Bending Properties of Pleated Wood Thermally Treated at 160 °C and 200 °C Temperatures
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Density
3.2. Bending Test
3.2.1. Bending Strength
3.2.2. Bending Stress at 4 mm Deflection
3.2.3. Modulus of Elasticity
3.2.4. Deflection at Maximum Force
3.2.5. Maximum Deflection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Báder, M.; Németh, R. Research conditions of the wood’s longitudinal compression—Part 1 (Faanyagok rostirányú tömörítésének kísérleti körülményei—1. rész). Gradus 2017, 4, 403–411. [Google Scholar]
- Báder, M. Practical issues of longitudinally compressed wood—Part 1: The raw material and its preparation; the theory of compression (Faanyag rostirányú tömörítésével kapcsolatos elméleti és gyakorlati kérdések áttekintése—1. rész: Az alapanyagok és előkészítésük, a tömörítés elmélete). Faipar 2015, 63, 1–9. [Google Scholar] [CrossRef]
- Báder, M.; Németh, R. Moisture-Dependent Mechanical Properties of Longitudinally Compressed Wood. Eur. J. Wood Wood Prod. 2019, 77, 1009–1019. [Google Scholar] [CrossRef]
- Kuzsella, L.; Szabó, I. Effect of pleating on mechanical properties (A fa tömörítésének hatása a mechanikai tulajdonságokra). In Proceedings of the XI Scientific Conference for Young Engineers (Fiatal Műszakiak Tudományos Ülésszaka), Kolozsvár, Romania, 24–25 March 2006; Bitay, E., Ed.; pp. 233–236. [Google Scholar]
- Ivánovics, G. Strength Test of Longitudinally Compressed Wood (Rostirányban Tömörített Faanyagok Szilárdsági Vizsgálata); Belina, K., Ed.; College of Kecskemét: Kecskemét, Hungary, 2006; pp. 171–176. [Google Scholar]
- Sadatneyad, S.H.; Tajvidi, M.; Yousefi, H. Effect of longitudinal compression to bulk cell wall on mechanical properties of steamed treated of beach wood. Iran. J. Wood Pap. Sci. Res. 2008, 23, 191–199. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Karlsson, O.; Jones, D. Wood Modification Technologies: Principles, Sustainability, and the Need for Innovation, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021; ISBN 978-1-351-02822-6. [Google Scholar]
- Borůvka, V.; Zeidler, A.; Holeček, T.; Dudík, R. Elastic and Strength Properties of Heat-Treated Beech and Birch Wood. Forests 2018, 9, 197. [Google Scholar] [CrossRef]
- Sinković, T.; Govorčin, S.; Sedlar, T. Comparison of Physical Properties of Heat Treated and Untreated Hornbeam Wood, Beech Wood, Ash Wood and Oak Wood. In Hardwood Science and Technology, Proceedings of the 5th Conference on Hardwood Research and Utilisation in Europe, Sopron, Hungar, 10–11 September 2012; Németh, R., Teischinger, A., Eds.; University of West Hungary: Sopron, Hungary, 2012; pp. 63–70. [Google Scholar]
- Gaff, M.; Kačík, F.; Gašparík, M. Impact of Thermal Modification on the Chemical Changes and Impact Bending Strength of European Oak and Norway Spruce Wood. Compos. Struct. 2019, 216, 80–88. [Google Scholar] [CrossRef]
- Korkut, S.; Karayilmazlar, S.; Hiziroglu, S.; Sanli, T. Some of the Properties of Heat-Treated Sessile Oak (Quercus petraea). For. Prod. J. 2010, 60, 473–480. [Google Scholar] [CrossRef]
- Gaff, M.; Kačík, F.; Sandberg, D.; Babiak, M.; Turčani, M.; Niemz, P.; Hanzlík, P. The Effect of Chemical Changes during Thermal Modification of European Oak and Norway Spruce on Elasticity Properties. Compos. Struct. 2019, 220, 529–538. [Google Scholar] [CrossRef]
- Yilmaz Aydin, T.; Aydin, M. Influence of Temperature and Exposure Duration on the Bending Properties of Oak Wood. Bartın Orman. Fakültesi Derg. 2020, 22, 871–877. [Google Scholar] [CrossRef]
- Báder, M.; Németh, R. A Review of Wood Compression along the Grain—After the 100th Anniversary of Pleating. Forests 2023, 14, 763. [Google Scholar] [CrossRef]
- Stevens, W.; Turner, N. Solid and Laminated Wood Bending; Forest Products Research Laboratory, Department of Scientific and Industrial Research; His Majesty’s Stationery Office: London, UK, 1948. [Google Scholar]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal Modification of Wood—A Review: Chemical Changes and Hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Jančíková, V.; Jablonský, M. Thermal Modification of Wood—A Review. Sustain. Chem. 2025, 6, 19. [Google Scholar] [CrossRef]
- ISO 13061-03; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 03: Determination of Ultimate Strength in Static Bending. ISO: Geneva, Switzerland, 2014.
