Performance Assessment of Low- and Medium-Cost PM2.5 Sensors in Real-World Conditions in Central Europe
Abstract
1. Introduction
2. Methodology
2.1. The Location and Timeframe of the Field Campaign
2.2. Air Quality Sensors Used in the Experiment
2.2.1. AirVisual Pro
2.2.2. TSI DustTrak Aerosol Monitor
2.2.3. Xiaomi Sensors
2.3. The Reference Measuring Instrument
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Meteorological Conditions During the Measurement Campaign
3.2. Comparison of Raw Data and Reference PM2.5 Measurements
3.3. Impacts of Atmospheric Conditions on the Accuracy of the Sensors
3.4. Correction of the LCS Data
3.5. Ensemble Approach
4. Discussion
4.1. Evaluation of LCS Performance
Sensors | Geographical Location | Sampling Area and Time | Reference Instruments | Performance Indices | Reference |
---|---|---|---|---|---|
AirVisual Pro (3 units) | Riverside, CA/USA | Outdoor, 1 h | Met One BAM 1020 (Met One Instruments, Inc., Grants Pass, OR, USA) | R2: 0.69–0.72 RMSE: 5.8–7.3 MBE: 0.2–3.4 MAE: 4.4–5.3 Slope: 1.15–1.31 Intercept: −2.42(–)–1.97 | Feenstra et al. (2019) [26] |
AirVisual Pro (2 units) | Baltimore, MD/USA | Indoor, 1 min | Thermo Scientific pDR-1200 (ThermoFisher Scientific Inc. Waltham, MA, USA) | Accuracy: 86% RMSE: 0.59–0.64 R2: 0.89–0.90 MBE (%): 3.45–4.26 | Zamora et al. (2020) [4] |
AirVisual Pro (1 unit) | N/A | Indoor, 1 min | GRIMM 11C (GRIMM Technologies, Inc., GA, USA) TSI SidePak AM530 (TSI Inc., Shoreview, MN, USA) | R2: 0.90–0.95 R2: 0.88–0.96 | Li et al. (2020) [47] |
AirVisual Pro (3 units) | New Jersey, USA | Indoor, 5 min | TSI DustTrak DRX Model 8534 (TSI Inc., Shoreview, MN, USA) | R2: 0.30–0.98 Slope: 0.01–1.02 Intercept: −1.57–4.49 | He et al. (2020) [38] |
AirVisual Pro (1 unit) | Fribourg, Switzerland | Indoor, 5 min | GRIMM Model 1371, Aerosol Technik (miniWRAS). (GRIMM Aerosol Technik GmbH & Co. KG, Ainring, Germany) | r: 0.53–0.99 | Demanega et al. (2021) [51] |
AirVisual Pro | Porto, Northern Portugal | Indoor | TSI DustTrak DRX Model 8534 (TSI Inc., Shoreview, MN, USA) | R2: 0.60–0.88 RMSE: 20.3–1.69 × 103 MBE: −1.61 × 103–14.3 MAE: 18.8–1.62 × 103 | Sá et al. (2024) [50] |
TSI DustTrak 8520 (PM10) | Delaware, USA | Indoor, 10 min | Thermo Scientific TEOM 1405-DF (ThermoFisher Scientific Inc., Waltham, MA, USA) | R2: 0.85–0.92 | Yang et al. (2018) [52] |
TSI DustTrak 8530 (2 units, diff. seasons) | Hong Kong/China | Outdoor, 10 min | Thermo Scientific Model 5030 (ThermoFisher Scientific, Waltham, MA, USA) SHARP 5030, (Thermo Scientific Inc., MA, USA) | R2: 0.36–0.97 | Li et al. (2019) [48] |
TSI DustTrak 8530 (1 unit) | Hong Kong/China | Outdoor, 10 min | Thermo Scientific TEOM 1405-D (ThermoFisher Scientific, Waltham, MA, USA) | R2: 0.91 | Li et al. (2019) [48] |
TSI DustTrak 8533 | Doha, Qatar | Outdoor, 2 min | Gravimetric mass measurement of filter samples (low-volume Harvard Impactor samplers) | R2: 0.90 RMSE: 9.50 | Javed and Guo (2021) [49] |
Xiaomi Mi PM2.5 Detector (1 unit) | N/A | Indoor, 1 min | GRIMM 11C (GRIMM Technologies, Inc., GA, USA) TSI SidePak AM530 (TSI Inc., Shoreview, MN, USA) | R2: 0.96–0.99 | Li et al. (2020) [47] |
4.2. Influence of Environmental Conditions on LCS Performance
4.3. Post-Processing of LCS Data
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Burnett, R.; Chen, H.; Szyszkowicz, M.; Fann, N.; Hubbell, B.; Pope, C.A.; Apte, J.S.; Brauer, M.; Cohen, A.; Weichenthal, S.; et al. Global Estimates of Mortality Associated with Long-Term Exposure to Outdoor Fine Particulate Matter. Proc. Natl. Acad. Sci. USA 2018, 115, 9592–9597. [Google Scholar] [CrossRef] [PubMed]
