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Abstract

Automated optical inspection (AOI) of wood surfaces is critical for ensuring product quality
in the furniture and manufacturing industries; however, existing defect detection systems
often struggle to generalize across complex grain patterns and diverse defect types. This
study proposes a wood defect recognition model employing a Gabor Convolutional Net-
work (GCN) that integrates convolutional neural networks (CNNs) with Gabor filters. To
systematically optimize the network’s architecture and improve both detection accuracy
and computational efficiency, the Taguchi method is employed to tune key hyperparame-
ters, including convolutional kernel size, filter number, and Gabor parameters (frequency,
orientation, and phase offset). Additionally, image tiling and augmentation techniques
are employed to effectively increase the training dataset, thereby enhancing the model’s
stability and accuracy. Experiments conducted on the MVTec Anomaly Detection dataset
(wood category) demonstrate that the Taguchi-optimized GCN achieves an accuracy of
98.92%, outperforming a baseline Taguchi-optimized CNN by 2.73%. Results confirm
that Taguchi-optimized GCNs enhance defect detection performance and computational
efficiency, making them valuable for smart manufacturing.

Keywords: convolutional neural network; Gabor filter; Taguchi method; wood defect
detection

1. Introduction
Defect detection on wood surfaces is a critical task in the furniture and woodworking

industries, directly influencing product quality, customer satisfaction, and production
efficiency. While most modern manufacturing lines have adopted automation in machining
and finishing processes, visual quality inspection remains predominantly manual. Such
human-dependent inspection is prone to inconsistencies, fatigue-induced errors, and re-
duced throughput, leading to both false acceptance (leakage) and false rejection (overkill)
of products. The integration of automated optical inspection (AOI) systems into production
lines offers a practicable path toward smart manufacturing, enabling real-time, objective,
and rapid defect detection. Recent advances in artificial intelligence (AI), particularly deep
learning (DL), have significantly improved image-based defect detection in various indus-
trial domains [1,2]. However, despite the progress in generic defect detection, research
on wood defect detection remains limited [1,3–6], primarily due to the complex texture
patterns and wide variability in defect appearance.
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Gabor functions are based on the sinusoidal plane wave with particular frequency
and orientation, which characterizes the spatial frequency information of the image. A
set of Gabor filters with a variety of frequencies and orientations can effectively extract
invariant features from an image. Due to these capabilities, Gabor filters are widely
employed in image processing applications, such as texture classification, image retrieval
and wood defect detection [7]. Through multi-scale and multi-orientation design, Gabor
filters effectively extract rich texture features, making them particularly valuable for wood
defect detection. They can capture slight texture variations on wood surfaces, aiding in the
identification of defect locations and types. However, relying solely on Gabor filters for
feature extraction may not be sufficient to handle the complexity and diversity of wood
defects. Since wood defects exhibit diverse characteristics, more advanced feature learning
and recognition techniques are required for accurate detection. To overcome this limitation,
integrating Gabor filters with deep learning techniques has proven to be a highly effective
strategy [8–10].

Convolutional neural networks (CNNs) are a deep learning architecture that leverages
multiple layers of convolution and pooling operations to efficiently extract hierarchical
features from images. CNNs have demonstrated highly effectiveness for tasks such as
image classification, object detection, and segmentation [2]. Gabor convolutional networks
(GCNs) integrate Gabor filters into CNNs, leveraging both the local feature extraction
capability of Gabor filters and the feature learning and classification abilities of CNNs. This
integration enhances the robustness of learned features against variations in orientation and
scale [9]. However, despite these advantages, GCNs suffer from a more complex network
architecture. Thus, optimizing the network architecture to enhance GCN performance and
computational efficiency has become a valuable research topic.

The Taguchi method, developed by Dr. Genichi Taguchi, is a quality engineering
approach primarily used for product design and process optimization. It employs design of
experiments (DOE), particularly orthogonal arrays (OAs), to efficiently evaluate multiple
factors affecting quality [11]. Additionally, it incorporates the signal-to-noise (S/N) ratio
to measure system robustness with the goal of reducing variation and improving product
reliability. In addition, the Taguchi method offers the following advantages: (i) Reduced
experimental cost and time—By leveraging orthogonal arrays, the method significantly
reduces the number of experimental runs while still achieving optimal design parameters.
(ii) Systematic problem-solving approach—Through parameter design and tolerance de-
sign, the method optimizes product performance during the development phase, thereby
minimizing the need for costly modifications. Due to these benefits, the Taguchi method
has been widely adopted in industries such as manufacturing, electronics, biomedical
engineering, automotive, and semiconductor [11–14].

