties were tested and analyzed. The storage modulus of WPCs showed a decreasing trend with increasing temperature. A reduction in the mass ratio of Masson pine wood fibers to Chinese fir wood fibers resulted in an increase in the storage modulus of WPCs. The highest storage modulus was achieved when the mass ratio of Masson pine wood fibers to Chinese fir wood fibers was 1:5. In addition, the loss modulus of the composites increased as the content of Masson pine fiber decreased, with the lowest loss modulus observed in HDPE composites reinforced with Masson pine wood fibers. The loss tangent for all seven types of WPCs increased with rising temperatures, with the maximum loss tangent observed in WPCs reinforced with Masson pine wood fibers and HDPE. A prediction method based on the Extreme Learning Machine (ELM) model was introduced to predict the dynamic thermomechanical properties of WPCs. The prediction accuracy of the ELM model was compared comprehensively with that of other models, including Support Vector Machines (SVMs), Random Forest (RF), Back Propagation (BP) neural networks, and Particle Swarm Optimization-BP (PSO-BP) neural network models. Among these, the ELM model showed superior data fitting and prediction accuracy, with an R2 value of 0.992, Mean Absolute Error (MAE) of 1.363, and Root Mean Square Error (RMSE) of 3.311. Compared to the other models, the ELM model demonstrated the best performance. This study provides a solid basis and reference for future research on the dynamic thermomechanical properties of WPCs. Full article
Show Figures

Figure 1

15 pages, 2568 KiB  
Article
Effects of Wood Vinegar as a Coagulant in Rubber Sheet Production: A Sustainable Alternative to Acetic Acid and Formic Acid
by Visit Eakvanich, Putipong Lakachaiworakun, Natworapol Rachsiriwatcharabul, Wassachol Wattana, Wachara Kalasee and Panya Dangwilailux
Polymers 2025, 17(13), 1718; https://doi.org/10.3390/polym17131718 - 20 Jun 2025
Viewed by 419
Abstract
Occupational exposure to commercial formic and acetic acids through dermal contact and inhalation during rubber sheet processing poses significant health risks to workers. Additionally, the use of these acids contributes to environmental pollution by contaminating water sources and soil. This study investigates the [...] Read more.
Occupational exposure to commercial formic and acetic acids through dermal contact and inhalation during rubber sheet processing poses significant health risks to workers. Additionally, the use of these acids contributes to environmental pollution by contaminating water sources and soil. This study investigates the potential of three types of wood vinegar—derived from para-rubber wood, bamboo, and eucalyptus—obtained through biomass pyrolysis under anaerobic conditions, as sustainable alternatives to formic and acetic acids in the production of ribbed smoked sheets (RSSs). The organic constituents of each wood vinegar were characterized using gas chromatography and subsequently mixed with fresh natural latex to produce coagulated rubber sheets. The physical and chemical properties, equilibrium moisture content, and drying kinetics of the resulting sheets were then evaluated. The results indicated that wood vinegar derived from para-rubber wood contained a higher concentration of acetic acid compared to that obtained from bamboo and eucalyptus. As a result, rubber sheets coagulated with para-rubber wood and bamboo vinegars exhibited moisture sorption isotherms comparable to those of sheets coagulated with acetic acid, best described by the modified Henderson model. In contrast, sheets coagulated with eucalyptus-derived vinegar and formic acid followed the Oswin model. In terms of physical and chemical properties, extended drying times led to improved tensile strength in all samples. No statistically significant differences in tensile strength were observed between the experimental and reference samples. The concentration of acid was found to influence Mooney viscosity, the plasticity retention index (PRI), the thermogravimetric curve, and the overall coagulation process more significantly than the acid type. The drying kinetics of all five rubber sheet samples displayed similar trends, with the drying time decreasing in response to increases in drying temperature and airflow velocity. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