- Masic, A.; Bibic, D.; Pikula, B.; Blazevic, A.; Huremovic, J.; Zero, S. Evaluation of Optical Particulate Matter Sensors under Realistic Conditions of Strong and Mild Urban Pollution. Atmos. Meas. Tech. 2020, 13, 6427–6443. [Google Scholar] [CrossRef]
- Zamora, M.L.; Rice, J.; Koehler, K. One Year Evaluation of Three Low-Cost PM2.5 Monitors. Atmos. Environ. 2020, 235, 117615. [Google Scholar] [CrossRef]
- Pope III, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tu, Y.; Yu, Z.; Lu, R. PM2.5 and Cardiovascular Diseases in the Elderly: An Overview. Int. J. Environ. Res. Public Health 2015, 12, 8187–8197. [Google Scholar] [CrossRef] [PubMed]
- Chanda, F.; Lin, K.; Chaurembo, A.I.; Huang, J.; Zhang, H.; Deng, W.; Xu, Y.; Li, Y.; Fu, L.; Cui, H.; et al. PM2.5-Mediated Cardiovascular Disease in Aging: Cardiometabolic Risks, Molecular Mechanisms and Potential Interventions. Sci. Total Environ. 2024, 954, 176255. [Google Scholar] [CrossRef]
- Suhaimi, N.F.; Jalaludin, J.; Roslan, N.I.S. Traffic-Related Air Pollution (TRAP) in Relation to Respiratory Symptoms and Lung Function of School-Aged Children in Kuala Lumpur. Int. J. Environ. Health Res. 2024, 34, 1384–1396. [Google Scholar] [CrossRef]
- Zhang, L.; Ou, C.; Magana-Arachchi, D.; Vithanage, M.; Vanka, K.S.; Palanisami, T.; Masakorala, K.; Wijesekara, H.; Yan, Y.; Bolan, N.; et al. Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. Int. J. Environ. Res. Public Health 2021, 18, 11055. [Google Scholar] [CrossRef]
- Kosmopoulos, G.; Salamalikis, V.; Pandis, S.N.; Yannopoulos, P.; Bloutsos, A.A.; Kazantzidis, A. Low-Cost Sensors for Measuring Airborne Particulate Matter: Field Evaluation and Calibration at a South-Eastern European Site. Sci. Total Environ. 2020, 748, 141396. [Google Scholar] [CrossRef]
- Zikova, N.; Hopke, P.K.; Ferro, A.R. Evaluation of New Low-Cost Particle Monitors for PM2.5 Concentrations Measurements. J. Aerosol Sci. 2017, 105, 24–34. [Google Scholar] [CrossRef]
- Awokola, B.I.; Okello, G.; Mortimer, K.J.; Jewell, C.P.; Erhart, A.; Semple, S. Measuring Air Quality for Advocacy in Africa (MA3): Feasibility and Practicality of Longitudinal Ambient PM2.5 Measurement Using Low-Cost Sensors. Int. J. Environ. Res. Public Health 2020, 17, 7243. [Google Scholar] [CrossRef] [PubMed]
- Forehead, H.; Barthelemy, J.; Arshad, B.; Verstaevel, N.; Price, O.; Perez, P. Traffic Exhaust to Wildfires: PM2.5 Measurements with Fixed and Portable, Low-Cost LoRaWAN-Connected Sensors. PLoS ONE 2020, 15, e0231778. [Google Scholar] [CrossRef] [PubMed]
- Wróblewski, M.; Suchomska, J.; Tamborska, K. Citizens or Consumers? Air Quality Sensor Users and Their Involvement in Sensor.Community. Results from Qualitative Case Study. Sustainability 2021, 13, 11406. [Google Scholar] [CrossRef]
- Masri, S.; Rea, J.; Wu, J. Use of Low-Cost Sensors to Characterize Occupational Exposure to PM2.5 Concentrations Inside an Industrial Facility in Santa Ana, CA: Results from a Worker-and Community-Led Pilot Study. Atmosphere 2022, 13, 722. [Google Scholar] [CrossRef]
- Tzeng, S.; Lai, C.W.; Huang, H.C. Spatially Adaptive Calibrations of Airbox PM2.5 Data. Biometrics 2023, 79, 3637–3649. [Google Scholar] [CrossRef]
- WMO Integrating Low-Cost Sensor Systems and Networks to Enhance Air Quality Applications (GAW Report No. 293) 2024. Available online: https://wmo.int/publication-series/integrating-low-cost-sensor-systems-and-networks-enhance-air-quality-applications (accessed on 23 June 2025).