Generally speaking, the design of CNN and GCN involves numerous hyperparameters,
such as convolutional kernel size, Gabor convolutional filters, pooling strategies, number
of layers, and learning rate. Traditional hyperparameter optimization methods such as grid
search and random search suffer from high computational costs and may fail to capture
robust parameter settings under small-sample conditions. In contrast, the Taguchi method
utilizes orthogonal arrays to efficiently select representative parameter sets, significantly
reducing the number of experimental runs and computational costs. This advantage
motivates the adoption of the Taguchi method for CNN and GCN optimization, as it
not only reduces the computational burden of hyperparameter tuning but also enhances
model robustness, convergence speed, and generalization ability. Furthermore, the Taguchi
method is particularly well-suited for applications with limited data and computational
resources, such as texture image analysis, industrial inspection, and intelligent surveillance
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systems. Therefore, it provides a highly efficient and systematic approach for optimizing
CNN and GCN architectures.

Based on the aforementioned reasons and advantages, this study proposes a wood
defect recognition model based on Gabor convolutional networks, integrating convolutional
neural networks, Gabor filters, and the Taguchi method. The proposed GCN model employs
the Taguchi method to optimize the network architecture. Furthermore, to address the
issue of limited training samples, this study utilizes image tiling and data augmentation
techniques to effectively increase the number of training samples, thereby enhancing the
stability and accuracy of the model.

To address the challenges of detecting diverse wood surface defects with limited train-
ing data, this study employs a Taguchi-optimized Gabor convolutional network (GCN).
The integration of Gabor filters with CNNs enables effective extraction of texture and hier-
archical features, while the Taguchi method provides a systematic and efficient framework
for hyperparameter optimization. This combination offers both accuracy and robustness,
making it particularly suitable for wood defect detection tasks. The main contributions of
this work are as follows:

(i) Integration of interpretable texture feature extraction and deep feature learning
through a GCN architecture specifically adapted for wood surface inspection.

(ii) Systematic optimization of GCN hyperparameters using the Taguchi method, en-
abling high performance with reduced computational cost.

(iii) Data augmentation and tiling strategies to overcome limited training data, enhancing
model stability and generalization.

(iv) Extensive comparative evaluation against a baseline CNN on the MVTec AD wood
category dataset, demonstrating a 2.73% accuracy improvement.

The remainder of this study is organized as follows. Section 2 briefly reviews some
studies on Gabor filters, CNNs, and their combination. The proposed optimization of
Gabor convolutional networks using the Taguchi method and their application in wood
defect detection are given in Section 3. Finally, Section 4 presents some conclusions of
this study.

2. Literature Review
2.1. Gabor Filters

Gabor filters are widely recognized for their effectiveness in extracting spatial fre-
quency and orientation information from images. A two-dimensional Gabor function
can be formulated as a Gaussian kernel modulated by a sinusoidal plane wave, enabling
multi-scale and multi-orientation analysis [5]. The two-dimensional (2D) Gabor function,
represented as a Gaussian kernel function modulated by a sinusoidal plane wave, is defined
as follows:

g(x, y) = exp

−
∼
x

2
+ γ2∼y

2

2σ2

×exp
(

j
(

ω
∼
x + φ

))
(1)

where
∼
x = xcosθ + ysinθ (2)

∼
y = −xsinθ + ycosθ (3)

where x and y are the Cartesian coordinates, ω represents the frequency, θ denotes the
orientation, σ corresponds to the bandwidth (the standard deviation of the Gaussian
function), φ indicates the phase offset, and γ refers to the spatial aspect ratio. A set of Gabor
filters with a variety of frequencies and orientations can extract invariant features from an
image. Hence, the Gabor filters are widely used in the field of image processing, such as
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texture classification and retrieval. This property makes Gabor filters particularly suitable
for texture analysis tasks, including texture classification, content-based image retrieval,
and industrial surface inspection [8–10].

