Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (265)

Search Parameters:
Keywords = wood grain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4708 KB  
Article
CM-EffNet: A Direction-Aware and Detail-Preserving Network for Wood Species Identification Based on Microscopic Anatomical Patterns
by Changwei Gu and Lei Zhao
Forests 2026, 17(1), 96; https://doi.org/10.3390/f17010096 - 11 Jan 2026
Viewed by 121
Abstract
The authentication of wood species is of paramount significance to market regulation and product quality control in the construction industry. While classification based on microscopic wood cell structures serves as a critical reference for this task, the high inter-class similarity of cell structures [...] Read more.
The authentication of wood species is of paramount significance to market regulation and product quality control in the construction industry. While classification based on microscopic wood cell structures serves as a critical reference for this task, the high inter-class similarity of cell structures and the inherent biological anisotropy of fine textures pose significant challenges to existing methods. Due to their generic design, standard deep learning models often struggle to capture these fine-grained directional features and suffer from catastrophic feature loss during global pooling, particularly under limited sample conditions. To bridge this gap between general-purpose architectures and the specific demands of wood texture analysis, this paper proposes CM-EffNet, a lightweight fine-grained classification framework based on an improved EfficientNetV2 architecture. Firstly, a data augmentation strategy is employed to expand a collected dataset of 226 wood species from 3673 to 29,384 images, effectively mitigating overfitting caused by small sample sizes. Secondly, a Coordinate Attention (CA) mechanism is integrated to embed positional information into channel attention. This allows the network to precisely capture long-range dependencies between cell walls and vessels cavities, successfully decoding the challenge of textural anisotropy. Thirdly, a MixPooling strategy is introduced to replace traditional global average pooling, enabling the collaborative extraction of background context and salient fine-grained details to prevent the loss of critical micro-features. Systematic experiments demonstrate that CM-EffNet achieves a recognition accuracy of 96.72% and a training accuracy of 98.18%. Comparative results confirm that the proposed model offers superior learning efficiency and classification precision with a compact parameter size. This makes it highly suitable for deployment on mobile terminals connected to portable microscopes, providing a rapid and accurate solution for on-site timber market regulation and industrial quality control. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

14 pages, 898 KB  
Article
Changes in Chemical and Mechanical Wood Properties in Silver Fir, Norway Spruce and Scots Pine Trees as a Result of High Temperatures Due to Fire
by Tomáš Holeček, Lukáš Sahula, Kateřina Hájková, Aleš Zeidler, Monika Barbara Gach, Paweł Tylek, Krzysztof Słowiński, Radosław Wąsik, Krzysztof Michalec and Tomasz Marcinik
Fire 2026, 9(1), 6; https://doi.org/10.3390/fire9010006 - 23 Dec 2025
Viewed by 452
Abstract
Wildfires are becoming more frequent in Central Europe, raising questions about the mechanical and chemical integrity of fire-affected conifer wood. Because commercial species such as silver fir (Abies alba), Norway spruce (Picea abies), and Scots pine (Pinus sylvestris [...] Read more.
Wildfires are becoming more frequent in Central Europe, raising questions about the mechanical and chemical integrity of fire-affected conifer wood. Because commercial species such as silver fir (Abies alba), Norway spruce (Picea abies), and Scots pine (Pinus sylvestris) are not evolutionarily adapted to fire, their thermo-mechanical response remains poorly quantified. This study investigates oven-dry density, static bending strength, compressive strength parallel to the grain, Brinell hardness, chemical composition, elemental composition, and heat of combustion of wood collected from a recent post-fire stand in Poland. Fire exposure resulted in a slight reduction in oven-dry density, while compressive and bending strengths increased relative to reported reference values, likely due to moisture depletion and partial thermal modification of cell-wall polymers. Chemical analyses showed moderate thermally induced shifts, including higher lignin and carbon content with depth, consistent with progressive carbonization of the affected tissues. Although surface-affected wood retained measurable mechanical capacity and energy value, its structural applicability remains constrained by potential brittleness and the limited sampling depth. These findings provide essential baseline data for evaluating post-fire conifer wood and its potential use in low-grade material and bioenergy applications. Full article
Show Figures