- Carotenuto, F.; Bisignano, A.; Brilli, L.; Gualtieri, G.; Giovannini, L. Low-Cost Air Quality Monitoring Networks for Long-Term Field Campaigns: A Review. Meteorol. Appl. 2023, 30, e2161. [Google Scholar] [CrossRef]
- Concas, F.; Mineraud, J.; Lagerspetz, E.; Varjonen, S.; Liu, X.; Puolamäki, K.; Nurmi, P.; Tarkoma, S. Low-Cost Outdoor Air Quality Monitoring and Sensor Calibration: A Survey and Critical Analysis. ACM Trans. Sens. Netw. 2021, 17, 1–44. [Google Scholar] [CrossRef]
- Ródenas García, M.; Spinazzé, A.; Branco, P.T.B.S.; Borghi, F.; Villena, G.; Cattaneo, A.; Di Gilio, A.; Mihucz, V.G.; Gómez Álvarez, E.; Lopes, S.I.; et al. Review of Low-Cost Sensors for Indoor Air Quality: Features and Applications. Appl. Spectrosc. Rev. 2022, 57, 747–779. [Google Scholar] [CrossRef]
- Alejo Sánchez, D.; Schalm, O.; Álvarez Cruz, A.; Hernández Rodríguez, E.; Martínez Laguardia, A.; Kairuz Cabrera, D.; Morales Pérez, M.C. Enhancing the Reliability of NO2 Monitoring Using Low-Cost Sensors by Compensating for Temperature and Humidity Effects. Atmosphere 2024, 15, 1365. [Google Scholar] [CrossRef]
- Chacón-Mateos, M.; Laquai, B.; Vogt, U.; Stubenrauch, C. Evaluation of a Low-Cost Dryer for a Low-Cost Optical Particle Counter. Atmos. Meas. Tech. 2022, 15, 7395–7410. [Google Scholar] [CrossRef]
- Hagan, D.H.; Kroll, J.H. Assessing the Accuracy of Low-Cost Optical Particle Sensors Using a Physics-Based Approach. Atmos. Meas. Tech. 2020, 13, 6343–6355. [Google Scholar] [CrossRef]
- Zou, Y.; Clark, J.D.; May, A.A. A Systematic Investigation on the Effects of Temperature and Relative Humidity on the Performance of Eight Low-Cost Particle Sensors and Devices. J. Aerosol Sci. 2021, 152, 105715. [Google Scholar] [CrossRef]
- Bulot, F.M.J.; Johnston, S.J.; Basford, P.J.; Easton, N.H.C.; Apetroaie-Cristea, M.; Foster, G.L.; Morris, A.K.R.; Cox, S.J.; Loxham, M. Long-Term Field Comparison of Multiple Low-Cost Particulate Matter Sensors in an Outdoor Urban Environment. Sci. Rep. 2019, 9, 7497. [Google Scholar] [CrossRef]
- Feenstra, B.; Papapostolou, V.; Hasheminassab, S.; Zhang, H.; Boghossian, B.D.; Cocker, D.; Polidori, A. Performance Evaluation of Twelve Low-Cost PM2.5 Sensors at an Ambient Air Monitoring Site. Atmos. Environ. 2019, 216, 116946. [Google Scholar] [CrossRef]
- Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.F.; Westervelt, D.M.; Beekmann, M.; Subramanian, R. From Low-Cost Sensors to High-Quality Data: A Summary of Challenges and Best Practices for Effectively Calibrating Low-Cost Particulate Matter Mass Sensors. J. Aerosol Sci. 2021, 158, 105833. [Google Scholar] [CrossRef]
- Kang, J.; Choi, K. Calibration Methods for Low-Cost Particulate Matter Sensors Considering Seasonal Variability. Sensors 2024, 24, 3023. [Google Scholar] [CrossRef]
- Magi, B.I.; Cupini, C.; Francis, J.; Green, M.; Hauser, C. Evaluation of PM2.5 Measured in an Urban Setting Using a Low-Cost Optical Particle Counter and a Federal Equivalent Method Beta Attenuation Monitor. Aerosol Sci. Technol. 2020, 54, 147–159. [Google Scholar] [CrossRef]
- Ferenczi, Z.; Imre, K.; Lakatos, M.; Molnár, Á.; Bozó, L.; Homolya, E.; Gelencsér, A. Long-Term Characterization of Urban PM10 in Hungary. Aerosol Air Qual. Res. 2021, 21, 210048. [Google Scholar] [CrossRef]