In the context of wood surface inspection, Gabor filters can capture subtle variations
in grain patterns, facilitating the identification of defects such as scratches, discolorations,
or holes. However, their handcrafted nature imposes limitations: the extracted features
are fixed once the filter bank is designed, making them less adaptive to variations in
illumination, defect shape, or environmental noise. Furthermore, when applied in isolation,
Gabor-based methods often struggle with complex intra-class variability, leading to reduced
robustness in unconstrained industrial settings.

2.2. Convolutional Neural Networks

In the field of machine vision, convolutional neural networks are the most widely
used deep learning architecture, such as the LeNet-5 architecture shown in Figure 1 [15].
This architecture comprises three primary types of neural layers: convolutional layers,
pooling layers, and fully connected layers. The convolutional layers are responsible for
extracting local features from images, while the pooling layers reduce image dimensions
and network parameters. The fully connected layers transform the two-dimensional image
representation into a one-dimensional vector. Finally, the output layer, utilizing the Softmax
function as the activation function, determines the network’s final prediction by selecting
the neuron with the highest activation.

Figure 1. Architecture of LeNet-5 [12].

Nonetheless, conventional CNN kernels are learned from data without explicit con-
straints on their frequency or orientation selectivity. While this flexibility can be advan-
tageous in learning task-specific features, it may result in redundancy or suboptimal
exploitation of structural priors in texture-rich domains such as wood surfaces. This limita-
tion motivates the incorporation of domain-specific filters, such as Gabor filters, into CNN
architectures to improve orientation-sensitive feature representation.

2.3. Integrating Gabor Filters with CNN Architectures

The integration of Gabor filters into CNNs has been investigated to combine the inter-
pretable, orientation-sensitive feature extraction of Gabor filters with the deep, hierarchical
feature learning capabilities of CNNs. Existing approaches can be broadly categorized into
two strategies:

(i) Pre-processing-based integration—Gabor filters are first applied to raw images
to generate feature maps, which are then fed into a CNN for further process-
ing [10,16,17]. This approach enhances the input representation but does not alter the
CNN architecture.

(ii) Kernel-substitution integration—Conventional convolutional kernels in the CNN
are replaced with Gabor kernels, either fixed or learnable, enabling the network to
perform Gabor-based filtering in its early layers [9,18,19]. This strategy embeds prior
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knowledge directly into the architecture, often improving robustness to variations in
orientation and scale.

Empirical studies have demonstrated that Gabor-augmented CNNs (GCNs) can out-
perform conventional CNNs in tasks involving fine-grained textures, such as natural image
classification task (CIFAR datasets) [9], small-sample object detection [10], and print defect
detection [17]. However, most prior work has relied on heuristic or trial-and-error tuning
of Gabor parameters (e.g., frequency, orientation, phase offset) and CNN hyperparameters
(e.g., kernel size, number of filters), which can be computationally expensive and may not
yield globally optimal configurations.

2.4. Parameter Optimization in Deep Learning Using the Taguchi Method

The Taguchi method is a robust design optimization approach that utilizes orthogonal
arrays and signal-to-noise (S/N) ratio analysis to identify optimal parameter configurations
with a minimal number of experiments [11,12]. Originally developed for manufacturing
process optimization, it has been successfully applied to domains such as electronics,
biomedical engineering, and industrial quality control. In the context of deep learning, the
Taguchi method offers a computationally efficient alternative to exhaustive hyperparameter
searches, especially for scenarios with limited training data and resources.

Despite its advantages, the application of the Taguchi method to optimize deep learn-
ing architectures—particularly Gabor-based CNNs—remains underexplored. This repre-
sents a significant opportunity to systematically determine both Gabor filter parameters
and CNN architectural hyperparameters, potentially leading to performance gains without
incurring prohibitive computational costs.

3. Proposed Methodology
The architecture of Gabor convolutional network (GCN) is illustrated in Figure 2. This

design builds upon the foundational LeNet-5 architecture, as depicted in Figure 1. Notably,
in the GCN architecture, the initial layer is a convolutional layer that employs Gabor
kernels [20]. This modification preserves the filtering and feature extraction capabilities
inherent to traditional convolutional layers. Additionally, it offers advantages such as
reducing the need for extensive data preprocessing and enhancing the computational
efficiency of the network.

Figure 2. Architecture of Gabor convolutional networks.

