Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,018)

Search Parameters:
Keywords = wood heating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 714 KiB  
Article
Thermodynamic Analysis of Biomass Pyrolysis in an Auger Reactor Coupled with a Fluidized-Bed Reactor for Catalytic Deoxygenation
by Balkydia Campusano, Michael Jabbour, Lokmane Abdelouahed and Bechara Taouk
Processes 2025, 13(8), 2496; https://doi.org/10.3390/pr13082496 (registering DOI) - 7 Aug 2025
Abstract
This research contributes to advance the sustainable production of biofuels and provides insights into the energy and exergy assessment of bio-oil, which is essential for developing environmentally friendly energy production solutions. Energy and exergy analyses were performed to evaluate the pyrolysis of beech [...] Read more.
This research contributes to advance the sustainable production of biofuels and provides insights into the energy and exergy assessment of bio-oil, which is essential for developing environmentally friendly energy production solutions. Energy and exergy analyses were performed to evaluate the pyrolysis of beech wood biomass at 500 °C in an Auger reactor. To improve the quality of the obtained bio-oil, its catalytic deoxygenation was performed within an in-line fluidized catalytic bed reactor using a catalyst based on HZSM5 zeolite modified with 5 wt.% Iron (5%FeHZSM-5). A thermodynamic analysis of the catalytic and non-catalytic pyrolysis system was carried out, as well as a comparative study of the calculation methods for the energy and exergy evaluation for bio-oil. The required heat for pyrolysis was found to be 1.2 MJ/kgbiomass in the case of non-catalytic treatment and 3.46 MJ/kgbiomass in the presence of the zeolite-based catalyst. The exergy efficiency in the Auger reactor was 90.3%. Using the catalytic system coupled to the Auger reactor, this efficiency increased to 91.6%, leading to less energy degradation. Calculating the total energy and total exergy of the bio-oil using two different methods showed a difference of 6%. In the first method, only the energy contributions of the model compounds, corresponding to the major compounds of each chemical family of bio-oil, were considered. In contrast, in the second method, all molecules identified in the bio-oil were considered for the calculation. The second method proved to be more suitable for thermodynamic analysis. The novelties of this work concern the thermodynamic analysis of a coupled system of an Auger biomass pyrolysis reactor and a fluidized bed catalytic deoxygenation reactor on the one hand, and the use of all the molecules identified in the oily phase for the evaluation of energy and exergy on the other hand. Full article
(This article belongs to the Section Chemical Processes and Systems)
21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

25 pages, 8622 KiB  
Article
Low-Carbon Insulating Geopolymer Binders: Thermal Properties
by Agnieszka Przybek, Jakub Piątkowski, Paulina Romańska, Michał Łach and Adam Masłoń
Sustainability 2025, 17(15), 6898; https://doi.org/10.3390/su17156898 - 29 Jul 2025
Viewed by 221
Abstract
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating [...] Read more.
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating geopolymer binders made from fly ash with diatomite, chalcedonite, and wood wool aiming to assess their potential for use in thermal insulation systems in energy-efficient buildings. The stability of the foamed geopolymer structure is also assessed. Measurements of thermal conductivity, specific heat, microstructure, density, and compressive strength are presented. The findings indicate that the selected geopolymer formulations exhibit low thermal conductivity, high heat capacity and low density, making them competitive with conventional insulation materials—mainly load-bearing ones such as aerated concrete and wood wool insulation boards. Additionally, incorporating waste-derived materials reduces the production carbon footprint. The best results are represented by the composite incorporating all three additives (diatomite, chalcedonite, and wood wool), which achieved the lowest thermal conductivity (0.10154 W/m·K), relatively low density (415 kg/m3), and high specific heat (1.529 kJ/kg·K). Full article
Show Figures