- Hoffer, A.; Jancsek-Turóczi, B.; Tóth, Á.; Kiss, G.; Naghiu, A.; Levei, E.A.; Marmureanu, L.; Machon, A.; Gelencsér, A. Emission Factors for PM10 and Polycyclic Aromatic Hydrocarbons (PAHs) from Illegal Burning of Different Types of Municipal Waste in Households. Atmos. Chem. Phys. 2020, 20, 16135–16144. [Google Scholar] [CrossRef]
- Varga-Balogh, A.; Leelőssy, Á.; Mészáros, R. Effects of COVID-Induced Mobility Restrictions and Weather Conditions on Air Quality in Hungary. Atmosphere 2021, 12, 561. [Google Scholar] [CrossRef]
- Thunis, P.; Pisoni, E.; Zauli Sajani, S.; Monforti-Ferrario, F.; Bessagnet, B.; Vignati, E.; De Meij, A. Urban PM2.5 Atlas, Air Quality in European Cities, 2023 Report; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of Low-Cost Sensing Technologies for Air Quality Monitoring and Exposure Assessment: How Far Have They Gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Adamiec, E.; Dajda, J.; Gruszecka-Kosowska, A.; Helios-Rybicka, E.; Kisiel-Dorohinicki, M.; Klimek, R.; Pałka, D.; Wąs, J. Using Medium-Cost Sensors to Estimate Air Quality in Remote Locations. Case Study of Niedzica, Southern Poland. Atmosphere 2019, 10, 393. [Google Scholar] [CrossRef]
- ISO 16000-34; Indoor Air–Part 34: Strategies for the Measurement of Airborne Particles (PM2.5). International Organization for Standardization: Geneva, Switzerland, 2018.
- EN 12341; Ambient Air–Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2.5 Mass Concentration of Suspended Particulate Matter. European Committee for Standardization (CEN): Brussels, Belgium, 2014.
- He, R.; Han, T.; Bachman, D.; Carluccio, D.J.; Jaeger, R.; Zhang, J.; Thirumurugesan, S.; Andrews, C.; Mainelis, G. Evaluation of Two Low-Cost PM Monitors under Different Laboratory and Indoor Conditions. Aerosol Sci. Technol. 2020, 55, 316–331. [Google Scholar] [CrossRef]
- Song, C.; Zheng, X.; Han, L.; Wan, Q.; Huang, J.; Ding, Z.; Qian, H. Optimizing High-Volume Evacuator Usage: A Quantitative Analysis of Aerosol Control in Dental Procedures. Build. Environ. 2025, 269, 112427. [Google Scholar] [CrossRef]
- Shikhovtsev, M.Y.; Obolkin, V.A.; Khodzher, T.V.; Molozhnikova, Y.V. Variability of the Ground Concentration of Particulate Matter PM1–PM10 in the Air Basin of the Southern Baikal Region. Atmos. Ocean. Opt. 2023, 36, 655–662. [Google Scholar] [CrossRef]
- Jayaratne, R.; Liu, X.; Ahn, K.H.; Asumadu-Sakyi, A.; Fisher, G.; Gao, J.; Mabon, A.; Mazaheri, M.; Mullins, B.; Nyaku, M.; et al. Low-Cost PM2.5 Sensors: An Assessment of Their Suitability for Various Applications. Aerosol Air Qual. Res. 2020, 20, 520–532. [Google Scholar] [CrossRef]
- Duvall, R.; Clements, A.; Hagler, G.; Kamal, A.; Kilaru, V.; Goodman, L.; Frederick, S.; Barkjohn, K.J.; VonWald, I.; Greene, D.; et al. Performance Testing Protocols, Metrics, and Target Values for Fine Particulate Matter Air Sensors: Use in Ambient, Outdoor, Fixed Site, Non-Regulatory Supplemental and Informational Monitoring Applications; U.S. EPA Office of Research and Development: Washington, DC, USA, 2021.
- Polidori, A.; Papapostolou, V.; Zhang, H. Laboratory Evaluation of Low-Cost Air Quality Sensors. Laboratory Setup and Testing Protocol; 2016. Available online: https://www.aqmd.gov/docs/default-source/aq-spec/protocols/sensors-lab-testing-protocol6087afefc2b66f27bf6fff00004a91a9.pdf (accessed on 23 June 2025).