This study utilizes the wood category from the MVTec Anomaly Detection (MVTec
AD) dataset [17–19]. The MVTec AD dataset comprises 15 categories with 3629 images for
training and validation and 1725 images for testing. The training set contains only images
without defects. The test set contains both: images containing various types of defects and
defect-free images. Within this dataset, the wood category includes images of defects such
as color anomalies, holes, liquid, and scratch, as illustrated in Figure 3. Table 1 presents
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the number of images for each type within the wood category, where “Good” represents
defect-free. Note that MVTec AD dataset includes 247 defect-free images for training and
validation and 19 images for testing. Therefore, the total number of defect-free images, as
represented in the “Good” category (second row of the table), is 266.

Figure 3. Types of good and defective wood patterns.

Table 1. Number of images for each type in wood category.

Type Good Color Hole Liquid Scratch Total

MVTec 266 8 10 10 21 315
Train 2000 2000 2000 2000 2000 10,000
Test 400 400 400 400 400 2000

In the experimental setup, the model-building environment utilized Pytorch 2.3.0,
Jupyter Notebook 7.0.6, and TensorFlow 2.10.0. The test environment comprised an Intel(R)
Core™ i7-13700H CPU @ 3.40 GHz processor, 32.0 GB of RAM, an Nvidia GeForce RTX
3060 Ti GPU, and a Windows 11 64-bit operating system.

3.1. Model Selection

The design of an effective model for wood defect detection requires both domain-
specific feature extraction and robust optimization of network parameters. In this
study, a Taguchi-optimized GCN was selected over alternative approaches for three pri-
mary reasons.

First, the integration of domain knowledge and deep learning provides a strong
foundation for surface inspection tasks. Gabor filters are particularly effective in capturing
orientation- and texture-sensitive features of wood surfaces, while CNNs are well suited
for extracting hierarchical and abstract representations. The combination of these two
techniques forms a GCN architecture that is highly adapted to the characteristics of wood
defect detection [2].

Second, the Taguchi method offers a systematic and efficient framework for hyperpa-
rameter optimization. Unlike exhaustive grid search or heuristic-based tuning, the Taguchi
design of experiments requires significantly fewer trials, while still enabling robust and
reproducible optimization. This advantage is particularly valuable in scenarios where
computational resources are limited, and reliable factor-level evaluation is required [12–14].

Third, the method is especially suitable under limited data conditions. The MVTec AD
wood dataset, although widely used, contains relatively few defect samples [21]. Under
such circumstances, Taguchi’s structured design enables stable optimization outcomes and
improved generalization without excessive computational burden.

Although other optimization strategies such as grid search and Bayesian optimization
were considered, they would have required substantially more computational resources
without guaranteeing superior performance. For these reasons, the Taguchi-optimized
GCN represents a balanced choice that combines interpretability, efficiency, and robust-
ness, making it particularly suitable for the wood defect detection problem addressed in
this study.
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3.2. Data Preprocessing

Due to the lack of training samples for wood defect detection, this study employs two
approaches to increase the number of training samples and reduce computational load:

(i) Image tiling: The original wood images are divided into smaller tiles to increase the
number of defect samples while simultaneously reducing computational complexity.
In this study, a 1024 × 1024-pixel image is tiled into 64 sub-images of 128 × 128 pixels.
Furthermore, when the tiled images serve as input to the defect detection model, if a
specific sub-image is classified as a certain defect category, the corresponding region
in the original image can be marked as the defect location. This enables both defect
classification and localization within wood images.

(ii) Image augmentation: To enhance the diversity of training samples and expand the
dataset, this study applies various image augmentation techniques, including rotation,
horizontal translation, vertical translation, and random scaling.

After applying the aforementioned two data preprocessing methods, the training
dataset for this study consists of a total of 10,000 samples (2000 per category), while the test
dataset contains 2000 samples (400 per category), as shown in Table 1. During the training
process, 80% of the training samples are used for model training to optimize the model
parameters, while the remaining 20% serve as the validation set to evaluate the model’s
confirm the optimal configuration performance.

3.3. Steps for Implementing the Taguchi Method

The Taguchi method is a systematic approach for optimizing process parameters by
minimizing variability and improving robustness. It employs a structured experimental de-
sign using orthogonal arrays (OAs) to efficiently determine the optimal factor levels [10,11].
The following steps outline its implementation in optimizing a GCN or CNN for wood
defect detection.