23 pages, 1108 KiB  
Review
Urban Sustainability in Construction: A Comparative Review of Waste Management Practices in Developed Nations
by Tony Hadibarata and Risky Ayu Kristanti
Urban Sci. 2025, 9(6), 217; https://doi.org/10.3390/urbansci9060217 - 12 Jun 2025
Viewed by 1231
Abstract
The development of the construction industry in Hong Kong and the UK has long played a vital role in economic development, advanced or otherwise, but has also brought formidable environmental challenges, particularly in terms of the huge volume of waste generated. This review [...] Read more.
The development of the construction industry in Hong Kong and the UK has long played a vital role in economic development, advanced or otherwise, but has also brought formidable environmental challenges, particularly in terms of the huge volume of waste generated. This review paper puts under scrutiny the environmental management practices and green materials and technologies adoption in the construction industries of two developed regions, Hong Kong and the UK, the main objective being to compare their approaches to construction waste management and assess the level to which they have adopted sustainable practices. This review recognizes construction waste as a major contributor to environmental degradation and indicates the on-site waste reduction according to waste hierarchy as adopted by both regions. Major findings are that effective environmental management practices, such as resource optimization, waste minimization, and pollution prevention, are also enforced through legislation and fiscal policies. The use of eco-concrete, plastic wood, and recycled steel, together with high-tech roofs and solar panels, shows a move toward sustainable and energy-saving building that is taking root more and more. This paper highlights the need for policies and innovation in promoting sustainable building. Future studies should look into the green techs’ long-term performance, cross-area policy spread, and how digital tools help maximize waste and create sustainably. Full article
Show Figures

Figure 1

19 pages, 5355 KiB  
Article
Effect of Cotton Stalk Biochar Content on the Properties of Cotton Stalk and Residual Film Composites
by Zhipeng Song, Xiaoyun Lian, Junhui Ran, Xuan Zheng, Xufeng Wang and Xiaoqing Lian
Agriculture 2025, 15(12), 1243; https://doi.org/10.3390/agriculture15121243 - 7 Jun 2025
Cited by 1 | Viewed by 596
Abstract
This study aims to improve the performance of wood–plastic composites (WPCs) composed of cotton stalk powder and residual film particles. Additionally, it aims to promote the efficient utilization of cotton stalk biochar. The composites were prepared using modified cotton stalk biochar and xylem [...] Read more.
This study aims to improve the performance of wood–plastic composites (WPCs) composed of cotton stalk powder and residual film particles. Additionally, it aims to promote the efficient utilization of cotton stalk biochar. The composites were prepared using modified cotton stalk biochar and xylem powder as the matrix, maleic anhydride grafted high-density polyethylene (MA-HDPE) as the coupling agent, and polyethylene (PE) residual film particles as the filler. The WPCs were fabricated through melt blending using a twin-screw extruder. Mechanical properties were evaluated using a universal testing machine and texture analyzer, Shore D hardness was measured using a durometer, and microstructure was analyzed using a high-resolution digital optical microscope. A systematic investigation was conducted on the effect of biochar content on material properties. The results indicated that modified biochar significantly enhanced the mechanical and thermal properties of the WPCs. At a biochar content of 80%, the material achieved optimal performance, with a hardness of 57.625 HD, a bending strength of 463.159 MPa, and a tensile strength of 13.288 MPa. Additionally, thermal conductivity and thermal diffusivity decreased to 0.174 W/(m·K) and 0.220 mm2/s, respectively, indicating improved thermal insulation properties. This research provides a novel approach for the high-value utilization of cotton stalks and residual films, offering a potential solution to reduce agricultural waste pollution in Xinjiang and contributing to the development of low-cost and high-performance WPCs with wide-ranging applications. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 3075 KiB  
Article
Softwood-Based Biochar in the Design of Cement-Blended Binders with Advanced Properties
by Jaroslav Pokorný, Radek Ševčík, Lucie Zárybnická, Jiří Šál and Luboš Podolka
Buildings 2025, 15(11), 1949; https://doi.org/10.3390/buildings15111949 - 4 Jun 2025
Viewed by 405
Abstract
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need [...] Read more.
Biomass residues from the agricultural industry, logging and wood processing activities have become a valuable fuel source. If processed under pyrolysis combustion, several products are generated. Bio-oil and gases are essential alternatives to fossil coal-based fuels for energy and electricity production, whose need is constantly growing. Biochar, the porous carbon-based lightweight product, often ends up as a soil fertilizer. However, it can be applied in other industrial sectors, e.g., in plastics production or in modifying cementitious materials intended for construction needs. This work dealt with the application of small amounts of softwood-based biochar up to 2.0 wt.% on hydration kinetics and a wide range of physical and mechanical properties, such as water transport characteristics and flexural and compressive strengths of modified cement pastes. In the comparison with reference specimens, the biochar incorporation into cement pastes brought benefits like the reduction of open porosity, improvement of strength properties, and decreased capillary water absorption of 7-day and 28-day-cured cement pastes. Moreover, biochar-dosed cement pastes showed an increase in heat evolution during the hydration process, accompanied by higher consumption of clinker minerals. Considering all examined characteristics, the optimal dosage of softwood-derived biochar of 1.0 wt.% of Portland cement can be recommended. Full article
Show Figures