- Si, M.; Xiong, Y.; Du, S.; Du, K. Evaluation and Calibration of a Low-Cost Particle Sensor in Ambient Conditions Using Machine-Learning Methods. Atmos. Meas. Tech. 2020, 13, 1693–1707. [Google Scholar] [CrossRef]
- Zimmerman, N. Tutorial: Guidelines for Implementing Low-Cost Sensor Networks for Aerosol Monitoring. Aerosol Sci. 2022, 159, 105872. [Google Scholar] [CrossRef]
- Anastasiou, E.; Vilcassim, M.J.R.; Adragna, J.; Gill, E.; Tovar, A.; Thorpe, L.E.; Gordon, T. Feasibility of Low-Cost Particle Sensor Types in Long-Term Indoor Air Pollution Health Studies after Repeated Calibration, 2019–2021. Sci. Rep. 2022, 12, 14571. [Google Scholar] [CrossRef]
- Li, J.; Mattewal, S.K.; Patel, S.; Biswas, P. Evaluation of Nine Low-Cost-Sensor-Based Particulate Matter Monitors. Aerosol Air Qual. Res. 2020, 20, 254–270. [Google Scholar] [CrossRef]
- Li, Z.; Che, W.; Lau, A.K.H.; Fung, J.C.H.; Lin, C.; Lu, X. A Feasible Experimental Framework for Field Calibration of Portable Light-Scattering Aerosol Monitors: Case of TSI DustTrak. Environ. Pollut. 2019, 255, 113136. [Google Scholar] [CrossRef]
- Javed, W.; Guo, B. Performance Evaluation of Real-Time DustTrak Monitors for Outdoor Particulate Mass Measurements in a Desert Environment. Aerosol Air Qual. Res. 2021, 21, 200631. [Google Scholar] [CrossRef]
- Sá, J.P.; Chojer, H.; Branco, P.T.B.S.; Forstmaier, A.; Alvim-Ferraz, M.C.M.; Martins, F.G.; Sousa, S.I.V. Selection and Evaluation of Commercial Low-Cost Devices for Indoor Air Quality Monitoring in Schools. Build. Eng. 2024, 98, 110952. [Google Scholar] [CrossRef]
- Demanega, I.; Mujan, I.; Singer, B.C.; Anđelković, A.S.; Babich, F.; Licina, D. Performance Assessment of Low-Cost Environmental Monitors and Single Sensors under Variable Indoor Air Quality and Thermal Conditions. Build. Environ. 2021, 187, 107415. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, C.; Li, H. Field Comparison of TSI DustTrak versus TEOM in Two Poultry Houses. Trans. ASABE 2018, 61, 653–660. [Google Scholar] [CrossRef]
- Chojer, H.; Branco, P.T.B.S.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Sousa, S.I.V. Can Data Reliability of Low-Cost Sensor Devices for Indoor Air Particulate Matter Monitoring Be Improved?—An Approach Using Machine Learning. Atmos. Environ. 2022, 286, 119251. [Google Scholar] [CrossRef]
- Jayaratne, R.; Liu, X.; Thai, P.; Dunbabin, M.; Morawska, L. The Influence of Humidity on the Performance of a Low-Cost Air Particle Mass Sensor and the Effect of Atmospheric Fog. Atmos. Meas. Tech. 2018, 11, 4883–4890. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 978-0-471-72018-8. [Google Scholar]
- Liu, H.Y.; Schneider, P.; Haugen, R.; Vogt, M. Performance Assessment of a Low-Cost PM2.5 Sensor for a near Four-Month Period in Oslo, Norway. Atmosphere 2019, 10, 41. [Google Scholar] [CrossRef]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef]
- Zimmerman, N.; Presto, A.A.; Kumar, S.P.N.; Gu, J.; Hauryliuk, A.; Robinson, E.S.; Robinson, A.L.; Subramanian, R. A Machine Learning Calibration Model Using Random Forests to Improve Sensor Performance for Lower-Cost Air Quality Monitoring. Atmos. Meas. Tech. 2018, 11, 291–313. [Google Scholar] [CrossRef]
- Nowack, P.; Konstantinovskiy, L.; Gardiner, H.; Cant, J. Machine Learning Calibration of Low-Cost NO2 and PM10 Sensors: Non-Linear Algorithms and Their Impact on Site Transferability. Atmos. Meas. Tech. 2021, 14, 5637–5655. [Google Scholar] [CrossRef]
- Aix, M.L.; Schmitz, S.; Bicout, D.J. Calibration Methodology of Low-Cost Sensors for High-Quality Monitoring of Fine Particulate Matter. Sci. Total Environ. 2023, 889, 164063. [Google Scholar] [CrossRef]
- Dong, J.; Goodman, N.; Carre, A.; Rajagopalan, P. Calibration and Validation-Based Assessment of Low-Cost Air Quality Sensors. Sci. Total Environ. 2025, 977, 179364. [Google Scholar] [CrossRef]
- Njeru, M.N.; Mwangi, E.; Gatari, M.J.; Kaniu, M.I.; Kanyeria, J.; Raheja, G.; Westervelt, D.M. First Results from a Calibrated Network of Low-Cost PM2.5 Monitors in Mombasa, Kenya Show Exceedance of Healthy Guidelines. GeoHealth 2024, 8, e2024GH001049. [Google Scholar] [CrossRef]
- ISO 12103-1 A1; Road Vehicles—Test Dust for Filter Evaluation—Part 1: Arizona Test Dust. International Organization for Standardization: Geneva, Switzerland, 2016.