Figure 1

22 pages, 4690 KB  
Article
Poly(vinyl chloride) Plastisol Composites with Surface-Modified Wood Flour as Potential Coating and Insulating Materials for Modern Energy-Efficient Constructions
by Przemysław Siekierka, Edwin Makarewicz, Sławomir Wilczewski, Katarzyna Skórczewska, Krzysztof Lewandowski, Jacek Mirowski and Magdalena Osial
Materials 2026, 19(1), 41; https://doi.org/10.3390/ma19010041 - 22 Dec 2025
Viewed by 366
Abstract
This study investigates the development of sustainable PVC-based composites filled with surface-modified wood flour for potential use in modern, energy-efficient building systems. The aim was to enhance the mechanical performance, thermal stability, and interfacial compatibility of PVC plastisols by incorporating fine- and coarse-grained [...] Read more.
This study investigates the development of sustainable PVC-based composites filled with surface-modified wood flour for potential use in modern, energy-efficient building systems. The aim was to enhance the mechanical performance, thermal stability, and interfacial compatibility of PVC plastisols by incorporating fine- and coarse-grained coniferous wood flour modified with silane and surfactants. Composites were formulated using emulsion PVC (Vinnolit E-2059), bis(2-ethylhexyl) adipate as a plasticizer, and MARK-17 MOK as a thermal stabilizer, and were gelled under pressure at 150 °C. Their physical, mechanical, structural, and thermal characteristics were evaluated using density and hardness measurements, SEM, thermomechanical analysis, DMA, and TGA. The results demonstrated that composites containing fine-grained, silane-treated wood flour (Lignocel C-120) exhibited the most advantageous balance of stiffness, elasticity, and thermal resistance, attributable to improved polymer–wood interfacial adhesion. The findings confirm the potential of modified wood flour as an effective bio-based filler enabling the design of durable, thermally stable coating and insulating materials with reduced environmental impact. The proposed composites may serve as protective, bonding, or insulating layers in sustainable construction, supporting the development of innovative, wood-based materials for low-carbon building applications. Full article
(This article belongs to the Special Issue Modern Wood-Based Materials for Sustainable Building)
Show Figures

Figure 1

33 pages, 11553 KB  
Article
Forest Habitats, Management Intensity, and Elevation as Drivers of Eumycetozoa Distributions and Their Utility as Bioindicators
by Tomasz Pawłowicz, Tomasz Oszako and Adam Okorski
Forests 2025, 16(12), 1871; https://doi.org/10.3390/f16121871 - 17 Dec 2025
Viewed by 286
Abstract
Slime moulds (Eumycetozoa) are closely associated with forest structure, moisture and the availability of microhabitats, which together make them promising candidates for bioindication. This study synthesised an integrated, georeferenced resource from Central and Eastern Europe to assess how forest habitat, management intensity, and [...] Read more.
Slime moulds (Eumycetozoa) are closely associated with forest structure, moisture and the availability of microhabitats, which together make them promising candidates for bioindication. This study synthesised an integrated, georeferenced resource from Central and Eastern Europe to assess how forest habitat, management intensity, and elevation structure assemblages, and to identify indicator taxa suited to monitoring. Analyses in R (RStudio, version 4.5.2) combined effort-controlled diversity comparisons, models of record intensity, habitat-stratified elevation responses, constrained ordination, and indicator testing at species and higher ranks. The resulting corpus encompassed 624 species from 16 countries and eight consolidated forest habitat classes, enabling quantification of joint assemblage responses to habitat, management intensity, and elevation under effort-controlled sampling, and facilitating the identification of indicator sets that are robust to uneven sampling. At the order and genus levels, Physarales, Trichiales, and Stemonitidales, together with genera such as Trichia, Meriderma, and Polyschismium, exhibited the clearest and most transferable indicator behaviour, while species including Trichia varia, Fuligo septica, and Meriderma carestiae emerged as promising candidates for fine-grained bioindication along habitat and elevation gradients. Habitat exerted clearer contrasts than management; elevation effects were strongly habitat specific, and a compact set of taxa showed stable, interpretable indicator behaviour across gradients. These indicator assemblages, together with an appraisal of cross-country generalisation, provide an operational basis for elevation-aware, habitat-structured bioindication with slime moulds in European forests. Taken together, these results indicate that slime mould assemblages have the potential to complement existing forest bioindication systems, both by tracking broad forest habitat types along management and elevation gradients and by providing indirect information on less conspicuous attributes such as stand naturalness and the availability of dead wood, although such applications remain at a proof-of-concept stage and will require further targeted evaluation before operational deployment. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

