Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (712)

Search Parameters:
Keywords = wine aroma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 449 KiB  
Review
The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods
by Tainá Francisca Cordeiro de Souza, Bruna Melo Miranda, Julio Cesar Colivet Briceno, Joaquín Gómez-Estaca and Flávio Alves da Silva
Foods 2025, 14(15), 2739; https://doi.org/10.3390/foods14152739 - 5 Aug 2025
Abstract
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can [...] Read more.
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can impart distinct sensory characteristics and promote innovative maturation processes. This review examines the impact of alternative woods on the aging of beverages, such as wine, cachaça, tequila, and beer, focusing on their influence on aroma, flavor, color, and chemical composition. A bibliometric analysis highlights the increasing scientific attention toward wood diversification and emerging aging technologies, including ultrasound and micro-oxygenation, which accelerate maturation while preserving sensory complexity. The role of toasting techniques in modulating the release of phenolic and volatile compounds is also discussed, emphasizing their contribution to unique sensory profiles. Additionally, regulatory aspects and sustainability considerations are explored, suggesting that alternative woods can expand flavor possibilities while supporting environmentally sustainable practices. This review underscores the potential of non-traditional wood species to drive innovation in the aging of alcoholic beverages and provide new sensory experiences that align with evolving consumer preferences and market trends. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
18 pages, 2769 KiB  
Article
Characterization of the Flavors and Organoleptic Attributes of Petit Manseng Noble Rot Wines from the Eastern Foothills of Helan Mountain in Ningxia, China
by Fuqi Li, Fan Yang, Quan Ji, Longxuan Huo, Chen Qiao and Lin Pan
Foods 2025, 14(15), 2723; https://doi.org/10.3390/foods14152723 - 4 Aug 2025
Viewed by 101
Abstract
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into [...] Read more.
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into three groups based on infection status: uninfected, mildly infected, and severely infected with Botrytis cinerea. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and an electronic nose were employed to detect and analyze the aroma components of wines under the three infection conditions. Additionally, trained sensory panelists conducted sensory evaluations of the wine aromas. The results revealed that wines made from severely infected grapes exhibited the richest and most complex aroma profiles. A total of 70 volatile compounds were identified, comprising 32 esters, 17 alcohols, 5 acids, 8 aldehydes and ketones, 4 terpenes, and 4 other compounds. Among these, esters and alcohols accounted for the highest contents. Key aroma-active compounds included isoamyl acetate, ethyl decanoate, phenethyl acetate, ethyl laurate, hexanoic acid, linalool, decanoic acid, citronellol, ethyl hexanoate, and methyl octanoate. Sensory evaluation indicated that the “floral aroma”, “pineapple/banana aroma”, “honey aroma”, and “overall aroma intensity” were most pronounced in the severely infected group. These findings provide theoretical support for the harvesting of severely Botrytis cinerea-infected Petit Manseng grapes and the production of high-quality noble rot wine in this region. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

20 pages, 1664 KiB  
Article
Phenolic Evolution During Industrial Red Wine Fermentations with Different Sequential Air Injection Regimes
by Paula A. Peña-Martínez, Alvaro Peña-Neira and V. Felipe Laurie
Fermentation 2025, 11(8), 446; https://doi.org/10.3390/fermentation11080446 - 31 Jul 2025
Viewed by 284
Abstract
During red wine production, managing the pomace cap is key for a successful fermentation, allowing the extraction of phenolics and other metabolites and providing the necessary oxygen for yeast activity. In recent years, automatic cap management systems based on the injection of gases [...] Read more.
During red wine production, managing the pomace cap is key for a successful fermentation, allowing the extraction of phenolics and other metabolites and providing the necessary oxygen for yeast activity. In recent years, automatic cap management systems based on the injection of gases have gained popularity, despite the limited scientific information regarding the outcomes of their use. This trial aimed to evaluate the composition of wine during industrial red wine fermentations using an automatic sequential air injection system (i.e., AirMixing MITM). Fourteen lots of Cabernet Sauvignon grapes were fermented using four air injection regimes, where the intensity and daily frequency of air injections were set to either low or high. As expected, the treatment combining high-intensity and high-frequency air injection produced the largest dissolved oxygen peaks reaching up to 1.9 mg L−1 per cycle, compared to 0.1 mg L−1 in the low-intensity and low-frequency treatment. Yet, in all cases, little to no accumulation of oxygen overtime was observed. Regarding phenolics, the highest intensity and frequency of air injections led to the fastest increase in total phenolics, anthocyanins, short polymeric pigments, and tannin concentration, although compositional differences among treatments equilibrate by the end of fermentation. The main differences in phenolic compounds observed during fermentation were mediated by temperature variation among wine tanks. Based on these findings, it is advisable to keep the characterizing kinetics of phenolic extraction and expand the study to the aroma evolution of wines fermented with this technology. Full article
(This article belongs to the Special Issue Biotechnology in Winemaking)
Show Figures