(i) Define the problem and objective: The first step involves identifying the need for
optimization, such as improving the accuracy of wood defect detection using a GCN
or CNN. To achieve this, it is crucial to determine the key factors influencing model
performance. These factors include convolutional kernel size, the number of filters,
and Gabor filter properties like frequency, orientation, and phase offset.

(ii) Select control factors and levels: After defining the problem, the next step is to choose
the parameters (control factors) that will be optimized and assign appropriate levels
to each. For instance, convolutional kernel size may have three levels: 3 × 3, 5 × 5,
and 7 × 7, while the number of filters in different layers may vary across experiments.
Proper selection of these factors ensures that the experimental design captures a wide
range of potential improvements.

(iii) Design the experiment using an orthogonal array: Instead of testing all possible
combinations, which would be computationally expensive, an orthogonal array (OA)
is selected to systematically conduct experiments with reduced trials. The OA helps
distribute experiments evenly across factor levels, ensuring a balanced analysis.

(iv) Conduct experiments and record performance: Each experimental configuration is
implemented by training and testing the GCN or CNN under the selected parame-
ter settings.

(v) Calculate the signal-to-noise (S/N) ratio: To measure the robustness of each configu-
ration, the signal-to-noise (S/N) ratio is calculated.

(vi) Analyze results and determine optimal factor levels: Once the S/N ratios are com-
puted, the average S/N ratio for each factor level is analyzed to determine the optimal
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combination. The best parameter settings are selected based on the highest S/N ratios,
and response plots are generated to visualize their effects on model performance.

(vii) Confirm the optimal configuration: The GCN is then retrained using the optimized
parameters to validate its performance. A comparison with a baseline CNN is con-
ducted to assess improvements in accuracy and computational efficiency. The results
confirm whether the optimized model outperforms the traditional approach.

(viii) Implement and verify performance: Finally, the optimized model is applied to real-
world wood defect detection tasks. Further evaluations are conducted to ensure its
robustness and generalization ability. If needed, additional refinements can be made
to enhance the model’s effectiveness.

3.4. Optimizing Gabor Convolutional Networks Using the Taguchi Method

This study employs the Taguchi method to optimize the architecture of the Gabor
convolutional network. The control factors to be optimized, along with their corresponding
levels, are shown in Table 2. Among these, three control factors—frequency (ω), orientation
(θ), and phase offset (ψ)—are related to the Gabor filter parameters, while the remaining five
control factors are hyperparameters associated with the convolutional layers. As shown in
Table 2, there is one factor with two levels and seven factors with three levels. According to
the Taguchi method, the degrees of freedom (DOF) are calculated as the sum of (number of
levels – 1) for each factor. Therefore, (2 − 1) + 7 × (3 − 1) = 1 + 14 = 15, resulting in a total of
15 degrees of freedom for the eight control factors. Consequently, an orthogonal array with
at least 15 degrees of freedom is required for the Taguchi experiment. In this study, the L18
(21 × 37) orthogonal array, as listed in Table 3, is selected, requiring 18 experimental runs to
systematically evaluate the factor-level combinations. Without the orthogonal array, a total
of 4374 (21 × 37) experiments would be required. However, by applying the orthogonal
array, only 18 experiments are needed in this study.

Table 2. Levels of control factors: GCNs.

No. Control Factors Level 1 Level 2 Level 3

A Pooling function Max Average ---
B Conv1_filters 128 256 512
C Conv1_kernel size (3,3) (5,5) (7,7)
D Conv2_filters 128 256 512
E Conv2_kernel size (3,3) (5,5) (7,7)
F frequency ω 5 6 7
G orientation θ 2 4 6
H phase offset ψ 1 2 3

Table 3. Average accuracy and S/N ratio of L18 orthogonal array: GCNs.

No. A B C D E F G H Ave. Acc. S/N

1 1 1 1 1 1 1 1 1 97.01% −0.2635
2 1 1 2 2 2 2 2 2 98.45% −0.1366
3 1 1 3 3 3 3 3 3 97.83% −0.1939
4 1 2 1 1 2 2 3 3 97.75% −0.1990
5 1 2 2 2 3 3 1 1 95.50% −0.4058
6 1 2 3 3 1 1 2 2 98.77% −0.1083
7 1 3 1 2 1 3 2 3 97.75% −0.1973
8 1 3 2 3 2 1 3 1 94.43% −0.5143
9 1 3 3 1 3 2 1 2 98.19% −0.1595

10 2 1 1 3 3 2 2 1 95.97% −0.3579
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Table 3. Cont.