Figure 1

19 pages, 5847 KiB  
Article
Parametric Analysis of Rammed Earth Walls in the Context of the Thermal Protection of Environmentally Friendly Buildings
by Piotr Kosiński, Wojciech Jabłoński and Krystian Patyna
Sustainability 2025, 17(15), 6886; https://doi.org/10.3390/su17156886 - 29 Jul 2025
Viewed by 285
Abstract
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response [...] Read more.
Rammed earth (RE), a traditional material aligned with circular economy (CE) principles, has been gaining renewed interest in contemporary construction due to its low environmental impact and compatibility with sustainable building strategies. Though not a modern invention, it is being reintroduced in response to the increasingly strict European Union (EU) regulations on carbon footprint, life cycle performance, and thermal efficiency. RE walls offer multiple benefits, including humidity regulation, thermal mass, plasticity, and structural strength. This study also draws attention to their often-overlooked ability to mitigate indoor overheating. To preserve these advantages while enhancing thermal performance, this study explores insulation strategies that maintain the vapor-permeable nature of RE walls. A parametric analysis using Delphin 6.1 software was conducted to simulate heat and moisture transfer in two main configurations: (a) a ventilated system insulated with mineral wool (MW), wood wool (WW), hemp shives (HS), and cellulose fiber (CF), protected by a jute mat wind barrier and finished with wooden cladding; (b) a closed system using MW and WW panels finished with lime plaster. In both cases, clay plaster was applied on the interior side. The results reveal distinct hygrothermal behavior among the insulation types and confirm the potential of natural, low-processed materials to support thermal comfort, moisture buffering, and the alignment with CE objectives in energy-efficient construction. Full article
Show Figures

Figure 1

19 pages, 1186 KiB  
Article
The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels
by Jitka Sikorova, Frantisek Hopan, Lenka Kubonova, Jiri Horak, Alena Milcova, Pavel Rossner, Antonin Ambroz, Kamil Krpec, Oleksandr Molchanov and Tana Zavodna
Toxics 2025, 13(8), 619; https://doi.org/10.3390/toxics13080619 - 25 Jul 2025
Viewed by 186
Abstract
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This [...] Read more.
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This study compares the genotoxic potential of the emissions of four boilers of modern and old design (automatic, gasification, down-draft, over-fire) operating at reduced output to simulate the real-life combustion fed by various fossil and renewable solid fuels (hard coal, brown coal, brown coal briquettes, wood pellets, wet and dry spruce). Organic emissions were tested for genotoxic potential by analysing bulky DNA adducts and 8-oxo-dG adduct induction. There was no consistent genotoxic pattern among the fuels used within the boilers. Genotoxicity was strongly correlated with polycyclic aromatic hydrocarbon (PAH) content, and even stronger correlation was observed with particulate matter (PM). In all measured variables (PM, PAHs, genotoxicity), the technology of the boilers was a more important factor in determining the genotoxic potential than the fuels burned. The highest levels of both bulky and 8-oxo-dG DNA adducts were induced by organics originating from the over-fire boiler, while the automatic boiler exhibited genotoxic potential that was ~1000- and 100-fold lower, respectively. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

21 pages, 3359 KiB  
Article
Carbonisation of Quercus spp. Wood: Temperature, Yield and Energy Characteristics
by Juan Carlos Contreras-Trejo, Artemio Carrillo-Parra, Maginot Ngangyo-Heya, José Guadalupe Rutiaga-Quiñones, Jorge Armando Chávez-Simental and José Rodolfo Goche-Télles
Processes 2025, 13(7), 2302; https://doi.org/10.3390/pr13072302 - 19 Jul 2025
Viewed by 423
Abstract
Energy production is a global concern, encouraging the search for sustainable alternatives such as charcoal, a promising solid biofuel. This study evaluated the effects of temperature and carbonisation time on charcoal produced from Quercus wood. Carbonisation was carried out at 550 °C for [...] Read more.
Energy production is a global concern, encouraging the search for sustainable alternatives such as charcoal, a promising solid biofuel. This study evaluated the effects of temperature and carbonisation time on charcoal produced from Quercus wood. Carbonisation was carried out at 550 °C for 30 min, 700 °C for 30 min and under two progressive heating profiles: one starting at 550 °C for 30 min and increasing to 700 °C for a further 30 min, and another starting at 300 °C for 2 h and rising to 1000 °C for 10 min. Mass and volumetric yield, bulk density, proximate analysis, calorific value, energy yield and fuel ratio were determined. The results showed that carbonisation temperature affected charcoal properties. Mass and volumetric yields were highest at 550 °C (30.10% and 4.81 m3 t−1) in Q. convallata and Q. urbanii. At higher temperatures, bulk density (0.56 g cm−3), fixed carbon (91.51%) and calorific value (32.82 MJ kg−1) increased in Q. urbanii. Lower temperatures led to lower moisture levels (2.46%) and a higher energy yield (48.02%). Overall, temperatures above 700 °C improved energy properties, while those below 550 °C favoured higher yields. Species’ characteristics also influenced charcoal quality. These findings offer valuable insights into optimising the carbonisation of Quercus species and supporting the development of more efficient, sustainable charcoal production methods. Full article
(This article belongs to the Special Issue Research on Conversion and Utilization of Waste Biomass)
Show Figures