Figure 1

19 pages, 8805 KiB  
Article
Effects of Inactive Yeast Biostimulants on Mechanical and Color Attributes of Wine Grape Cultivars
by Giovanni Gentilesco, Vittorio Alba, Giovanna Forte, Rosa Anna Milella, Giuseppe Roselli and Mauro Eugenio Maria D’Arcangelo
Sustainability 2025, 17(15), 6958; https://doi.org/10.3390/su17156958 - 31 Jul 2025
Viewed by 149
Abstract
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile [...] Read more.
Background: Biostimulants naturally improve plant growth, stress tolerance, and nutrient use efficiency and activate defenses by increasing protective metabolites (phenols, anthocyanins) in grapes. In viticulture, especially when using inactive yeasts, they modulate genetic expression and improve the skin resistance, color, and aroma profile of wine grapes in line with sustainable practices. Methods: Two wine grape cultivars, Merlot and Cabernet Sauvignon, were sprayed with the inactive yeast Saccharomyces cerevisiae in a single treatment in pre-veraison or in a double treatment in pre-veraison and veraison. Berry weight, must, total polyphenols, anthocyanins, and mechanical and colorimetric properties were measured on fresh grapes. Results: Two-way ANOVA revealed that titratable acidity (TA), pH, and total polyphenol content (TPC) were not affected, while mean berry weight and anthocyanin content varied by cultivar, treatment, and interaction; total soluble solids (TSS) differed only by cultivar. Inactive yeasts reduced weight in the single-treatment thesis but stabilized it in the double-treatment one; anthocyanins decreased in Cabernet Sauvignon but increased in Merlot. Mechanical and colorimetric analyses showed cultivar-dependent responses, with significant improvements in elasticity, skin thickness, and hue of berries, especially in Merlot when the treatment was applied twice. Conclusions: Inactive yeasts (IYs) showed an effect on the weight of the berries, the anthocyanins, the mechanics, and the color; Merlot significantly improved skin thickness, elasticity, and hue; and Cabernet remained less reactive to treatments. Full article
Show Figures

Graphical abstract

18 pages, 5554 KiB  
Article
High-Vigor Rootstock Exacerbates Herbaceous Notes in Vitis vinifera L. cv. Cabernet Sauvignon Berries and Wines Under Humid Climates
by Xiao Han, Haocheng Lu, Xia Wang, Yu Wang, Weikai Chen, Xuanxuan Pei, Fei He, Changqing Duan and Jun Wang
Foods 2025, 14(15), 2695; https://doi.org/10.3390/foods14152695 - 31 Jul 2025
Viewed by 208
Abstract
Rootstocks are widely used in viticulture as an agronomic measure to cope with biotic and abiotic stresses. In winegrapes, the aroma is one of the major factors defining the quality of grape berries and wines. In the present work, the grape aroma and [...] Read more.
Rootstocks are widely used in viticulture as an agronomic measure to cope with biotic and abiotic stresses. In winegrapes, the aroma is one of the major factors defining the quality of grape berries and wines. In the present work, the grape aroma and wine aroma of Cabernet Sauvignon (CS) grafted on three rootstocks were investigated to inform the selection of rootstocks to utilize. 1103P, 5A, and SO4 altered the composition of aromatic volatiles in CS grapes and wines. Among them, 5A and SO4 had less effect on green leaf volatiles in the berries and wines, while 1103P increased green leaf volatile concentrations, up-regulating VvADH2 expression in both vintages. VvLOXA, VvLOXC, VvHPL1, VvADH1, VvADH2, and VvAAT were co-regulated by vintage and rootstock. Orthogonal partial least squares regression analysis (OPLS-DA) showed that the differential compounds in CS/1103P and CS berries were dominated by green leaf volatiles. Furthermore, the concentrations of 1-hexanol in the CS/1103P wines were significantly higher than in the other treatments in the two vintages. 1103P altered the expression of genes in the LOX-HPL pathway and increased the concentration of grape green leaf volatiles such as 1-hexanol and 1-hexanal, while vine vigor also affected green leaf volatile concentrations, the combination of which altered the aromatic composition of the wine and gave it more green flavors. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