No. A B C D E F G H Ave. Acc. S/N

11 2 1 2 1 1 3 3 2 97.20% −0.2477
12 2 1 3 2 2 1 1 3 98.02% −0.1739
13 2 2 1 2 3 1 3 2 97.37% −0.2346
14 2 2 2 3 1 2 1 3 97.93% −0.1821
15 2 2 3 1 2 3 2 1 97.59% −0.2129
16 2 3 1 3 2 3 1 2 97.05% −0.2633
17 2 3 2 1 3 1 2 3 98.05% −0.1716
18 2 3 3 2 1 2 3 1 96.06% −0.3547

To reduce the influence of randomness and enhance reliability, each experimental con-
figuration is independently executed 10 times. The average accuracy for each independent
trial is recorded, and the mean of these 10 trials is used to represent the experimental per-
formance of that configuration, as shown in Table 4. For convenience, the average accuracy
is also included in the aforementioned Table 3. A higher mean value indicates a higher
average accuracy for that configuration. Since the objective of applying the Taguchi method
is to improve the recognition accuracy of the Gabor convolutional network, this study
considers the “larger-the-better” quality characteristic. Therefore, the “larger-the-better”
formulation of the Taguchi method is applied for the calculation of the signal-to-noise
(S/N) ratio, as expressed in Equation (4):

S/N ratio η = −10log
(

1
n ∑n

i=1
1

yi
2

)
, (4)

where yi represents the ith observed value, and n denotes the total number of observations.

Table 4. Recognition results of Gabor convolutional networks.

Exp. Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average

1 96.75% 97.25% 96.80% 96.55% 96.90% 97.14% 97.33% 96.67% 97.63% 97.13% 97.01%
2 98.75% 99.05% 99.05% 97.35% 98.50% 99.13% 98.01% 97.58% 98.65% 98.38% 98.45%
3 98.80% 95.20% 95.75% 98.90% 97.80% 98.78% 100.57% 96.45% 98.68% 97.37% 97.83%
4 97.95% 97.30% 98.95% 96.65% 98.70% 97.30% 97.58% 97.24% 96.63% 99.15% 97.75%
5 96.65% 91.95% 95.25% 97.60% 97.30% 96.29% 94.15% 98.23% 92.45% 95.14% 95.50%
6 99.15% 99.15% 98.70% 97.90% 99.00% 97.48% 98.78% 99.05% 99.12% 99.33% 98.77%
7 98.10% 97.55% 97.85% 97.85% 97.65% 97.76% 97.85% 97.64% 97.56% 97.74% 97.75%
8 96.80% 88.75% 98.15% 90.70% 96.65% 99.14% 96.48% 92.03% 93.94% 91.64% 94.43%
9 96.55% 99.20% 97.50% 99.35% 98.10% 97.96% 98.76% 97.75% 99.01% 97.72% 98.19%
10 95.60% 97.00% 95.20% 96.00% 96.45% 94.70% 95.47% 96.49% 96.89% 95.92% 95.97%
11 97.75% 98.80% 97.55% 96.50% 96.70% 97.72% 97.34% 95.78% 97.51% 96.34% 97.20%
12 98.25% 98.50% 97.60% 98.85% 97.65% 98.24% 98.94% 96.89% 97.15% 98.16% 98.02%
13 98.70% 97.45% 99.05% 94.65% 98.65% 95.71% 98.38% 98.88% 96.42% 95.81% 97.37%
14 97.80% 96.50% 98.40% 98.15% 98.30% 98.70% 97.41% 98.11% 98.71% 97.24% 97.93%
15 97.35% 95.85% 98.45% 96.85% 98.25% 97.32% 98.92% 97.80% 96.66% 98.45% 97.59%
16 98.15% 95.85% 97.95% 98.30% 93.70% 98.83% 95.45% 97.41% 98.63% 96.27% 97.05%
17 98.50% 98.05% 98.35% 97.70% 99.00% 97.74% 97.71% 97.83% 97.86% 97.72% 98.05%
18 93.35% 97.15% 97.55% 96.40% 91.90% 97.43% 95.74% 95.31% 98.51% 97.26% 96.06%