Figure 1

15 pages, 3688 KiB  
Article
Temperature Field Prediction of Glulam Timber Connections Under Fire Hazard: A DeepONet-Based Approach
by Jing Luo, Guangxin Tian, Chen Xu, Shijie Zhang and Zhen Liu
Fire 2025, 8(7), 280; https://doi.org/10.3390/fire8070280 - 16 Jul 2025
Viewed by 527
Abstract
This paper presents an integrated computational framework for predicting temperature fields in glulam beam–column connections under fire conditions, combining finite element modeling, automated parametric analysis, and deep learning techniques. A high-fidelity heat transfer finite element model was developed, incorporating the anisotropic thermal properties [...] Read more.
This paper presents an integrated computational framework for predicting temperature fields in glulam beam–column connections under fire conditions, combining finite element modeling, automated parametric analysis, and deep learning techniques. A high-fidelity heat transfer finite element model was developed, incorporating the anisotropic thermal properties of wood and temperature-dependent material behavior, validated against experimental data with strong agreement. To enable large-scale parametric studies, an automated Abaqus model modification and data processing system was implemented, improving computational efficiency through the batch processing of geometric and material parameters. The extracted temperature field data was used to train a DeepONet neural network, which achieved accurate temperature predictions (with a L2 relative error of 1.5689% and an R2 score of 0.9991) while operating faster than conventional finite element analysis. This research establishes a complete workflow from fundamental heat transfer analysis to efficient data generation and machine learning prediction, providing structural engineers with practical tools for the performance-based fire safety design of timber connections. The framework’s computational efficiency enables comprehensive parametric studies and design optimizations that were previously impractical, offering significant advancements for structural fire engineering applications. Full article
(This article belongs to the Special Issue Advances in Structural Fire Engineering)
Show Figures