- Malings, C.; Tanzer, R.; Hauryliuk, A.; Saha, P.K.; Robinson, A.L.; Presto, A.A.; Subramanian, R. Fine Particle Mass Monitoring with Low-Cost Sensors: Corrections and Long-Term Performance Evaluation. Aerosol Sci. Technol. 2020, 54, 160–174. [Google Scholar] [CrossRef]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring. J. Sens. 2018, 1, 5096540. [Google Scholar] [CrossRef]
- Borghi, F.; Spinazzè, A.; Campagnolo, D.; Rovelli, S.; Cattaneo, A.; Cavallo, D.M. Precision and Accuracy of a Direct-Reading Miniaturized Monitor in PM2.5 Exposure Assessment. Sensors 2018, 18, 3089. [Google Scholar] [CrossRef]
- Dejchanchaiwong, R.; Tekasakul, P.; Saejio, A.; Limna, T.; Le, T.-C.; Tsai, C.-J.; Lin, G.-Y.; Morris, J. Seasonal Field Calibration of Low-Cost PM2.5 Sensors in Different Locations with Different Sources in Thailand. Atmosphere 2023, 14, 496. [Google Scholar] [CrossRef]
- Feng, Z.; Zheng, L.; Ren, B.; Liu, D.; Huang, J.; Xue, N. Feasibility of low-cost particulate matter sensors for long-term environmental monitoring: Field evaluation and calibration. Sci. Total Environ. 2024, 945, 174089. [Google Scholar] [CrossRef]
- Feinberg, S.; Williams, R.; Hagler, G.S.; Rickard, J.; Brown, R.; Garver, D.; Harshfield, G.; Stauffer, P.; Mattson, E.; Judge, R.; et al. Long-term evaluation of air sensor technology under ambient conditions in Denver, Colorado. Atmos. Meas. Tech. 2018, 11, 4605–4615. [Google Scholar] [CrossRef]
- Gualtieri, G.; Brilli, L.; Carotenuto, F.; Cavaliere, A.; Giordano, T.; Putzolu, S.; Vagnoli, C.; Zaldei, A.; Gioli, B. Performance Assessment of Two Low-Cost PM2.5 and PM10 Monitoring Networks in the Padana Plain (Italy). Sensors 2024, 24, 3946. [Google Scholar] [CrossRef]
- Kelly, K.E.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [Google Scholar] [CrossRef]
- Malyan, V.; Kumar, V.; Sahu, M. Significance of sources and size distribution on calibration of low-cost particle sensors: Evidence from a field sampling campaign. J. Aerosol Sci. 2023, 168, 106114. [Google Scholar] [CrossRef]
- Shikhovtsev, M.Y.; Makarov, M.M.; Aslamov, I.A.; Tyurnev, I.N.; Molozhnikova, Y.V. Application of Modern Low-Cost Sensors for Monitoring of Particle Matter in Temperate Latitudes: An Example from the Southern Baikal Region. Sustainability 2025, 17, 3585. [Google Scholar] [CrossRef]
- Vasilyeva, D.E.; Gulyaeva, E.A.; Imasuc, R.; Markelovb, Y.I.; Matsumid, Y.; Talovskayae, A.V.; Shchelkanova, A.A.; Gadelshin, V.M. A Measuring System for PM2.5 Concentration and Meteorological Parameters for a Multipoint Aerosol Monitoring Network in Yekaterinburg. Atmos. Ocean. Opt. 2023, 36, 790–797. [Google Scholar] [CrossRef]