26 pages, 2132 KiB  
Article
Effect of Contrasting Redox Potential Evolutions and Cap Management Techniques on the Chemical Composition of Red Wine
by Dallas J. Parnigoni, Sean T. Kuster, Jesus Villalobos, James Nelson, Robert E. Coleman and L. Federico Casassa
Molecules 2025, 30(15), 3172; https://doi.org/10.3390/molecules30153172 - 29 Jul 2025
Viewed by 182
Abstract
This study investigated the effects of six cap management protocols targeting contrasting oxidation-reduction potential (ORP) evolutions during alcoholic fermentation of Pinot noir wines. Treatments included twice-daily punch-downs (PD) and pump-overs (PO), 1 h air or N2 injections (AirMix, N2Mix), air [...] Read more.
This study investigated the effects of six cap management protocols targeting contrasting oxidation-reduction potential (ORP) evolutions during alcoholic fermentation of Pinot noir wines. Treatments included twice-daily punch-downs (PD) and pump-overs (PO), 1 h air or N2 injections (AirMix, N2Mix), air injections triggered by ORP ≤ −40 mV (RedoxConAir), and equal N2 injections concurrent to RedoxConAir wines (RedoxConN2). AirMix wines maintained ORP values above 0 mV throughout fermentation, showed an oxidatively favored glutathione-to-glutathione disulfide ratio (GSH:GSSG) of 0.3:1, and had 21% lower total phenolics and 24% lower anthocyanins than PD wines. In contrast, N2Mix wines maintained the lowest ORP, near −100 mV, and showed a reductively favored GSH:GSSG ratio (7:1). PD wines extracted 48% more flavan-3-ols than PO wines, consistent with greater berry integrity disruption and seed submersion. Volatile composition was also impacted: ethyl n-octanoate showed the highest OAV among esters, ranging from 147 in PO wines to 116 in AirMix wines. Results suggest the GSH:GSSG ratio served as an indicator of redox history, with potential implications for color and aroma preservation during aging. Inert gas mixings resulted in equal or greater total phenolic content, while excessive air injections may provide a tool to soften astringency. Full article
Show Figures

Graphical abstract

19 pages, 1098 KiB  
Article
The Pyramid of Mineral Waters: A New Paradigm for Hydrogastronomy and the Combination of Food and Water
by Sergio Marini Grassetti and Betty Carlini
Gastronomy 2025, 3(3), 12; https://doi.org/10.3390/gastronomy3030012 - 23 Jul 2025
Viewed by 209
Abstract
The art of food–drink pairing has always fascinated gourmets and cooking enthusiasts. While wine has long held pride of place on the table, natural mineral water plays a central role in this new concept. Through the Pyramid of Natural Mineral Waters, we aim [...] Read more.
The art of food–drink pairing has always fascinated gourmets and cooking enthusiasts. While wine has long held pride of place on the table, natural mineral water plays a central role in this new concept. Through the Pyramid of Natural Mineral Waters, we aim to explore the relationships between the structure of water and food, flavors and aromas, revealing a world of previously unexplored nuances and tastes. This new approach is based on the analysis of the fixed residue of water, i.e., the amount of mineral salts dissolved in it. The fixed residue gives the water unique organoleptic characteristics, influencing the perception of flavors and sensations in the mouth. By analyzing the technical data sheet of mineral waters designed by us, it is possible to identify their main characteristics and combine them in a consistent way with various dishes, as proposed in the pyramid scheme. There are many possible combinations between natural mineral waters and foods, depending on numerous factors, including the type of water and the salts dissolved in it, the type of food, the cooking method, and the types of sauces and condiments present in the dish. To guide consumers in this fascinating universe, the figure of the water sommelier, or so-called hydro-sommelier, was born. As expert connoisseurs of natural mineral waters, they are able to recommend the ideal water for every occasion, maximizing the taste characteristics of the food served at the table. This study is completed with the construction of the Pyramid of Natural Mineral Waters, which relates the composition of water, specifically the salient characteristics related to dissolved minerals, with the respective food combinations recommended by us, in relation to the structure of both water and food. Full article
Show Figures