- Sedlar, T.; Šefc, B.; Stojnić, S.; Jarc, A.; Perić, I.; Sinković, T. Tvrdoća Toplinski Modificirane Bukovine i Grabovine. Šumar. List. 2019, 143, 433. [Google Scholar] [CrossRef]
- Dudiak, M.; Dzurenda, L. Changes in the Physical and Chemical Properties of Alder Wood in the Process of Thermal Treatment with Saturated Water Steam. Coatings 2021, 11, 898. [Google Scholar] [CrossRef]
- Taraborelli, C.; Monteoliva, S.; Keil, G.; Spavento, E. Effect of Heat Treatment on Hardness, Density and Color of Populus × Canadensis ‘I-214’ Wood. For. Syst. 2022, 31, e023. [Google Scholar] [CrossRef]
- Borrega, M.; Kärenlampi, P.P. Hygroscopicity of Heat-Treated Norway Spruce (Picea abies) Wood. Eur. J. Wood Wood Prod. 2010, 68, 233–235. [Google Scholar] [CrossRef]
- Báder, M.; Németh, R.; Sandak, J.; Sandak, A. FTIR Analysis of Chemical Changes in Wood Induced by Steaming and Longitudinal Compression. Cellulose 2020, 27, 6811–6829. [Google Scholar] [CrossRef]
- Herrera-Builes, J.F.; Sepúlveda-Villarroel, V.; Osorio, J.A.; Salvo-Sepúlveda, L.; Ananías, R.A. Effect of Thermal Modification Treatment on Some Physical and Mechanical Properties of Pinus Oocarpa Wood. Forests 2021, 12, 249. [Google Scholar] [CrossRef]
- Gustafsson, S. The Strength Properties of Swedish Oak and Beech. Drew. Pr. Nauk. Doniesineia Komun. 2010, 53, 67–83. [Google Scholar]
- Muñoz, G.; Gete, A. Prediction of Bending Strength in Oak Beams on the Basis of Elasticity, Density, and Wood Defects. J. Mater. Civ. Eng. 2012, 24, 629–634. [Google Scholar] [CrossRef]
- Costa, H.W.D.; Coldebella, R.; Andrade, F.R.; Gentil, M.; Correa, R.; Gatto, D.A.; Missio, A.L. Brittleness Increase in Eucalyptus Wood after Thermal Treatment. Int. Wood Prod. J. 2020, 11, 38–42. [Google Scholar] [CrossRef]
- Nakagawa, T.; Poulin, E.; Rueppel, T.; Chen, Z.; Swinea, J.; O’Brien, M.; Houser, G.; Wood, G.; Weinheimer, M.; Bahmani, P.; et al. Effects of Thermal Modification on the Flexure Properties, Fracture Energy, and Hardness of Western Hemlock. Wood Sci. Technol. 2024, 58, 109–133. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačíková, D.; Kačík, F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Minami, E.; Asmadi, M.; Kawamoto, H. Effect of Delignification on Thermal Degradation Reactivities of Hemicellulose and Cellulose in Wood Cell Walls. J. Wood Sci. 2021, 67, 19. [Google Scholar] [CrossRef]
- Buchter, J.; Adelhoej, J.; Ljoerring, J.; Hansen, O. Introducing Compressed Wood; Danish Technological Institute, Department of Wood and Furniture: Taastrup, Denmark, 1993. [Google Scholar]
- Bytner, O.; Drożdżek, M.; Laskowska, A.; Zawadzki, J. Influence of Thermal Modification in Nitrogen Atmosphere on the Selected Mechanical Properties of Black Poplar Wood (Populus nigra L.). Materials 2022, 15, 7949. [Google Scholar] [CrossRef]
- Niemz, P.; Teischinger, A.; Sandberg, D. (Eds.) Springer Handbook of Wood Science and Technology; Springer Handbooks; Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-030-81314-7. [Google Scholar]
- Rogério Da Silva, M.; Otávio Brito, J.; Silvio Govone, J.; De Oliveira Machado, G.; Calil Junior, C.; Luis Christoforo, A.; Antonio Rocco Lahr, F. Chemical and Mechanical Properties Changes in Corymbia Citriodora Wood Submitted to Heat Treatment. Int. J. Mater. Eng. 2015, 5, 98–104. [Google Scholar] [CrossRef][Green Version]