- Villanueva, E.; Espezua, S.; Castelar, G.; Diaz, K.; Ingaroca, E. Smart multi-sensor calibration of low-cost particulate matter monitors. Sensors 2023, 23, 3776. [Google Scholar] [CrossRef]
Device | AirVisual Pro (IQAir, AG, Steinach, Switzerland) | DustTrak II 8532 (TSI Inc., Shoreview, MN, USA) | Xiaomi Mijia Air Detector (Xiaomi, Inc., China) | Xiaomi Smartmi PM2.5 (Xiaomi, Inc., China) |
---|---|---|---|---|
Photo | ||||
Dimensions (mm) (H × W × D) | 82 × 184 × 100 | 125 × 121 × 316 | 109 × 64 × 29.5 | 90 × 60 × 12 |
Weight (kg) | 0.88 | 1.50 | 0.18 | 0.09 |
Measured parameters * | PM1, PM2.5, PM10, CO2, T, RH | PM1, PM2.5, PM4, PM10 | PM2.5, TVOC, CO2, T, RH | PM2.5 |
Data storage | Internal memory, cloud storage via app | Internal memory | no storage | no storage |
Sampling time interval | #1–#2: 15 min #3–#6: 3 min | 3 min | 3 min | 3 min |
Time period for operation (dd/mm) | #1–#2: 26/11–10/12 #3–#6: 12/11–15/12 | #1: 12/11–20/11 #2: 12/11–26/11 | 8 separate days | 8 separate days |
Sensor | N | Slope | Intercept | R2 | RMSE | MAE | MBE | Accuracy |
---|---|---|---|---|---|---|---|---|
(µg/m3) | (µg/m3) | (µg/m3) | (%) | |||||
AirVisual 1 | 337 | 0.60 | 3.35 | 0.93 | 9.34 | 7.24 | 7.21 | 62.74 |
AirVisual 2 | 337 | 0.82 | 4.57 | 0.93 | 3.22 | 2.69 | −1.43 | 92.56 |
AirVisual 3 | 633 | 0.49 | 3.29 | 0.88 | 17.22 | 14.06 | 14.03 | 30.60 |
AirVisual 4 | 633 | 0.62 | 3.32 | 0.86 | 9.66 | 7.28 | 7.01 | 65.34 |
AirVisual 5 | 633 | 0.59 | 3.00 | 0.85 | 11.52 | 9.15 | 8.90 | 55.94 |
AirVisual 6 | 633 | 0.48 | 2.05 | 0.92 | 20.46 | 17.55 | 17.55 | 13.17 |
TSI 1 | 83 | 0.97 | 6.21 | 0.94 | 6.30 | 5.71 | −5.66 | 79.08 |
TSI 2 | 177 | 1.02 | 4.77 | 0.93 | 6.16 | 5.37 | −5.21 | 79.43 |
Xiaomi Mijia | 23 | 0.46 | 1.21 | 0.89 | 18.87 | 17.50 | 17.50 | −0.81 |
Xiaomi Smartmi | 23 | 0.56 | −0.35 | 0.94 | 14.78 | 13.97 | 13.97 | 19.54 |
Sensor | N | R2 | RMSE | MAE | MBE | Accuracy |
---|---|---|---|---|---|---|
(µg/m3) | (µg/m3) | (µg/m3) | (%) | |||
AirVisual 1 | 337 | 0.93 | 2.28 | 1.47 | −0.07 | 99.65 |
AirVisual 2 | 337 | 0.93 | 2.28 | 1.81 | −0.09 | 99.51 |
AirVisual 3 | 633 | 0.88 | 3.39 | 2.42 | −0.14 | 99.27 |
AirVisual 4 | 633 | 0.86 | 3.67 | 2.59 | −0.02 | 99.90 |
AirVisual 5 | 633 | 0.85 | 3.78 | 2.66 | −0.03 | 99.83 |
AirVisual 6 | 633 | 0.92 | 2.72 | 1.93 | −0.03 | 99.81 |
TSI 1 | 83 | 0.94 | 2.75 | 2.21 | −0.10 | 99.62 |
TSI 2 | 177 | 0.93 | 3.26 | 2.56 | −0.04 | 99.82 |
Xiaomi Mijia | 23 | 0.89 | 2.09 | 1.41 | −0.11 | 99.34 |
Xiaomi Smartmi | 23 | 0.94 | 1.47 | 1.16 | −0.16 | 99.04 |
Sensor | N | β0 | β1 | β2 | β3 | R2 | RMSE | MAE | MBE | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
(µg/m3) | (µg/m3) | (µg/m3) | (%) | |||||||
AirVisual 1 | 337 | 12.95 | 0.59 *** | −0.10 *** | −0.14 ** | 0.94 | 2.13 | 1.33 | −0.01 | 99.94 |