24 pages, 1194 KB  
Article
Peat Partial Replacement: Life Cycle Assessment and Eco-Efficiency in Potted Ornamental Sage Cultivation
by Anna Elisa Sdao, Barbara De Lucia, Annalisa De Boni, Giovanni Ottomano Palmisano and Rocco Roma
Sustainability 2025, 17(24), 11238; https://doi.org/10.3390/su172411238 - 15 Dec 2025
Viewed by 407
Abstract
Peat, a vital component of horticultural growing media (GM), is recognized by the Intergovernmental Panel on Climate Change (IPCC) as a solid fossil fuel which significantly contributes to the depletion of fossil resources and greenhouse gas emissions. This study evaluated the partial replacement [...] Read more.
Peat, a vital component of horticultural growing media (GM), is recognized by the Intergovernmental Panel on Climate Change (IPCC) as a solid fossil fuel which significantly contributes to the depletion of fossil resources and greenhouse gas emissions. This study evaluated the partial replacement of peat with three locally available by-products—wood fiber (WF), coffee silverskin (CS), and brewers’ spent grain (BSG)—in the cultivation of potted ornamental sage through an integrated environmental–economic approach. Ten GM formulations were modeled, with peat substitutions ranging from 0 to 40% (v/v) across one hectare of greenhouse production (90,000 pots). Environmental impacts were assessed using the EPD 2018 method in SimaPro, while eco-efficiency was calculated as the ratio of the environmental impact costs resulting from the different energy consumptions (EUR) to related revenues (EUR). Results revealed only minor variations among impact categories when comparing the alternative growing media with the peat-based control (0PR), with the exception of the Abiotic Depletion of Fossil Fuels (ADff), which showed a consistent decrease at higher peat replacement levels. Treatments with 40% substitution performed best, particularly BSG40 and CS40, with the lowest eco-efficiency ratios (≈approximately 11.4%). WF40 also showed favorable outcomes (≈12.7%), confirming that a 20–40% peat replacement offers the optimal balance between environmental sustainability and economic viability. Overall, partial peat replacement using local by-products effectively reduces the consumption of fossil resources without significantly impacting other environmental indicators, promoting circularity and competitiveness in ornamental plant production. Full article
Show Figures