Figure 1

20 pages, 2144 KiB  
Article
Effects of Crop Load Management on Berry and Wine Composition of Marselan Grapes
by Jianrong Kai, Jing Zhang, Caiyan Wang, Fang Wang, Xiangyu Sun, Tingting Ma, Qian Ge and Zehua Xu
Horticulturae 2025, 11(7), 851; https://doi.org/10.3390/horticulturae11070851 - 18 Jul 2025
Viewed by 392
Abstract
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the [...] Read more.
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the number of clusters per shoot. Marselan grapes from the Gezi Mountain vineyard, located at the eastern foot of Helan Mountain in the Qingtongxia region of Ningxia, were selected as the research material to conduct a combination experiment with four levels of shoot density and three levels of cluster density. The analysis of the berry and wine chemical composition was combined with a wine sensory evaluation to determine the optimal crop load levels. Crop load regulation significantly affected both the grape berry composition and the basic physicochemical properties of the resulting wine. Low crop loads improved metrics such as the berry weight and soluble solids content. A low shoot density facilitated the accumulation of organic acids, flavonols, and hydroxybenzoic acids in wine. Moderate crop loads were conducive to anthocyanin synthesis—the total individual anthocyanins content in the 10–20 shoots per meter of the canopy treatment group ranged from 116% to 490% of the control group—whereas excessive crop loads hindered its accumulation. Crop load management significantly influenced the aroma composition of wine by regulating the content of sugars, nitrogen sources, and organic acids in grape berries, thereby promoting the synthesis of esters and the accumulation of key aromatic compounds, such as terpenes. This process optimized pleasant flavors, including fruity and floral aromas. In contrast, wines from the high crop load and control treatments contained lower levels of these aroma compounds. Compounds such as ethyl caprylate and β-damascenone were identified as potential quality markers. Overall, the wine produced from vines with a crop load of 30 clusters (15 shoots per meter of canopy, 2 clusters per shoot) received the highest sensory scores. Appropriate crop load management is therefore critical to improving the chemical composition of Marselan wine. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

25 pages, 3228 KiB  
Article
Bio-Agronomic Assessment and Quality Evaluation of Sugarcane with Optimized Juice Fermentation in View of Producing Sicilian “Rum Agricole”
by Antonino Pirrone, Nicolò Iacuzzi, Antonio Alfonzo, Morgana Monte, Vincenzo Naselli, Federica Alaimo, Noemi Tortorici, Gabriele Busetta, Giuliana Garofalo, Raimondo Gaglio, Claudio De Pasquale, Nicola Francesca, Luca Settanni, Teresa Tuttolomondo and Giancarlo Moschetti
Appl. Sci. 2025, 15(14), 7696; https://doi.org/10.3390/app15147696 - 9 Jul 2025
Viewed by 373
Abstract
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process [...] Read more.
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process to produce rum agricole, a spirit derived from fresh cane juice. Agronomic evaluations revealed significant varietal differences, with juice yields of 5850−14,312 L ha−1 and sugar yields of 1.84–5.33 t ha−1. Microbial control was achieved through the addition of lactic acid, which effectively suppressed undesirable bacterial growth and improved fermentation quality. Furthermore, the application of two selected Saccharomyces cerevisiae strains (MN113 and SPF21), isolated from high-sugar matrices such as manna and honey byproducts, affected the production of volatile compounds, particularly esters and higher alcohols. Sensory analysis confirmed a more complex aromatic profile in cane wines fermented with these selected yeasts, with overall acceptance scores reaching 7.5. Up to 29 aroma-active compounds were identified, including ethyl esters and higher alcohols. This research represents the first integrated approach combining lactic acid treatment and novel yeast strains for the fermentation of sugarcane juice in a Mediterranean context. The findings highlight the potential for high-quality rum agricole production in Sicily. Full article
(This article belongs to the Special Issue Food Chemistry, Analysis and Innovative Production Technologies)
Show Figures