Figure 1

16 pages, 1971 KiB  
Article
Slow Pyrolysis as a Method of Treating Household Biowaste for Biochar Production
by Agnieszka Bezuszko, Marcin Landrat, Krzysztof Pikoń, Ana F. Ferreira, Abel Rodrigues, Gabor Olejarz and Max Lewandowski
Appl. Sci. 2025, 15(14), 7858; https://doi.org/10.3390/app15147858 - 14 Jul 2025
Viewed by 339
Abstract
The amount of waste generated by society is constantly increasing. Consequently, there is a need to develop new and better methods of treating it. A significant part of municipal waste is biowaste, which can be treated as a source of valuable resources such [...] Read more.
The amount of waste generated by society is constantly increasing. Consequently, there is a need to develop new and better methods of treating it. A significant part of municipal waste is biowaste, which can be treated as a source of valuable resources such as nutrients, organic matter, and energy. The present work aims to determine the properties of the tested household biowaste and the possibility of using it as feedstock in slow pyrolysis to obtain biochar. The slow pyrolysis process of the biowaste was carried out in an electrically heated Horizontal Tube Furnace (HTF) at temperatures of 400 °C, 500 °C, and 600 °C in a nitrogen atmosphere. The analysis showed that depending on the type and composition of the biowaste, its properties are different. All the biowaste tested has a high moisture content (between 63.51% and 81.53%), which means that the biowaste needs to be dried before the slow pyrolysis process. The characteristics of kitchen biowaste are similar to those of food waste studied by other researchers in different regions of the world. In addition, the properties of kitchen biowaste are similar to those of the typical biomasses used to produce biochar via slow pyrolysis, such as wood, almond shells, and rice husks. Both kinds of garden biowaste tested may have been contaminated (soil, rocks) during collection, which affected the high ash content of spring (17.75%) and autumn (43.83%) biowaste. This, in turn, affected all the properties of the garden biowaste, which differed significantly from both the literature data of other garden wastes and from the properties of typical biomass feedstocks used to produce biochar in slow pyrolysis. For all biowaste tested, it was shown that as the pyrolysis temperature increases, the yield of biochar decreases. The maximum mass yield of biochar for kitchen, spring garden, and autumn garden biowaste was 36.64%, 66.53%, and 66.99%, respectively. Comparing the characteristics of biowaste before slow pyrolysis, biochar obtained from kitchen biowaste had a high carbon content, fixed carbon, and a higher HHV. In contrast, biochar obtained from garden biowaste had a lower carbon content and a lower HHV. Full article
Show Figures

Figure 1

16 pages, 2025 KiB  
Article
Coating Performance of Heat-Treated Wood: An Investigation in Populus, Quercus, and Pinus at Varying Temperatures
by Andromachi Mitani, Paschalina Terzopoulou, Konstantinos Ninikas, Dimitrios Koutsianitis and Georgios Ntalos
Forests 2025, 16(7), 1159; https://doi.org/10.3390/f16071159 - 14 Jul 2025
Viewed by 232
Abstract
Thermal modification applies to a technique for the enhancement of biological durability, stability, and appearance of wood. Much is known about its effects on the chemical and physical attributes of wood. However, there is a knowledge gap concerning the effects of heat treatment [...] Read more.
Thermal modification applies to a technique for the enhancement of biological durability, stability, and appearance of wood. Much is known about its effects on the chemical and physical attributes of wood. However, there is a knowledge gap concerning the effects of heat treatment on surface coating performance of different wood species. The focus of this research is heat treatment regulation of 160 °C, 180 °C, and 200 °C for three commercially important wood species which are Populus (poplar), Quercus (oak), and Pinus (pine). These treatments were evaluated in relation to coating performance indicators adhesion, integrity, and visual stability during and after natural and artificial weathering. It was revealed that specific responses among species differences exist. Populus behaved differently and exhibited a steady loss in mass and volume. Quercus demonstrated gradual degradation alongside enhanced lignin stability. Pinus exhibited maintenance of volume and mass until 180 °C after which accelerated degradation was observed. Coating durability and adhesion exhibited dependence on thermal condition, wood species, porosity, surface chemistry and microstructural variations that occurred. The research results can be used to streamline finishing processes for thermally modified wood while underscoring the critical nature of precise treatment parameter adjustments guided by species-specific responses to ensure long-term stability. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