Figure 1

30 pages, 7520 KB  
Review
From Agricultural Residues to Sustainable Boards: Complex Network Analysis of Binderless Composites
by Lucia Rossi, Luis A. Miccio, Emiliano M. Ciannamea and Pablo M. Stefani
Polymers 2025, 17(22), 3082; https://doi.org/10.3390/polym17223082 - 20 Nov 2025
Viewed by 1026
Abstract
The transition toward sustainable panel technologies is driving intensive research on binderless boards and self-bonded lignocellulosic composites. Particleboard, an engineered wood composite made by hot pressing wood particles with synthetic adhesives, is among the most widely produced wood-based panels due to cost-effectiveness and [...] Read more.
The transition toward sustainable panel technologies is driving intensive research on binderless boards and self-bonded lignocellulosic composites. Particleboard, an engineered wood composite made by hot pressing wood particles with synthetic adhesives, is among the most widely produced wood-based panels due to cost-effectiveness and versatility. However, pressure on forest-derived raw materials and concern over formaldehyde emissions are accelerating the search for renewable resources and greener routes. Residues and underutilized materials from agro-industrial, food, and forestry sectors (such as cereal straws, sugarcane bagasse, brewer’s spent grain, and fruit-processing by-products) offer a sustainable alternative, enabling waste valorization, lowering environmental burdens, and supporting circular bioeconomy models. Binderless boards, produced without adhesives, exploit natural bonding among lignocellulosic components, including lignin softening, thermoplasticization, and covalent crosslinking during hot pressing. This review adopts a complex network approach to systematically map and analyze the scientific landscape of binderless board production. Using citation-based networks from curated seed papers and their first- and second-degree neighbors, we identify thematic clusters, with cluster “A” as the research core. The examination of this cluster, complemented by word-cloud analysis of titles and abstracts, highlights prevalent raw materials and key research lines, like raw-material sources and lignocellulosic composition, processing parameters, and pretreatment strategies. Based on these findings, brewer’s spent grain is selected as a representative case study for cost analysis. This approach synthesizes the state of the art and reveals emerging directions, research gaps, and influential works, providing a data-driven foundation for advancing self-bonded lignocellulosic composites. Full article
Show Figures

Figure 1

15 pages, 3216 KB  
Article
Bending Properties of Pleated Wood Thermally Treated at 160 °C and 200 °C Temperatures
by Mátyás Báder, Bíbor Júlia Horváth and Miklós Bak
Forests 2025, 16(11), 1702; https://doi.org/10.3390/f16111702 - 7 Nov 2025
Viewed by 323
Abstract
This study investigates the combined effects of compression along the grain by 20% after steaming (pleating), and thermal treatment on the mechanical and physical properties of beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.). Pleating significantly increased plasticity [...] Read more.
This study investigates the combined effects of compression along the grain by 20% after steaming (pleating), and thermal treatment on the mechanical and physical properties of beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.). Pleating significantly increased plasticity and maximum deflection, reaching 339% of untreated values in beech and 337% in oak. However, it reduced bending strength and modulus of elasticity to about 50%. Keeping the specimen compressed for 5 h (fixation) during the thermo-hydro-mechanical modification process of pleating further decreased the modulus of elasticity to 26%–29% of untreated levels. Thermal treatment at 160 °C increased bending strength of fixated specimens to 120.5% in beech and 125.3% in oak, partially restoring strength, while at 200 °C, it decreased drastically to 26.7% and 21.5%, respectively. Density was reduced by thermal treatment, with oven-dry values decreasing by 6.2% (beech) and 12.7% (oak) at 160 °C, and by 18.2% and 25.1% at 200 °C. The results indicate that high-temperature treatment (200 °C) leads to wood with brittle properties. Full article
Show Figures

Figure 1

17 pages, 2676 KB  
Article
Stiffness and Strength of Scots Pine Wood Under Compression Perpendicular to the Grain and Rolling Shear Loading
by Shaheda T. Akter, Anders Olsson and Thomas K. Bader
Appl. Sci. 2025, 15(19), 10775; https://doi.org/10.3390/app151910775 - 7 Oct 2025
Viewed by 2598
Abstract
To increase and optimize the use of wood in structural elements, a deep understanding of its mechanical behavior is necessary. The transverse material properties of wood are particularly important for mass timber construction and for utilizing wood as a strengthening material in timber [...] Read more.
To increase and optimize the use of wood in structural elements, a deep understanding of its mechanical behavior is necessary. The transverse material properties of wood are particularly important for mass timber construction and for utilizing wood as a strengthening material in timber connections. This study experimentally determined the stiffness and strength of Scots pine wood under compression perpendicular to the grain and rolling shear loading, as well as their dependence on the annual ring structure. A previously established biaxial test configuration was employed for this purpose. The modulus of elasticity in the radial direction was found to be about twice that in the tangential direction (687 vs. 372 N/mm2), although the strength in the tangential direction (5.19 N/mm2) was comparatively higher than that in the radial direction (4.70 N/mm2). For rolling shear, especially for the rolling shear modulus, a large variation was found, and its relationship with annual ring structure was assessed. The obtained RS modulus ranged from 50 to 254 N/mm2, while RS strength was found to be between 2.14 and 4.61 N/mm2. The results aligned well with previous findings. Full article
Show Figures