Figure 1

18 pages, 675 KiB  
Article
Effects of Hyperbaric Micro-Oxygenation on the Color, Volatile Composition, and Sensory Profile of Vitis vinifera L. cv. Monastrell Grape Must
by Antonio José Pérez-López, Luis Noguera-Artiaga, Patricia Navarro, Pablo Mompean, Alejandro Van Lieshout and José Ramón Acosta-Motos
Fermentation 2025, 11(7), 380; https://doi.org/10.3390/fermentation11070380 - 30 Jun 2025
Viewed by 518
Abstract
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. [...] Read more.
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. Grape clusters were manually harvested and fermented under controlled conditions, applying micro-oxygenation treatments at two fermentation stages (day 3 and day 13) within a hyperbaric chamber. Physicochemical analyses, CIELab color measurements, visible reflectance spectra, GC-FID volatile profiling, and descriptive sensory analysis were performed. Micro-oxygenated samples (M1_MOX and M2_MOX) showed significant increases in lightness (L*), redness (a*), chroma (C*), and reflectance in the 520–620 nm range, indicating enhanced extraction and stabilization of phenolic pigments. Volatile analysis revealed that these samples also contained higher concentrations of key esters and terpenes associated with fruity and floral notes. Sensory evaluation confirmed these findings, with MOX-treated wines displaying greater aromatic intensity, flavor persistence, and varietal character. Control samples (M1_CON and M2_CON) exhibited lower color saturation and volatile compound content, along with diminished sensory quality. These results suggest that hyperbaric micro-oxygenation is an effective strategy for improving color intensity and aromatic complexity during red wine fermentation under controlled, non-thermal conditions. Full article
Show Figures

Figure 1

23 pages, 1137 KiB  
Review
Exploring the Aroma Profile of Traditional Sparkling Wines: A Review on Yeast Selection in Second Fermentation, Aging, Closures, and Analytical Strategies
by Sara Sofia Pinheiro, Francisco Campos, Maria João Cabrita and Marco Gomes da Silva
Molecules 2025, 30(13), 2825; https://doi.org/10.3390/molecules30132825 - 30 Jun 2025
Viewed by 437
Abstract
Sparkling wine is a complex alcoholic beverage with high economic value, produced through a secondary fermentation of a still wine, followed by a prolonged aging period that may last from nine months to several years. With the growing global demand for high-quality sparkling [...] Read more.
Sparkling wine is a complex alcoholic beverage with high economic value, produced through a secondary fermentation of a still wine, followed by a prolonged aging period that may last from nine months to several years. With the growing global demand for high-quality sparkling wines, understanding the biochemical mechanisms related to aroma development has become increasingly relevant. This review provides a comprehensive overview of the secondary fermentation process, with particular emphasis on yeast selection, types of closure, and the impact of aging on the volatile composition. Special attention is also given to the analytical strategies employed for the identification and quantification of target compounds in sparkling wine matrices. Due to the presence of volatile compounds at trace levels, effective extraction and pre-concentration techniques are essential. Extraction methods such as solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), and thin-film SPME (TF-SPME) are discussed, as well as chromatographic techniques, such as gas chromatography (GC) and liquid chromatography (LC). Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages, 2nd Edition)
Show Figures