Based on the L18 orthogonal array and the recognition results of Table 4 (at the end
of the paper), the S/N ratio for each experimental setup is listed in the last column of
Table 3. The average S/N ratio of each factor and level is listed in Table 5. The higher S/N
ratio represents the higher stability of the quality. The optimal parameter of each factor is
also displayed in the last row in Table 5. Figure 4 presents the factor S/N ratio response
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plot, which illustrates the mean response values calculated for each control factor and its
corresponding levels. Since the quality characteristic of this study follows the “larger-the-
better” criterion, the optimal factor settings can be identified from the response plot in
Figure 4 as follows: the pooling method is max pooling, the number of filters in the first
convolutional layer is 256, the kernel size of the first convolutional layer is (7,7), the number
of filters in the second convolutional layer is 128, the kernel size of the second convolutional
layer is (3,3), the number of frequency components is 6, the number of orientations is 4, and
the number of phase offsets is 3.

Table 5. Factor S/N ratio response table: GCNs.

Level A B C D E F G H

1 −0.2543 −0.2319 −0.2556 −0.2120 −0.2285 −0.2628 −0.2443 −0.3700
2 −0.2443 −0.2238 −0.2918 −0.2505 −0.2655 −0.2316 −0.1974 −0.1917
3 --- −0.2923 −0.2005 −0.2854 −0.2539 −0.2535 −0.3062 −0.1863

rank 8 5 3 4 6 7 2 1
best Max 256 7 128 3 6 4 3

 

Figure 4. Factor S/N ratio response plot: Gabor convolutional networks.

3.5. Optimizing Convolutional Neural Networks Using the Taguchi Method

In this study, the control group employs a traditional convolutional neural network
(CNN) with an architecture similar to the Gabor convolutional network shown in Figure 2.
This network comprises two convolutional layers with corresponding pooling layers,
followed by two fully connected layers. To optimize the CNN’s hyperparameters, the
Taguchi method is applied, focusing on control factors and levels. The control factors and
their corresponding levels are listed in Table 6, while Table 7 presents the L8 orthogonal
array used in this study. The experimental results and S/N ratios are provided in Table 8
and the last column of Table 7, respectively.
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Table 6. Levels of control factors: CNNs.

No. Control Factors Level 1 Level 2

A Pooling function Max Average
B Conv1_filters 128 512
C Conv1_kernel size (3,3) (7,7)
D Conv1_pool_size 2 4
E Conv2_filters 128 512
F Conv2_kernel size (3,3) (7,7)
G Conv2_pool_size 2 4

Table 7. Average accuracy and S/N ratio of L8 orthogonal array: CNNs.

No. A B C D E F G Ave. Acc. S/N

1 1 1 1 1 1 1 1 95.94% −0.3654
2 1 1 1 2 2 2 2 98.22% −0.1568
3 1 2 2 1 1 2 2 92.65% −0.7590
4 1 2 2 2 2 1 1 96.38% −0.3233
5 2 1 2 1 2 1 2 92.33% −0.7243
6 2 1 2 2 1 2 1 96.15% −0.3465
7 2 2 1 1 2 2 1 91.82% −0.7503
8 2 2 1 2 1 1 2 97.95% −0.1805

Table 8. Recognition accuracy of convolutional neural networks.

Exp. Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average

1 93.60% 97.65% 95.60% 96.75% 98.05% 99.15% 94.76% 97.00% 93.02% 93.85% 95.94%
2 98.85% 96.80% 98.40% 98.75% 98.85% 97.03% 98.21% 99.12% 98.26% 97.93% 98.22%
3 97.50% 79.90% 96.40% 97.65% 98.20% 91.97% 97.23% 93.78% 96.81% 77.03% 92.65%
4 93.70% 97.45% 94.10% 98.00% 97.90% 96.24% 95.95% 97.05% 97.65% 95.76% 96.38%
5 97.40% 95.50% 86.15% 97.65% 91.00% 87.99% 87.83% 92.28% 99.08% 88.39% 92.33%
6 93.85% 96.80% 92.45% 96.80% 96.35% 98.13% 94.85% 95.69% 98.69% 97.85% 96.15%
7 89.65% 95.75% 87.60% 91.15% 92.65% 91.64% 90.87% 90.83% 96.27% 91.82% 91.82%
8 97.90% 98.15% 97.10% 98.65% 98.45% 97.04% 98.71% 97.31% 97.83% 98.35% 97.95%