Figure 1

15 pages, 1388 KB  
Article
The Effect of Torrefaction on the Properties of Spruce (Picea abies) and Sycamore (Acer platanoides) Wood
by Cosmin Spirchez and Aurel Lunguleasa
Appl. Sci. 2025, 15(18), 10054; https://doi.org/10.3390/app151810054 - 15 Sep 2025
Viewed by 716
Abstract
The recent increase in demand for natural wood has led to an increase in the study of various wood treatments to expand its applications. In this regard, the torrefaction of natural wood has been used to complement classic treatments, reducing the wood’s affinity [...] Read more.
The recent increase in demand for natural wood has led to an increase in the study of various wood treatments to expand its applications. In this regard, the torrefaction of natural wood has been used to complement classic treatments, reducing the wood’s affinity for water and increasing its durability while maintaining or only slightly worsening its physical and mechanical properties. The aim of this paper is to evaluate the physical and mechanical properties of spruce and mountain maple wood torrefied at temperatures of 180–200 °C for 1–3 h and to compare them with those of non-torrefied wood of the same species. The results showed that torrefied wood has better properties in terms of water affinity and has quite good properties in terms of density and the analyzed mechanical properties such as compressive strength, tensile strength parallel to the wood grain, static bending strength, and Brinell hardness. The general results of this paper show that the torrefied samples of the two species have better properties than non-torrefied samples, thus broadening their applications. Full article
Show Figures

Figure 1

12 pages, 3027 KB  
Article
Exploring Paulownia as a Sustainable Alternative to Balsa in Plywood Manufacturing
by Marius Cătălin Barbu, Katharina Burešova, Eugenia Mariana Tudor and Thomas Sepperer
Forests 2025, 16(9), 1436; https://doi.org/10.3390/f16091436 - 9 Sep 2025
Viewed by 1145
Abstract
As industries continue to prioritize sustainability and resource efficiency, Paulownia stands out as a sustainable candidate for replacing Balsa in engineered wood products, offering a lighter, cost-effective solution with the added benefit of reduced ecological impact. The aim of this research is to [...] Read more.
As industries continue to prioritize sustainability and resource efficiency, Paulownia stands out as a sustainable candidate for replacing Balsa in engineered wood products, offering a lighter, cost-effective solution with the added benefit of reduced ecological impact. The aim of this research is to manufacture 7 mm- and 15 mm-thick plywood from Paulownia tomentosa x elongata veneers (as an alternative for balsa veneers) using polyurethane (PUR) and melamine–urea–formaldehyde (MUF) adhesives, and to analyze their physical and mechanical properties. Panels with five and seven layers and thicknesses from 0.8 to 3 mm were tested for bulk density (247–385 kg/m3), thickness swelling (2.47%–5.34%), and water absorption (35%–68%) according to European standards. Mechanical properties assessed included three-point bending strength (MOR) parallel (22–35.8 N/mm2) and perpendicular to the fiber/grain (13.4–21.8 N/mm2), three-point modulus of elasticity (MOE) in longitudinal (2824–3799 N/mm2) and transverse directions (1183–1825 N/mm2), tensile shear strength (1.76–2.52 N/mm2), and screw withdrawal resistance (41.9–60.6 N/mm). Results indicate that Paulownia plywood has significant potential for lightweight construction due to its low density and favorable properties, with MUF adhesive showing superior performance in terms of density and panel properties. This positions Paulownia plywood as a strong contender in the ongoing evolution of lightweight construction materials. Full article
Show Figures

