Exploring Paulownia as a Sustainable Alternative to Balsa in Plywood Manufacturing
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Physical Properties of Paulownia Plywood
3.2. Mechanical Properties of Paulownia Plywood
3.3. Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koman, S.; Feher, S. Physical and Mechanical Properties of Paulownia Clone in Vitro 112. Eur. J. Wood Wood Prod. 2020, 78, 421–423. [Google Scholar] [CrossRef]
- Huber, C.; Moog, D.; Stingl, R.; Pramreiter, M.; Stadlmann, A.; Baumann, G.; Praxmarer, G.; Gutmann, R.; Eisler, H.; Müller, U. Paulownia (Paulownia elongata S.Y.Hu)—Importance for Forestry and a General Screening of Technological and Material Properties. Wood Mater. Sci. Eng. 2023, 18, 1663–1675. [Google Scholar] [CrossRef]
- Barbu, M.C.; Tudor, E.M.; Buresova, K.; Petutschnigg, A. Assessment of Physical and Mechanical Properties Considering the Stem Height and Cross-Section of Paulownia tomentosa (Thunb.) Steud. x Elongata (S.Y.Hu) Wood. Forests 2023, 14, 589. [Google Scholar] [CrossRef]
- Lachowicz, H.; Giedrowicz, A. Characteristics of the Technical Properties of Paulownia COTE−2 Wood. Sylwan J. 2020, 5, 414–423. [Google Scholar]
- Esteves, B.; Cruz-Lopes, L.; Viana, H.; Ferreira, J.; Domingos, I.; Nunes, L.J.R. The Influence of Age on the Wood Properties of Paulownia tomentosa (Thunb.) Steud. Forests 2022, 13, 700. [Google Scholar] [CrossRef]
- Kalaycioglu, H.; Deniz, I.; Hiziroglu, S. Some of the Properties of Particleboard Made from Paulownia. J. Wood Sci. 2005, 51, 410–414. [Google Scholar] [CrossRef]
- Barbu, M.C.; Buresova, K.; Tudor, E.M.; Petutschnigg, A. Physical and Mechanical Properties of Paulownia tomentosa x elongata Sawn Wood from Spanish, Bulgarian and Serbian Plantations. Forests 2022, 13, 1543. [Google Scholar] [CrossRef]
- Komán, S.; Feher, S.; Vityi, A. Physical and Mechanical Properties of Paulownia tomentosa Wood Planted In Hungaria. Wood Res. 2017, 62, 335–340. [Google Scholar]
- Avram, A.; Lunguleasa, A.; Spirchez, C.; Ionescu, C.S. Differences and Similarities between the Wood of Three Low-Density and Homogenous Species: Linden, Balsa, and Paulownia. Appl. Sci. 2023, 13, 10209. [Google Scholar] [CrossRef]
- Röllig, P.; Tudor, E.M.; Barbu, M.C.; Direske, M. Effect of the Particle Geometry on Lightweight Particleboard from Paulownia Using High-Frequency Pressing Technology. Wood Mater. Sci. Eng. 2024, 19, 683–690. [Google Scholar] [CrossRef]
- Nelis, P.A.; Mai, C. The Influence of Low-Density (Paulownia Spp.) and High-Density (Fagus sylvatica L.) Wood Species on Various Characteristics of Light and Medium-Density Three-Layered Particleboards. Wood Mater. Sci. Eng. 2021, 16, 21–26. [Google Scholar] [CrossRef]
- Barbu, M.C.; Radauer, H.; Petutschnigg, A.; Tudor, E.M.; Kathriner, M. Lightweight Solid Wood Panels Made of Paulownia Plantation Wood. Appl. Sci. 2023, 13, 11234. [Google Scholar] [CrossRef]