- Boonstra, M.J.; Van Acker, J.; Tjeerdsma, B.F.; Kegel, E.V. Strength Properties of Thermally Modified Softwoods and Its Relation to Polymeric Structural Wood Constituents. Ann. For. Sci. 2007, 64, 679–690. [Google Scholar] [CrossRef]
- Sweet, M.S.; Winandy, J.E. Influence of Degree of Polymerization of Cellulose and Hemicellulose on Strength Loss in Fire-Retardant-Treated Southern Pine. Holzforschung 1999, 53, 311–317. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood Modification Technologies—A Review. IForest-Biogeosci. For. 2017, 10, 895–908. [Google Scholar] [CrossRef]
- Báder, M.; Németh, R.; Konnerth, J. Micromechanical Properties of Longitudinally Compressed Wood. Eur. J. Wood Wood Prod. 2019, 77, 11. [Google Scholar] [CrossRef]
- Stanzl-Tschegg, S.E. Microstructure and Fracture Mechanical Response of Wood. Int. J. Fract. 2006, 139, 495–508. [Google Scholar] [CrossRef]
- Sonderegger, W.; Martienssen, A.; Nitsche, C.; Ozyhar, T.; Kaliske, M.; Niemz, P. Investigations on the Physical and Mechanical Behaviour of Sycamore Maple (Acer pseudoplatanus L.). Eur. J. Wood Wood Prod. 2013, 71, 91–99. [Google Scholar] [CrossRef]




| Thermally Not Treated | Thermally Treated at 160 °C | Thermally Treated at 200 °C | ||
|---|---|---|---|---|
| Beech | Uncompressed | 12 | 10 | 10 |
| Pleated | 10 | 10 | 10 | |
| Fixated | 3 | 3 | 3 | |
| Oak | Uncompressed | 16 | 10 | 16 |
| Pleated | 10 | 10 | 10 | |
| Fixated | 3 | 3 | 3 |
| Beech | Oak | |||||
|---|---|---|---|---|---|---|
| Conditioned Density | MC | Oven-Dry Density | Conditioned Density | MC | Oven-Dry Density | |
| Untreated | 720 ± 26 | 11.9% | 694 ± 27 | 761 ± 25 | 12.3% | 726 ± 25 |
| Thermally treated at 160 °C | 671 ± 20 | 7.4% | 651 ± 20 | 656 ± 25 | 7.6% | 634 ± 26 |
| Thermally treated at 200 °C | 580 ± 16 | 4.4% | 568 ± 16 | 557 ± 31 | 4.4% | 544 ± 31 |
| Pleated | 735 ± 32 | 11.4% | 716 ± 33 | 714 ± 48 | 13.1% | 670 ± 48 |
| Pleated and thermally treated at 160 °C | 712 ± 33 | 7.7% | 692 ± 34 | 657 ± 41 | 7.5% | 631 ± 37 |
| Pleated and thermally treated at 200 °C | 672 ± 15 | 4.3% | 661 ± 15 | 710 ± 34 | 4.4% | 695 ± 33 |
| Fixated | 749 ± 54 | 11.5% | 738 ± 50 | 766 ± 43 | 13.5% | 740 ± 42 |
| Fixated and thermally treated at 160 °C | 723 ± 31 | 7.5% | 710 ± 31 | 788 ± 22 | 7.9% | 769 ± 24 |
| Fixated and thermally treated at 200 °C | 701 ± 39 | 4.4% | 694 ± 40 | 707 ± 29 | 4.6% | 693 ± 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Báder, M.; Horváth, B.J.; Bak, M. Bending Properties of Pleated Wood Thermally Treated at 160 °C and 200 °C Temperatures. Forests 2025, 16, 1702. https://doi.org/10.3390/f16111702
Báder M, Horváth BJ, Bak M. Bending Properties of Pleated Wood Thermally Treated at 160 °C and 200 °C Temperatures. Forests. 2025; 16(11):1702. https://doi.org/10.3390/f16111702
Chicago/Turabian StyleBáder, Mátyás, Bíbor Júlia Horváth, and Miklós Bak. 2025. "Bending Properties of Pleated Wood Thermally Treated at 160 °C and 200 °C Temperatures" Forests 16, no. 11: 1702. https://doi.org/10.3390/f16111702
APA StyleBáder, M., Horváth, B. J., & Bak, M. (2025). Bending Properties of Pleated Wood Thermally Treated at 160 °C and 200 °C Temperatures. Forests, 16(11), 1702. https://doi.org/10.3390/f16111702