Figure 1

34 pages, 4505 KB  
Article
Partial Replacement of Peat: Effects on Substrate Physico-Hydrological Properties and Sage Growth
by Anna Elisa Sdao, Sonia Cacini, Danilo Loconsole, Giulia Conversa, Giuseppe Cristiano, Antonio Elia and Barbara De Lucia
Plants 2025, 14(17), 2801; https://doi.org/10.3390/plants14172801 - 7 Sep 2025
Cited by 2 | Viewed by 1545
Abstract
The transformation of organic by-products derived from waste into value-added resources represents a promising strategy to advance circular economy principles and bolster environmental and agricultural sustainability, especially in soilless cultivation. This study evaluates the viability of three organic by-products—wood fiber (WF), coffee silverskin [...] Read more.
The transformation of organic by-products derived from waste into value-added resources represents a promising strategy to advance circular economy principles and bolster environmental and agricultural sustainability, especially in soilless cultivation. This study evaluates the viability of three organic by-products—wood fiber (WF), coffee silverskin (CS), and brewer’s spent grains (BSGs)—as partial peat replacements in horticultural substrates. Ten growing media formulations were assessed, incorporating increased doses (0–40% v/v as peat replacement-PR) of each alternative by-product. The effects on physical and hydraulic substrate properties, along with plant growth traits, were examined using two ornamental Salvia genotypes, ‘Victoria’ and ‘Amistad’. To synthesize the multivariate growth data into a single, biologically meaningful metric, based on the first principal component, a Growth Index (GI), a PC1-derived index, was calculated, providing a powerful, unified metric to rank substrate efficacy. WF-based substrates exhibited increased porosity and diminished water retention, whereas media enriched with CS and BSG enhanced moisture availability, particularly at 20–40 PR. The bulk density was highest at PR40 for both WF and BSG treatments, and at PR20 in CS-based substrates. Electrical conductivity increased in CS and BSG treatments with rising PR levels. The results on the vegetative growth of ornamental sages have highlighted that differential PR rates are required depending on the specific organic by-product and plant genotype. In ‘Victoria’, GI indicates that a 20% replacement of peat with BSG provided the optimal conditions for holistic plant development; the lowest GI for WF substrates across nearly all peat replacement levels indicated that it was the most detrimental alternative for this cultivar. In ‘Amistad’, the analysis of the GI scores revealed that the CS20 and BSG20 of peat replacement yielded the highest overall growth, with GI scores significantly greater than those of the peat control. CS10 and BSG40 also showed high GI scores in ‘Amistad’. WF10 had GI scores similar to those of the peat control. In general, the GI-based approach confirms that moderate inclusion of brewer’s spent grain (BSG20) is a highly effective peat replacement for both genotypes. At the same time, coffee silverskin (CS) is particularly effective for the ‘Amistad’ genotype. This analysis underscores that optimal substrate formulation is not only dependent on the amendment type and rate but also critically on the plant genotype. Full article
Show Figures