- Bayatkashkoli, A.; Faegh, M. Evaluation of Mechanical Properties of Laminated Strand Lumber and Oriented Strand Lumber Made from Poplar Wood (Populus deltoides) and Paulownia (Paulownia fortunei) with Urea Formaldehyde Adhesive Containing Nanoclay. Int. Wood Prod. J. 2014, 5, 192–195. [Google Scholar] [CrossRef]
- Sedighizadeh, P.; Moradpour, P.; Hosseinabadi, H.Z. Possibility of Making Flexible Three-Ply Plywood Using Poplar (Populus deltoides) and Paulownia (Paulownia fortunei) Veneers. Eur. J. Wood Wood Prod. 2023, 81, 209–221. [Google Scholar] [CrossRef]
- Nelis, P.A.; Henke, O.; Mai, C. Comparison of Blockboards with Core Layers Made of Kiri (Paulownia spp.) and of Spruce (Picea abies) Regarding Mechanical Properties. Eur. J. Wood Wood Prod. 2019, 77, 323–326. [Google Scholar] [CrossRef]
- Ghazzawy, H.S.; Bakr, A.; Mansour, A.T.; Ashour, M. Paulownia Trees as a Sustainable Solution for CO2 Mitigation: Assessing Progress toward 2050 Climate Goals. Front. Environ. Sci. 2024, 12, 1307840. [Google Scholar] [CrossRef]
- Rodríguez-Seoane, P.; Díaz-Reinoso, B.; Moure, A.; Domínguez, H. Potential of Paulownia sp. for Biorefinery. Ind. Crops Prod. 2020, 155, 112739. [Google Scholar] [CrossRef]
- Guo, N.; Zhai, X.-Q.; Fan, G.-Q. Chemical Composition, Health Benefits and Future Prospects of Paulownia Flowers: A Review. Food Chem. 2023, 412, 135496. [Google Scholar] [CrossRef]
- Domínguez, E.; Romaní, A.; Domingues, L.; Garrote, G. Evaluation of Strategies for Second Generation Bioethanol Production from Fast Growing Biomass Paulownia within a Biorefinery Scheme. Appl. Energy 2017, 187, 777–789. [Google Scholar] [CrossRef]
- López, F.; Pérez, A.; Zamudio, M.A.M.; De Alva, H.E.; García, J.C. Paulownia as Raw Material for Solid Biofuel and Cellulose Pulp. Biomass Bioenergy 2012, 45, 77–86. [Google Scholar] [CrossRef]
- Jakubowski, M. Cultivation Potential and Uses of Paulownia Wood: A Review. Forests 2022, 13, 668. [Google Scholar] [CrossRef]
- Icka, P.; Damo, R.; Icka, E. Paulownia Tomentosa, a Fast Growing Timber. Ann. Valahia Univ. Targoviste—Agric. 2016, 10, 14–19. [Google Scholar] [CrossRef]
- Stuepp, C.A.; Zuffellato-Ribas, K.C.; Koehler, H.S.; Wendling, I. Rooting Mini-Cuttings of Paulownia fortunei Var. Mikado Derived From Clonal Mini-Garden. Rev. Árvore 2015, 39, 497–504. [Google Scholar] [CrossRef]
- Nocetti, M.; Brunetti, M.; Criscuoli, I.; Mazzanti, P.; Murrone, P.; Stefanini, F.M.; Goli, G. Technological Properties of Paulownia and Mixed Poplar-Paulownia Plywood. Eur. J. Wood Wood Prod. 2025, 83, 142. [Google Scholar] [CrossRef]
- EN 310:2005; Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bend-ing Strength. Austrian Standards: Vienna, Austria, 2005.
- EN 314-1:2005; Plywood—Bonding quality—Part 1: Test methods. Austrian Standards: Vienna, Austria, 2005.
- EN 320:2011; Particleboards and Fibreboards—Determination of Resistane to Axial Withdrawal of Screws. Austrian Standards: Vienna, Austria, 2011.
- EN 317:2005; Particleboards and Fibreboards—Determination of Swelling in Thickness After Immersion in Water. Austrian Standards: Vienna, Austria, 2005.
- EN 323:2005; Wood-Based Panels—Determination of Density. Austrian Standards: Vienna, Austria, 2005.