Figure 1

15 pages, 1864 KiB  
Article
Influence of Aging Technologies on the Volatile Profile Composition of Carignano cv Red Wines in Sardinia
by Giorgia Sarais, Mattia Casula, Francesco Corrias, Mariateresa Russo, Barbara Pinna, Francesca Argiolas, Mariano Murru and Alberto Angioni
Foods 2025, 14(13), 2290; https://doi.org/10.3390/foods14132290 - 27 Jun 2025
Viewed by 282
Abstract
Wine aroma is the result of the association of numerous volatile and non-volatile compounds belonging to the grapes, the fermentation, and aging process. During aging, wines complete their complex composition, and many aromas emerge. Therefore, aging represents a fundamental step to obtaining high-quality [...] Read more.
Wine aroma is the result of the association of numerous volatile and non-volatile compounds belonging to the grapes, the fermentation, and aging process. During aging, wines complete their complex composition, and many aromas emerge. Therefore, aging represents a fundamental step to obtaining high-quality wines. Aromas belong directly to the odorless precursor in grapes or to the aging technology used. Analyses have been performed on wines obtained from the cv Carignano subjected to four aging technologies: stainless-steel tank, plastic vat, concrete vat, and oak barrel. GC/FID and GC/MS analysis allowed the identification of 78 significant compounds belonging to eight different chemical classes. Volatile composition in the various containers was assessed at two levels: chemical classes and individual compounds. At 12 months, plastic vats had the highest increase in the total VOC concentration (p < 0.05), followed by concrete and stainless steel. In contrast, oak barrels showed a decrease, although the difference was not statistically significant (p > 0.05). Unsupervised principal component analysis (PCA) demonstrated that the container exerts a more substantial influence at 6 months, while at 12 months, the samples were categorized irrespective of the container. In the loading plot, several esters, acids, lactones, and aldehydes showed negative loadings on PC1 (associated with time), indicating a correlation with the 12-month collection time. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Graphical abstract

24 pages, 1703 KiB  
Article
Impact of Nitrogen Sparging on Chemical and Sensory Characteristics of Verdejo and Sauvignon blanc Wines
by del Barrio-Galán Rubén, del Alamo-Sanza Maria, Martínez-Gil Ana María, González-Lázaro Miriam and Nevares Ignacio
Foods 2025, 14(13), 2272; https://doi.org/10.3390/foods14132272 - 26 Jun 2025
Viewed by 383
Abstract
Sparging is a common technique in wineries that consists of injecting a gas, normally before bottling, in order to displace the dissolved oxygen in the wine and prevent oxidation. The objective of this study was to examine the effect of sparging on wines [...] Read more.
Sparging is a common technique in wineries that consists of injecting a gas, normally before bottling, in order to displace the dissolved oxygen in the wine and prevent oxidation. The objective of this study was to examine the effect of sparging on wines with three different levels of dissolved oxygen and the evolution of the chemical parameters in a bottle. This study was carried out on two white wines, Verdejo and Sauvignon blanc. The results indicated that sparging did not immediately affect the chemical parameters in the white wines, but it did affect their evolution in bottles, with a greater effect found in the Sauvignon blanc wines than in the Verdejo wines. Sparging, which was carried out to remove oxygen from the wines, had a protective effect on their color during the time in the bottles, preventing a more rapid decrease in free SO2. The effect of sparging on the volatile compounds of the wines was more evident in the Sauvignon blanc wines, which showed a reduction in their content, possibly due to carry-over when the N2 was applied. With regard to the effect of sparging on the sensory profile of the wines, no immediate effect was found. However, the wines with a DO content of 6 and 8.4 mg/L to which sparging was applied evolved better in the bottles than the deoxygenation wines, showing more fruity notes and fewer oxidized and phenolic aromas (mainly in the Verdejo wines). Full article
Show Figures