AirVisual 2 | 337 | 13.04 | 0.79 *** | −0.07 *** | −0.27 *** | 0.94 | 2.29 | 1.79 | 0.85 | 95.57 |
AirVisual 3 | 633 | 15.64 | 0.50 *** | −0.13 *** | −0.27 *** | 0.90 | 3.07 | 2.11 | 0.12 | 99.36 |
AirVisual 4 | 633 | 18.15 | 0.63 *** | −0.15 *** | −0.44 *** | 0.89 | 3.21 | 2.19 | 0.35 | 98.25 |
AirVisual 5 | 633 | 17.53 | 0.61 *** | −0.16 *** | −0.30 *** | 0.88 | 3.37 | 2.30 | −0.10 | 99.49 |
AirVisual 6 | 633 | 13.70 | 0.49 *** | −0.12 *** | −0.23 *** | 0.94 | 2.42 | 1.68 | 0.58 | 97.08 |
TSI 1 | 83 | 19.18 | 1.03 *** | −0.15 ** | −0.04 | 0.96 | 2.39 | 1.95 | 0.26 | 99.03 |
TSI 2 | 177 | 10.74 | 1.13 *** | −0.10 *** | 0.10 | 0.94 | 2.97 | 2.33 | 0.03 | 99.87 |
Xiaomi Mijia | 23 | 16.93 | 0.45 *** | −0.15 ** | −0.39 ** | 0.95 | 1.39 | 1.14 | 0.30 | 98.26 |
Xiaomi Smartmi | 23 | 13.18 | 0.53 *** | −0.13 ** | −0.16 | 0.97 | 1.01 | 0.64 | 0.12 | 99.29 |
SLR | MLR | |||||||
---|---|---|---|---|---|---|---|---|
RMSE | MBE | MAE | Accuracy | RMSE | MBE | MAE | Accuracy | |
(µg/m3) | (µg/m3) | (µg/m3) | (%) | (µg/m3) | (µg/m3) | (µg/m3) | (%) | |
AirVisual1 | 2.28 | −0.07 | 1.48 | 99.65 | 2.13 | −0.01 | 1.34 | 99.94 |
AirVisual2 | 2.66 | −0.02 | 2.05 | 99.92 | 2.29 | 0.50 | 1.57 | 97.39 |
AirVisual3 | 2.77 | 0.06 | 1.97 | 99.71 | 2.55 | 0.42 | 1.67 | 97.81 |
AirVisual4 | 2.28 | −0.09 | 1.81 | 99.52 | 2.29 | 0.86 | 1.80 | 95.58 |
AirVisual5 | 2.56 | 0.19 | 1.99 | 99.04 | 2.29 | 0.22 | 1.64 | 98.88 |
AirVisual6 | 1.91 | 0.14 | 1.41 | 99.29 | 1.91 | 0.84 | 1.26 | 95.65 |
E. mean | 2.13 | 0.03 | 1.67 | 99.82 | 1.90 | 0.47 | 1.37 | 97.56 |
E. median | 2.42 | 0.02 | 1.89 | 99.59 | 2.29 | 0.46 | 1.61 | 97.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atfeh, B.; Barcza, Z.; Groma, V.; Tordai, Á.V.; Mészáros, R. Performance Assessment of Low- and Medium-Cost PM2.5 Sensors in Real-World Conditions in Central Europe. Atmosphere 2025, 16, 796. https://doi.org/10.3390/atmos16070796
Atfeh B, Barcza Z, Groma V, Tordai ÁV, Mészáros R. Performance Assessment of Low- and Medium-Cost PM2.5 Sensors in Real-World Conditions in Central Europe. Atmosphere. 2025; 16(7):796. https://doi.org/10.3390/atmos16070796
Chicago/Turabian StyleAtfeh, Bushra, Zoltán Barcza, Veronika Groma, Ágoston Vilmos Tordai, and Róbert Mészáros. 2025. "Performance Assessment of Low- and Medium-Cost PM2.5 Sensors in Real-World Conditions in Central Europe" Atmosphere 16, no. 7: 796. https://doi.org/10.3390/atmos16070796
APA StyleAtfeh, B., Barcza, Z., Groma, V., Tordai, Á. V., & Mészáros, R. (2025). Performance Assessment of Low- and Medium-Cost PM2.5 Sensors in Real-World Conditions in Central Europe. Atmosphere, 16(7), 796. https://doi.org/10.3390/atmos16070796