- Kotlarewski, N.J.; Belleville, B.; Gusamo, B.K.; Ozarska, B. Mechanical Properties of Papua New Guinea Balsa Wood. Eur. J. Wood Wood Prod. 2016, 74, 83–89. [Google Scholar] [CrossRef]
- Wu, C.; Vahedi, N.; Vassilopoulos, A.P.; Keller, T. Mechanical Properties of a Balsa Wood Veneer Structural Sandwich Core Material. Constr. Build. Mater. 2020, 265, 120193. [Google Scholar] [CrossRef]
- Cañadas-López, Á.; Rade-Loor, D.; Siegmund-Schultze, M.; Moreira-Muñoz, G.; Vargas-Hernández, J.J.; Wehenkel, C. Growth and Yield Models for Balsa Wood Plantations in the Coastal Lowlands of Ecuador. Forests 2019, 10, 733. [Google Scholar] [CrossRef]
- Thevs, N.; Fehrenz, S.; Aliev, K.; Emileva, B.; Fazylbekov, R.; Kentbaev, Y.; Qonunov, Y.; Qurbonbekova, Y.; Raissova, N.; Razhapbaev, M.; et al. Growth Rates of Poplar Cultivars across Central Asia. Forests 2021, 12, 373. [Google Scholar] [CrossRef]
Panel | Veneer (Source) | Adhesive Type | Thickness (mm) | PY Layering Scheme (mm) | Press Time (min) Temperature (°C) Pressure (N/mm2) |
---|---|---|---|---|---|
7 mm, 5 layers PUR | Spain | PUR 501.0 | 7 | 0.9-0.9-3-0.9-0.9 | 20 60 1.5 |
7 mm, 7 layers PUR | Spain | PUR 501.0 | 7 | 1-1-1-1-1-1-1 | |
15 mm, 7 layers PUR | Spain | PUR 501.0 | 15 | 2-2-3-2-3-2-2 | |
15 mm, 5 layers PUR | Spain | PUR 501.0 | 15 | 3-3-3-3-3 | |
7 mm, 5 layers MUF | Croatia | LignuPro Zero A211/2545 | 7 | 0.9-0.9-3-0.9-0.9 | 20 88 1.5 |
7 mm, 7 layers MUF | Croatia | LignuPro Zero A211/2545 | 7 | 1-1-1-1-1-1-1 | |
15 mm, 7 layers MUF | Croatia | LignuPro Zero A211/2545 | 15 | 2-2-3-2-3-2-2 | |
15 mm, 5 layers MUF | Croatia | LignuPro Zero A211/2545 | 15 | 3-3-3-3-3 |
ρ (kg/m3) | TS (%) | WA (%) | MOR ‖ (N/mm2) | MOR ꓕ (N/mm2) | |||||||||||
Panel | Mean ± s.d | n | Sig. | Mean ± s.d | n | Sig. | Mean ± s.d | n | Sig. | Mean ± s.d | n | Sig. | Mean ± s.d | n | Sig. |
7 mm, 5 layers PUR | 278.5 ± 11.8 | 18 | * | 5.6 ± 1.3 | 15 | a,b | 60.9 ± 6.2 | 15 | b | 26.3 ± 1.7 | 18 | c | 12.8 ± 1.2 | 18 | c |
7 mm, 7 layers PUR | 286.1 ± 7.6 | 36 | * | 5 ± 1 | 30 | b | 56.2 ± 4.6 | 30 | c | 23 ± 2.7 | 36 | d | 16.1 ± 1.6 | 36 | b |
15 mm, 7 layers PUR | 258.3 ± 6.8 | 11 | * | 4.9 ± 0.7 | 15 | b | 65.7 ± 6.9 | 15 | a,b | 22.9 ± 1.4 | 11 | d | 15 ± 1.5 | 11 | b |
15 mm, 5 layers PUR | 243.5 ± 6.8 | 8 | * | 6.1 ± 0.6 | 10 | a | 70.1 ± 5.5 | 10 | a | 20.8 ± 0.5 | 8 | d | 11.5 ± 0.9 | 8 | c |
7 mm, 5 layers MUF | 360.8 ± 7.6 | 17 | * | 2.6 ± 1 | 15 | c | 38.4 ± 2.1 | 15 | d | 34.1 ± 4.5 | 17 | b | 21.2 ± 2.8 | 18 | a |
7 mm, 7 layers MUF | 408.1 ± 6.5 | 18 | * | 2.4 ± 0.8 | 15 | c | 32.4 ± 1.8 | 15 | d | 37.5 ± 2.4 | 18 | a | 22.4 ± 3 | 18 | a |
15 mm, 7 layers MUF | 338.5 ± 6.5 | 11 | * | 2.7 ± 0.5 | 15 | c | 37.1 ± 1.7 | 15 | d,e | 31.1 ± 3.8 | 11 | b | 20.9 ± 1.7 | 12 | a |
15 mm, 5 layers MUF | 2981.6 ± 179.5 | 18 | b,c | 1223.7 ± 138.9 | 18 | d | 2 ± 0.4 | 27 | c,d | 45.1 ± 4.5 | 15 | c,d | 2981.6 ± 179.5 | 18 | b,c |
MOE ‖ (N/mm2) | MOE ꓕ (N/mm2) | τs (N/mm2) | SW (N/mm) | ||||||||||||