20 pages, 2421 KiB  
Article
Selective Microwave Pretreatment of Biomass Mixtures for Sustainable Energy Production
by Raimonds Valdmanis and Maija Zake
Energies 2025, 18(14), 3677; https://doi.org/10.3390/en18143677 - 11 Jul 2025
Viewed by 221
Abstract
Methods for the improvement of regional lignocellulosic resources (wood and agriculture waste) were studied and analyzed using blends with optimized compositions and a selective pretreatment of the blends using microwaves to enhance their thermochemical conversion and energy production efficiency. A batch-size pilot device [...] Read more.
Methods for the improvement of regional lignocellulosic resources (wood and agriculture waste) were studied and analyzed using blends with optimized compositions and a selective pretreatment of the blends using microwaves to enhance their thermochemical conversion and energy production efficiency. A batch-size pilot device was used to provide the thermochemical conversion of biomass blends of different compositions, analyzing the synergy of the effects of thermal and chemical interaction between the components on the yield and thermochemical conversion of volatiles, responsible for producing heat energy at various stages of flame formation. To control the thermal decomposition of the biomass, improving the flame characteristics and the produced heat, a selective pretreatment of blends using microwaves (2.45 GHz) was achieved by varying the temperature of microwave pretreatment. Assessing correlations between changes in the main characteristics of pretreated blends (elemental composition and heating value) on the produced heat and composition of products suggests that selective MW pretreatment of biomass blends activates synergistic effects of thermal and chemical interaction, enhancing the yield and combustion of volatiles with a correlating increase in produced heat energy, thus promoting the wider use of renewable biomass resources for sustainable energy production by limiting the use of fossil fuels for heat-energy production and the formation of GHG emissions. Full article
(This article belongs to the Special Issue Wood-Based Bioenergy: 2nd Edition)
Show Figures

Figure 1

17 pages, 5761 KiB  
Article
Estimation of Several Wood Biomass Calorific Values from Their Proximate Analysis Based on Artificial Neural Networks
by I Ketut Gary Devara, Windy Ayu Lestari, Uma Maheshwera Reddy Paturi, Jun Hong Park and Nagireddy Gari Subba Reddy
Materials 2025, 18(14), 3264; https://doi.org/10.3390/ma18143264 - 10 Jul 2025
Viewed by 327
Abstract
The accurate estimation of the higher heating value (HHV) of wood biomass is essential to evaluating the latter’s energy potential as a renewable energy material. This study proposes an Artificial Neural Network (ANN) model to predict the HHV by using proximate analysis parameters—moisture, [...] Read more.
The accurate estimation of the higher heating value (HHV) of wood biomass is essential to evaluating the latter’s energy potential as a renewable energy material. This study proposes an Artificial Neural Network (ANN) model to predict the HHV by using proximate analysis parameters—moisture, volatile matter, ash, and fixed carbon. A dataset of 252 samples (177 for training and 75 for testing), sourced from the Phyllis database, which compiles the physicochemical properties of lignocellulosic biomass and related feedstocks, was used for model development. Various ANN architectures were explored, including one to three hidden layers with 1 to 20 neurons per layer. The best performance was achieved with the 4–11–11–11–1 architecture trained using the backpropagation algorithm, yielding an adjusted R2 of 0.967 with low mean absolute error (MAE) and root mean squared error (RMSE) values. A graphical user interface (GUI) was developed for real-time HHV prediction across diverse wood types. Furthermore, the model’s performance was benchmarked against 26 existing empirical and statistical models, and it outperformed them in terms of accuracy and generalization. This ANN-based tool offers a robust and accessible solution for carbon utilization strategies and the development of new energy storage material. Full article
(This article belongs to the Special Issue Low-Carbon Technology and Green Development Forum)
Show Figures

Figure 1

29 pages, 3584 KiB  
Review
Energy Efficiency in Buildings Through the Application of Phase Change Materials: An In-Depth Analysis of the Integration of Spent Coffee Grounds (SCGs)
by Abir Hmida, Fouad Erchiqui, Abdelkader Laafer and Mahmoud Bourouis
Energies 2025, 18(14), 3629; https://doi.org/10.3390/en18143629 - 9 Jul 2025
Viewed by 547
Abstract
Energy demand in the building sector has drastically increased due to rising occupant comfort requirements, accounting for 30% of the world’s final energy consumption and 26% of global carbon emissions. Thus, to improve building efficiency in heating and cooling applications, phase change material [...] Read more.
Energy demand in the building sector has drastically increased due to rising occupant comfort requirements, accounting for 30% of the world’s final energy consumption and 26% of global carbon emissions. Thus, to improve building efficiency in heating and cooling applications, phase change material (PCM)-based passive thermal management techniques have been considered due to their energy storage capabilities. This study provides a comprehensive review of the research on PCM applications, types, and encapsulation forms. Various solutions have been proposed to enhance PCM performance. In this review, the authors suggest new methods to improve PCM efficiency by using the multilayered wall technique, which involves employing two layers of a hybrid bio-composite—specifically, the hybrid hemp/wood fiber-reinforced composite with a polypropylene (PP) matrix—along with a layer of PCM made from spent coffee grounds (SCGs). Previous studies have shown that oil extracted from SCGs demonstrates good thermal and chemical stability, as it contains approximately 60–80% fatty acids, with a phase transition temperature of approximately 4.5 ± 0.72 °C and latent heat values of 51.15 ± 1.46 kJ/kg. Full article
Show Figures