Figure 1

19 pages, 1744 KiB  
Article
Physiological and Biochemical Adaptations to Repeated Drought–Rehydration Cycles in Ochroma lagopus Swartz: Implications for Growth and Stress Resilience
by Yuanxi Liu, Jianli Sun, Cefeng Dai, Guanben Du, Rui Shi and Junwen Wu
Plants 2025, 14(11), 1636; https://doi.org/10.3390/plants14111636 - 27 May 2025
Cited by 1 | Viewed by 503
Abstract
Ochroma lagopus Swartz is a rapidly growing plant known for its lightweight wood; it is widely utilized for timber production and ecological restoration. We investigated the effects of different numbers of drought–rehydration cycles on O. lagopus seedlings cultivated at the Xishuangbanna Tropical Botanical [...] Read more.
Ochroma lagopus Swartz is a rapidly growing plant known for its lightweight wood; it is widely utilized for timber production and ecological restoration. We investigated the effects of different numbers of drought–rehydration cycles on O. lagopus seedlings cultivated at the Xishuangbanna Tropical Botanical Garden of the Chinese Academy of Sciences. The experiment comprised three treatments: normal watering (CK, 80–85% field capacity), one drought–rehydration cycle (D1, one rewatering), and three drought–rehydration cycles (D2, three rewaterings). We characterized the effects of these treatments on seedling growth, biomass allocation, non-structural carbohydrates (NSCs), malondialdehyde (MDA), catalase (CAT) activity, peroxidase (POD) activity, superoxide dismutase (SOD) activity, proline content, and soluble protein content. The number of drought–rehydration cycles had a significant effect on the growth characteristics and physiological and biochemical properties of leaves. As the number of drought–rehydration cycles increased, the height increased significantly (by 17.17% under D2). The leaf biomass ratio, soluble sugar content, and starch content decreased (15.05%, 15.79%, and 46.92% reductions under the D2 treatment); the stem biomass ratio and root biomass ratio increased; CAT activity increased and then decreased (it was highest at 343.67 mg·g−1·min−1 under D1); and the POD and SOD activities, the MDA content, the soluble protein content, and the soluble sugar/starch ratio increased significantly (395.42%, 461.82%, 74.72%, 191.07%, and 59.79% higher under D2). The plasticity of growth was much greater than that of physiological and biochemical traits. In summary, O. lagopus seedlings adapted to multiple drought–rehydration cycles by increasing the accumulation of soluble proteins (likely associated with osmotic protection), activating enzymes (POD and SOD), promoting the conversion of NSCs (increasing stored carbon consumption), and allocating more biomass to plant height growth than to diameter expansion. Under climate change scenarios with intensified drought frequency, elucidating the drought resistance mechanisms of O. lagopus is critical to silvicultural practices in tropical plantation. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

Back to TopTop