Graphical abstract

16 pages, 1835 KiB  
Article
Stress Tolerance and Contribution to Aroma Profile of Pichia kudriavzevii GAAS-JG-1 Isolated from Apricot Fermentation in Co-Fermentation of Sea Buckthorn Wine
by Yuwen Mu, Yu’an Wang and Chaozhen Zeng
Microorganisms 2025, 13(7), 1491; https://doi.org/10.3390/microorganisms13071491 - 26 Jun 2025
Viewed by 344
Abstract
High-acidity fruit wines, such as sea buckthorn wine, are valued for their nutritional benefits but often suffer from excessive tartness and limited aroma complexity, which restrict their consumer acceptance. The application of non-Saccharomyces yeasts with acid tolerance and flavor-enhancing potential offers a promising [...] Read more.
High-acidity fruit wines, such as sea buckthorn wine, are valued for their nutritional benefits but often suffer from excessive tartness and limited aroma complexity, which restrict their consumer acceptance. The application of non-Saccharomyces yeasts with acid tolerance and flavor-enhancing potential offers a promising strategy to address these challenges. In this study, a highly acid-tolerant yeast strain, Pichia kudriavzevii GAAS-JG-1, was isolated from a naturally fermented apricot system and systematically characterized in terms of its taxonomy, physiological properties, and fermentation potential. The experimental results demonstrated that Pichia kudriavzevii GAAS-JG-1 maintained robust growth activity (OD600 = 1.18 ± 0.09) even under extremely acidic conditions (pH 2.0). Furthermore, the strain exhibited a strong tolerance to high ethanol concentrations (16%), elevated sugar levels (350 g/L), and substantial sulfur dioxide exposure (500 mg/L). Optimal growth was observed at 35 °C (OD600 = 2.21 ± 0.02). When co-fermented with Saccharomyces cerevisiae in sea buckthorn wine, the ethyl acetate content increased significantly from 303.71 μg/L to 4453.12 μg/L, while the ethyl propionate levels rose from 5.18 μg/L to 87.75 μg/L. Notably, Pichia kudriavzevii GAAS-JG-1 also produced novel flavor compounds such as methyl acetate and ethyl 3-methylthiopropionate, which were absent in the single-strain fermentation. These findings highlight the potential of Pichia kudriavzevii GAAS-JG-1 as a valuable non-Saccharomyces yeast resource with promising applications in the fermentation of high-acidity specialty fruit wines. Full article
(This article belongs to the Special Issue Beneficial Microbes: Food, Mood and Beyond—Third Edition)
Show Figures

Figure 1

14 pages, 1642 KiB  
Article
Composition Divergence and Synergistic Mechanisms in Microbial Communities During Multi-Varietal Wine Co-Fermentation
by Yuhan Zhang, Jiao Yang and Yuxi Yan
Fermentation 2025, 11(6), 349; https://doi.org/10.3390/fermentation11060349 - 16 Jun 2025
Viewed by 566
Abstract
The bacterial microbial community composition during wine fermentation is a key contributor to wine quality and flavor. However, studies on the regulatory effects of different grape varieties and co-fermentation processes on the microbial community structure and their synergistic mechanisms remain limited. In this [...] Read more.
The bacterial microbial community composition during wine fermentation is a key contributor to wine quality and flavor. However, studies on the regulatory effects of different grape varieties and co-fermentation processes on the microbial community structure and their synergistic mechanisms remain limited. In this study, Cabernet Sauvignon (CS) was subjected to single-variety fermentation and used as the base wine for co-fermentation with three other grape varieties—Marselan (CSMN), Merlot (CSMT), and Cabernet Gernischt (CSCG)—to systematically compare the differences in the microbial community composition and their effects on the production of metabolic compounds. The results showed that, compared with single-variety fermentation, co-fermentation significantly increased the α-diversity of microbial communities (the Shannon index increased) and exhibited significant differences in β-diversity (PERMANOVA analysis, R2 = 0.421, p < 0.001). A neutral model analysis indicated that co-fermentation had a significant impact on microbial community assembly mechanisms, with the contribution of neutral processes to community assembly increasing from 45.5% (in the CSCG process) to 62.3% (in the CSMT process). A microbial co-occurrence network analysis revealed that co-fermentation enhanced the network complexity of microbial communities and strengthened the synergistic interactions between microbial taxa. A metabolic compound analysis revealed that co-fermentation significantly enhanced the production of key aroma compounds, resulting in increased concentrations of isoamyl acetate, ethyl hexanoate, linalool, and geraniol. These findings highlight the differences in microbial communities and their synergistic mechanisms among co-fermented grape varieties, providing theoretical guidance and practical insights for optimizing co-fermentation processes and improving wine quality. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

Back to TopTop