Figure 1

25 pages, 3014 KiB  
Article
Performance Assessment of Low- and Medium-Cost PM2.5 Sensors in Real-World Conditions in Central Europe
by Bushra Atfeh, Zoltán Barcza, Veronika Groma, Ágoston Vilmos Tordai and Róbert Mészáros
Atmosphere 2025, 16(7), 796; https://doi.org/10.3390/atmos16070796 - 30 Jun 2025
Viewed by 397
Abstract
In addition to the use of reference instruments, low-cost sensors (LCSs) are becoming increasingly popular for air quality monitoring both indoors and outdoors. These sensors provide real-time measurements of pollutants and facilitate better spatial and temporal coverage. However, these simpler devices are typically [...] Read more.
In addition to the use of reference instruments, low-cost sensors (LCSs) are becoming increasingly popular for air quality monitoring both indoors and outdoors. These sensors provide real-time measurements of pollutants and facilitate better spatial and temporal coverage. However, these simpler devices are typically characterised by lower accuracy and precision and can be more sensitive to the environmental conditions than the reference instruments. It is therefore crucial to characterise the applicability and limitations of these instruments, for which a possible solution is their comparison with reference measurements in real-world conditions. To this end, a measurement campaign has been carried out to evaluate the PM2.5 readings of several low- and medium-cost air quality instruments of different types and categories (IQAir AirVisual Pro, TSI DustTrak™ II Aerosol Monitor 8532, Xiaomi Mijia Air Detector, and Xiaomi Smartmi PM2.5 Air Detector). A GRIMM EDM180 instrument was used as the reference. This campaign took place in Budapest, Hungary, from 12 November to 15 December 2020, during typically humid and foggy weather conditions, when the air pollution level was high due to the increased anthropogenic emissions, including wood burning for heating purposes. The results indicate that the individual sensors tracked the dynamics of PM2.5 concentration changes well (in a linear fashion), but the readings deviated from the reference measurements to varying degrees. Even though the AirVisual sensors performed generally well (0.85 < R2 < 0.93), the accuracy of the units showed inconsistency (13–93%) with typical overestimation, and their readings were significantly affected by elevated relative humidity levels and by temperature. Despite the overall overestimation of PM2.5 by the Xiaomi sensors, they also exhibited strong correlation coefficients with the reference, with R2 values of 0.88 and 0.94. TSI sensors exhibited slight underestimations with high explained variance (R2 = 0.93–0.94) and good accuracy. The results indicated that despite the inherent bias, the low-cost sensors are capable of capturing the temporal variability of PM2.5, thus providing relevant information. After simple and multiple linear regression-based correction, the low-cost sensors provided acceptable results. The results indicate that sensor data correction is a necessary prerequisite for the usability of the instruments. The ensemble method is a reasonable alternative for more accurate estimations of PM2.5. Full article
Show Figures