Panel | Mean ± s.d | n | Sig. | Mean ± s.d | n | Sig. | Mean ± s.d | n | Sig. | Mean ± s.d | n | Sig. | |||
7 mm, 5 layers PUR | 2981.6 ± 179.5 | 18 | b,c | 1223.7 ± 138.9 | 18 | d | 2 ± 0.4 | 27 | c,d | 45.1 ± 4.5 | 15 | c,d | |||
7 mm, 7 layers PUR | 2745.5 ± 204.5 | 36 | c | 1397.9 ± 125.8 | 36 | c | 1.6 ± 0.3 | 54 | e | 46.4 ± 3.5 | 30 | c | |||
15 mm, 7 layers PUR | 3161.6 ± 205.4 | 11 | b | 1403.7 ± 137.5 | 11 | c | 2.2 ± 0.2 | 30 | b,c,d | 45.4 ± 4.1 | 15 | c,d | |||
15 mm, 5 layers PUR | 2884.4 ± 119.2 | 8 | b,c | 923.5 ± 47.1 | 8 | e | 2.7 ± 0.7 | 19 | a | 39.6 ± 2.2 | 10 | d | |||
7 mm, 5 layers MUF | 3735.1 ± 392.4 | 17 | a | 1745.9 ± 132.4 | 18 | b | 2.6 ± 0.7 | 24 | a,b | 57.1 ± 8.8 | 15 | b | |||
7 mm, 7 layers MUF | 3860.6 ± 298.8 | 18 | a | 1905.4 ± 184.5 | 18 | a | 2.1 ± 0.1 | 24 | c,d | 64.1 ± 5.6 | 15 | a | |||
15 mm, 7 layers MUF | 3784.8 ± 344.1 | 11 | a | 1996.2 ± 119.4 | 12 | a | 1.8 ± 0.3 | 24 | d,e | 62.4 ± 6.5 | 15 | a,b | |||
15 mm, 5 layers MUF | 3956.2 ± 205.5 | 8 | a | 1276.7 ± 117.8 | 8 | c,d | 2.3 ± 0.8 | 24 | a,b,c | 56.3 ± 6.2 | 10 | b |
Wood Source | ρ (kg/m3) | Thickness (mm)/Layers | MOR ‖ (N/mm2) | MOR ꓕ (N/mm2) | MOE ‖ (N/mm2) | MOE ꓕ (N/mm2) | Reference |
---|---|---|---|---|---|---|---|
Poplar | 450 | 9 | 35.1 | 9.2 | 5782 | 1518 | Group thebault 1 |
450 | 15 | 31.2 | 13.1 | 5135 | 2165 | ||
Poplar | 420 ± 10% | 8/5 | 25–40 | 10–30 | >3000 | - | Panguaneta 2 |
420 ± 10% | 15/7 | 25–40 | 10–30 | >3000 | - | ||
Balsa | 210 | 15 | 10.1 | 969 | Europlac 3 | ||
Balsa (not plywood) | 80–120 | 9.83 | 1222 | [30] | |||
120–180 | 16.63 | 2037 | |||||
Poplar | 395 | 5.9/5 | 36 | 28.9 | 3316 | 2611 | [24] |
Paulownia | 355 | 7.2/5 | 28 | 18.4 | 3369 | 1390 | |
Poplar–Paulownia composite | 391 | 6.9/5 | 32.6 | 28.7 | 3127 | 2840 | |
Paulownia | 278–360 | 7/5 | 26.3–34.1 | 12.8–21.2 | 2980–3740 | 1220–1750 | This study |
286–410 | 7/7 | 23–37.5 | 16–22.4 | 2750–3860 | 1400–1910 | ||
243–321 | 15/5 | 20.8–31.6 | 11.5–15.8 | 2880–3960 | 920–1280 | ||
258–338 | 15/7 | 23–31 | 15–21 | 3160–3790 | 1400–2000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbu, M.C.; Burešova, K.; Tudor, E.M.; Sepperer, T. Exploring Paulownia as a Sustainable Alternative to Balsa in Plywood Manufacturing. Forests 2025, 16, 1436. https://doi.org/10.3390/f16091436
Barbu MC, Burešova K, Tudor EM, Sepperer T. Exploring Paulownia as a Sustainable Alternative to Balsa in Plywood Manufacturing. Forests. 2025; 16(9):1436. https://doi.org/10.3390/f16091436
Chicago/Turabian StyleBarbu, Marius Cătălin, Katharina Burešova, Eugenia Mariana Tudor, and Thomas Sepperer. 2025. "Exploring Paulownia as a Sustainable Alternative to Balsa in Plywood Manufacturing" Forests 16, no. 9: 1436. https://doi.org/10.3390/f16091436
APA StyleBarbu, M. C., Burešova, K., Tudor, E. M., & Sepperer, T. (2025). Exploring Paulownia as a Sustainable Alternative to Balsa in Plywood Manufacturing. Forests, 16(9), 1436. https://doi.org/10.3390/f16091436