Figure 1

15 pages, 3289 KB  
Article
Lateral Confinement Reinforcement of Timber Under Perpendicular-to-Grain Compression
by Jose Ramón Aira-Zunzunegui and Laura Gonzalo-Calderón
Heritage 2025, 8(9), 368; https://doi.org/10.3390/heritage8090368 - 5 Sep 2025
Viewed by 639
Abstract
One of the most common issues encountered in the rehabilitation of timber-structured buildings is the crushing of elements subjected to compression perpendicular to the grain. This crushing results in differential settlements that decrease comfort and, in some cases, compromise the habitability of the [...] Read more.
One of the most common issues encountered in the rehabilitation of timber-structured buildings is the crushing of elements subjected to compression perpendicular to the grain. This crushing results in differential settlements that decrease comfort and, in some cases, compromise the habitability of the building. This study analyzed a reinforcement method involving the lateral confinement of timber members using two metallic side plates. Experimental tests were conducted with various configurations of the bolts used to fix the plates. In addition, several finite element models were developed and validated to extend the scope of the analysis virtually. An initial reinforcement proposal was examined, in which the metal plates were allowed to move vertically with the wood’s deformation. This setup achieved only a 26% reduction in deformation. Subsequently, an enhanced reinforcement system was tested, wherein the plates were anchored to the lower vertical stud, preventing their vertical movement. This configuration significantly enhanced performance, achieving maximum deformation reductions of up to 53%. Finally, in the improved reinforcement system, the load distribution among the bolts was analyzed to support their structural design. Full article
(This article belongs to the Section Architectural Heritage)
Show Figures

Figure 1

14 pages, 1202 KB  
Article
Optimization of Gabor Convolutional Networks Using the Taguchi Method and Their Application in Wood Defect Detection
by Ming-Feng Yeh, Ching-Chuan Luo and Yu-Cheng Liu
Appl. Sci. 2025, 15(17), 9557; https://doi.org/10.3390/app15179557 - 30 Aug 2025
Cited by 1 | Viewed by 781
Abstract
Automated optical inspection (AOI) of wood surfaces is critical for ensuring product quality in the furniture and manufacturing industries; however, existing defect detection systems often struggle to generalize across complex grain patterns and diverse defect types. This study proposes a wood defect recognition [...] Read more.
Automated optical inspection (AOI) of wood surfaces is critical for ensuring product quality in the furniture and manufacturing industries; however, existing defect detection systems often struggle to generalize across complex grain patterns and diverse defect types. This study proposes a wood defect recognition model employing a Gabor Convolutional Network (GCN) that integrates convolutional neural networks (CNNs) with Gabor filters. To systematically optimize the network’s architecture and improve both detection accuracy and computational efficiency, the Taguchi method is employed to tune key hyperparameters, including convolutional kernel size, filter number, and Gabor parameters (frequency, orientation, and phase offset). Additionally, image tiling and augmentation techniques are employed to effectively increase the training dataset, thereby enhancing the model’s stability and accuracy. Experiments conducted on the MVTec Anomaly Detection dataset (wood category) demonstrate that the Taguchi-optimized GCN achieves an accuracy of 98.92%, outperforming a baseline Taguchi-optimized CNN by 2.73%. Results confirm that Taguchi-optimized GCNs enhance defect detection performance and computational efficiency, making them valuable for smart manufacturing. Full article
(This article belongs to the Topic Electronic Communications, IOT and Big Data, 2nd Volume)
Show Figures