Figure 1

11 pages, 2494 KiB  
Case Report
Exploring Chromogranin A (CgA) as a Diagnostic Marker in Hypothermia-Related Deaths: Two Case Studies and a Literature Review
by Luca Tomassini, Erika Buratti, Giulia Ricchezze and Roberto Scendoni
Diagnostics 2025, 15(13), 1673; https://doi.org/10.3390/diagnostics15131673 - 30 Jun 2025
Viewed by 276
Abstract
Background: Hypothermia, occurring when core temperature drops below 35 °C, can lead to death when the body’s heat loss exceeds its heat production. This study investigates two hypothermia-related deaths, exploring the utility of immunohistochemistry, specifically focusing on chromogranin A (CgA) as a potential [...] Read more.
Background: Hypothermia, occurring when core temperature drops below 35 °C, can lead to death when the body’s heat loss exceeds its heat production. This study investigates two hypothermia-related deaths, exploring the utility of immunohistochemistry, specifically focusing on chromogranin A (CgA) as a potential diagnostic tool. The aim is to assess whether CgA expression in neuroendocrine tissues can be considered a reliable indicator of premortem stress response in fatal hypothermia cases. Case Presentation: In the first case, a 67-year-old man was found on a snowy road 24 h after his disappearance. The autopsy revealed cold-induced skin lesions, gastric hemorrhages, and cerebral and pulmonary edema. Positive CgA immunostaining was observed in the pancreatic islets and adrenal medulla. In the second case, a 49-year-old man was found dead in a wooded area with indications of suicide. Both cases were examined with attention to macroscopic findings and histological samples from major neuroendocrine organs. As in previous cases, CgA immunostaining was positive in the pancreatic islets and adrenal medulla. Staining intensity was moderate to strong, consistent with heightened neuroendocrine activity, supporting the hypothesis of systemic stress prior to death. Conclusions: Although CgA is a potentially valuable adjunct in hypothermia diagnosis, careful consideration of cadaveric preservation is emphasized, particularly when bodies are preserved before autopsy. Further studies with larger sample sizes are needed to confirm its diagnostic specificity and to distinguish true pathological patterns from postmortem artifacts. Full article
(This article belongs to the Special Issue New Perspectives in Forensic Diagnosis)
Show Figures

Figure 1

21 pages, 2754 KiB  
Article
Repurposing Torrefied Biomass as a Novel Feedstock for Microbial Bioprocessing—A Proof-of-Concept of Low-Cost Biosurfactant Production
by Anjana Hari, Vahur Rooni, Udayakumar Veerabagu, Shiplu Sarker, Alar Konist and Timo Kikas
Polymers 2025, 17(13), 1808; https://doi.org/10.3390/polym17131808 - 29 Jun 2025
Viewed by 401
Abstract
Torrefaction is a thermochemical pretreatment in which biomass is heated at 200–300 °C for 30–60 min in an inert atmosphere. Torrefaction has been previously used to improve the fuel properties of lignocellulosic biomass; however, the use of torrefaction for bioenergy generation represents a [...] Read more.
Torrefaction is a thermochemical pretreatment in which biomass is heated at 200–300 °C for 30–60 min in an inert atmosphere. Torrefaction has been previously used to improve the fuel properties of lignocellulosic biomass; however, the use of torrefaction for bioenergy generation represents a low-value final product as well as the dead end of the biomass value chain. Herein, we demonstrate the proof-of-concept for the utilisation of torrefaction as a pretreatment to convert low-value wood waste into biosurfactants, a high-value specialty biochemical. Wood waste was torrefied at 225 °C, 250 °C, 275 °C, and 300 °C and physicochemically characterised using proximate and ultimate analyses, FTIR, XRD, TGA–DTG, and SEM–EDX to assess its suitability as fermentation feedstock. Aspen waste torrefied at temperatures less than 250 °C was directly utilised by Burkholderia thailandensis DSM 13276 via semi-solid-state fermentation to yield biosurfactants, and 225 °C was selected for further experiments as it resulted in the production of biosurfactants which reduced the surface tension of the production medium to 36.8 mN/m and had an emulsification index of 64.1%. Tension and emulsification activities decreased with the increase in torrefaction temperature. The biosurfactant derived from torrefaction at 225 °C formed highly stable emulsions with diesel oil (lasting >40 days), in addition to low interfacial tension, suggesting potential applications in diesel bioremediation. This integrated, chemical-free strategy offers an alternative application for torrefied wood waste as well as a feasible solution for the cost-effective chemical-free production of biosurfactants, incorporating circular economy principles. Full article
Show Figures

Graphical abstract

Back to TopTop