The average S/N ratio of each factor and level, along with the optimal parameter
of each factor, is presented in Table 9. Additionally, Figure 5 depicts the corresponding
Taguchi response plot, which illustrates the mean response values calculated for each
control factor and its associated levels. Based on these results, the optimized control factors
for the CNN are identified as follows: the pooling method is max pooling, the number of
filters in the first convolutional layer is 128, the kernel size of the first convolutional layer
is (3,3), the pooling size of the first pooling layer is 4, the number of filters in the second
convolutional layer is 128, the kernel size of the second convolutional layer is (3,3), and the
pooling size of the second pooling layer is 2.

Table 9. Factor S/N Ratio Response Table: CNNs.

Level A B C D E F G

1 −0.4011 −0.3982 −0.3632 −0.6498 −0.4128 −0.3984 −0.4464
2 −0.5004 −0.5033 −0.5383 −0.2518 −0.4887 −0.5031 −0.4552

rank 5 3 2 1 6 4 7
best Max 128 (3,3) 4 128 (3,3) 2
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Figure 5. Factor S/N ratio response plot: Convolutional neural networks.

3.6. Comparative Analysis of Optimal Factor Combinations

Table 10 presents the comparative results of the Taguchi-optimized Gabor convolu-
tional network and the Taguchi-optimized convolutional neural network. The optimized
GCN achieved an average accuracy of 98.92%, whereas the optimized CNN reached 96.19%.
Beyond the accuracy difference of 2.73%, the GCN also demonstrated greater robustness, as
indicated by smaller performance variations across the ten independent runs. This improve-
ment can be attributed to the integration of Gabor filters, which enhance orientation- and
texture-sensitive feature extraction, combined with the systematic parameter optimization
achieved by the Taguchi method.

Table 10. Comparison of optimal factor combinations for GCNs and CNNs.

Network Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Average

GCN 98.95% 99.10% 99.30% 98.65% 98.50% 98.91% 98.99% 98.95% 98.90% 98.94% 98.92%
CNN 97.20% 95.10% 97.50% 96.55% 94.85% 96.26% 95.69% 95.46% 96.49% 96.82% 96.19%

Furthermore, the S/N ratio analysis (Tables 5 and 9) confirms that the GCN configu-
ration yields higher stability under different factor-level combinations. For instance, the
factor response plots in Figure 5 illustrate that the choice of kernel size and Gabor orien-
tation exerts a significant influence on performance, with the optimized settings leading
to consistently higher S/N values. These observations highlight that the Taguchi-based
design not only improves mean accuracy but also enhances the reliability of the network
under stochastic training conditions.

In summary, the comparative analysis underscores the superiority of the Taguchi-
optimized GCN over the conventional CNN in terms of accuracy, stability, and computa-
tional efficiency. These findings demonstrate that incorporating interpretable texture filters
with a robust design methodology provides a practical solution for wood defect detection
in real-world manufacturing scenarios.

4. Conclusions
This study presented a Taguchi-optimized Gabor Convolutional Network for wood

defect detection, integrating the orientation- and frequency-selective texture analysis of Ga-
bor filters with the hierarchical feature learning of convolutional neural networks (CNNs).
The Taguchi method was employed to systematically tune both CNN architectural parame-
ters and Gabor-specific settings, enabling performance optimization with a substantially
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reduced number of experimental trials compared to exhaustive search. To address the chal-
lenge of limited training data, an image tiling and augmentation pipeline was introduced,
expanding the dataset and improving model generalization.

Experimental evaluation on the MVTec Anomaly Detection dataset (wood category)
demonstrated that the optimized GCN achieved an average detection accuracy of 98.92%,
outperforming a Taguchi-optimized baseline CNN by 2.73%. This improvement confirms
the effectiveness of combining interpretable, domain-specific feature extraction with statis-
tical design-of-experiments in developing lightweight yet accurate defect detection models
suitable for real-time smart manufacturing applications.
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