Figure 1

21 pages, 5155 KB  
Article
Dynamic Degradation of Seed Ropes: Influence of Material Type and Adhesion to Different Soils
by Jiaoyang Duan, Xiang Liu and Baolong Wang
Agronomy 2025, 15(9), 2065; https://doi.org/10.3390/agronomy15092065 - 27 Aug 2025
Viewed by 883
Abstract
Seed rope direct seeding technology is a precision seeding method that can accurately mix and arrange multiple varieties based on specific grain spacing and quantity, making it suitable for precision breeding and variety comparison studies. As seed ropes serve as the crucial seed [...] Read more.
Seed rope direct seeding technology is a precision seeding method that can accurately mix and arrange multiple varieties based on specific grain spacing and quantity, making it suitable for precision breeding and variety comparison studies. As seed ropes serve as the crucial seed encapsulation material in seed rope direct seeding, this study employed a multi-faceted approach to investigate the dynamic degradation of nonwoven fabric and paper material seed ropes under diverse environmental conditions as well as their adhesion properties with Ultisols, Oxisols, and the Substrate in this seeding technique. Firstly, the degradation dynamics were systematically analyzed using image-based surface area detection, breaking force measurement, and organic carbon content analysis. Secondly, the process of seed rope laying was simulated by modeling the sliding friction and adhesion forces during the detachment of soil slurry. The laying motion was simulated considering both sliding friction (during the uniform-speed interaction between the seed rope and soil slurry) and adhesion (during upward detachment), providing crucial reference values for optimizing the rope-breaking mechanism in field applications. The study yielded several significant findings: In natural environments, Wood pulp paper seed rope degrades significantly faster than nonwoven fabric, with a degradation cycle of only 5.68 days in winter (approximately 34% of the degradation cycle of nonwoven fabric) and 4.70 days in summer (approximately 78% of the degradation cycle of nonwoven fabric). The main effect of seed viability on the degradation rate of seed tapes was not statistically significant. The degradation of Wood pulp paper seed rope was relatively predictable in indoor settings but exhibited notable fluctuations outdoors. The peak friction occurred at 35% soil moisture content, with values of 1.22 N for Wood pulp paper seed rope and 2.08 N for nonwoven fabric when interacting with Oxisols; nonwoven ropes demonstrated stronger adhesion than Wood pulp paper seed rope in the Substrate (at moisture contents of 25–30% and 40–45%) and Oxisols (at 35–45% moisture). In Ultisols, nonwoven fabric only showed superior adhesion compared to Wood pulp paper seed rope at 35–45% moisture, while Wood pulp paper seed rope exhibited better adhesion in other moisture ranges. Full article
Show Figures

Figure 1

15 pages, 2065 KB  
Article
Potential Use of Brewer’s Spent Grain By-Product as a Component for Sustainable Thermal Mortars
by Maria Manso, Joaquim Silva, Vítor Antunes, Isabel Ivo, João Canto and Cristina Guerra
Sustainability 2025, 17(16), 7557; https://doi.org/10.3390/su17167557 - 21 Aug 2025
Viewed by 1174
Abstract
Buildings represent approximately 40% of the total energy consumption. Net-zero energy buildings (NZEBs) have lower energy demands than conventional buildings due to improved thermal insulation combined with other passive design strategies. Thermal mortars, used in insulating plasters, help improve buildings’ energy efficiency in [...] Read more.
Buildings represent approximately 40% of the total energy consumption. Net-zero energy buildings (NZEBs) have lower energy demands than conventional buildings due to improved thermal insulation combined with other passive design strategies. Thermal mortars, used in insulating plasters, help improve buildings’ energy efficiency in a cost-effective manner, with minimal added thickness, even on irregular surfaces. Brewer’s spent grain (BSG) accounts for 85% of the total by-products of the brewing industry. It is a cellulosic wood material, with a composition rich in protein (20%) and fiber (70%). Considering these properties, it has potential for use as a natural aggregate in mortars and as a sustainable material for buildings aligned with circular economy principles. This work aims to characterize BSG as a natural by-product for use in thermal mortars and identify different incorporation percentages. First, BSG was characterized in terms of its water content, particle size and volume mass. Then, mortars with BSG and fine sand, with different water contents, were produced and compared to a reference mortar and two commercially available thermal mortars. The performance of the mixtures was evaluated in terms of water absorption, mechanical behavior (namely, compressive and flexural strength) and thermal behavior. BSG mortars with a 0.25 w/c ratio presented a water absorption coefficient similar to that of the reference mortar. Overall, BSG mortars presented a mechanical strength profile similar to that of conventional thermal mortars. In the thermal test, the best BSG mortar (BSG75-w/c-0.25) achieved a stationary temperature difference between surfaces that was 8% lower than that of a commercial thermal mortar and 110% higher than that of the reference mortar. In sum, the best BSG mortars had a lower w/c ratio. Full article
Show Figures

Figure 1

Back to TopTop